B. Adams, M. Pauly, R. Keiser, and L. J. Guibas, Adaptively sampled particle fluids, Proceedings of ACM SIGGRAPH, 2007.
DOI : 10.1145/1276377.1276437

URL : https://lirias.kuleuven.be/bitstream/123456789/244123/1/adams-sig07.pdf

N. Amenta, S. Choi, and G. Rote, Incremental constructions con BRIO, Proceedings of the nineteenth conference on Computational geometry , SCG '03, pp.211-219, 2003.
DOI : 10.1145/777792.777824

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

K. Buchin, Constructing Delaunay Triangulations along Space-Filling Curves, Proc. 17th European Symposium on Algorithms, pp.119-130, 2009.
DOI : 10.1007/978-3-642-04128-0_11

URL : http://repository.tue.nl/668788

K. Buchin, M. Löffler, P. Morin, and W. Mulzer, Preprocessing imprecise points for Delaunay triangulation: Simplified and extended. Algorithmica, online first, 2011.

K. Buchin and W. Mulzer, Delaunay Triangulations in O(sort(n)) Time and More, 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp.139-148, 2009.
DOI : 10.1109/FOCS.2009.53

B. Chazelle, O. Devillers, F. Hurtado, M. Mora, V. Sacristán et al., Splitting a Delaunay Triangulation in Linear Time, Algorithmica, vol.34, issue.1, pp.39-46, 2002.
DOI : 10.1007/s00453-002-0939-8

URL : https://hal.archives-ouvertes.fr/hal-01179401

F. Chin and C. Wang, Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time, SIAM Journal on Computing, vol.28, issue.2, pp.471-486, 1998.
DOI : 10.1137/S0097539795285916

P. Machado-manhães-de-castro, Practical Ways to Accelerate Delaunay Triangulations, Thèse de doctorat en sciences, 2010.

P. Machado-manhães-de-castro and O. Devillers, Simple and efficient distribution-sensitive point location, in triangulations, Workshop on Algorithm Engineering and Experiments, 2011.

P. Machado-manhães-de-castro, J. Tournois, P. Alliez, and O. Devillers, Filtering Relocations on a Delaunay Triangulation, Special issue 6th Annu. Sympos. Geometry Processing, pp.1465-1474, 2009.
DOI : 10.1111/j.1467-8659.2009.01523.x

C. Delage, Spatial sorting, CGAL User and Reference Manual. CGAL Editorial Board, 2011.

O. Devillers, THE DELAUNAY HIERARCHY, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.163-180, 2002.
DOI : 10.1142/S0129054102001035

URL : https://hal.archives-ouvertes.fr/inria-00166711

O. Devillers, S. Pion, and M. Teillaud, WALKING IN A TRIANGULATION, International Journal of Foundations of Computer Science, vol.13, issue.02, pp.181-199, 2002.
DOI : 10.1142/S0129054102001047

URL : https://hal.archives-ouvertes.fr/inria-00344519

L. Devroye, C. Lemaire, and J. Moreau, Expected time analysis for Delaunay point location, Computational Geometry, vol.29, issue.2, pp.61-89, 2004.
DOI : 10.1016/j.comgeo.2004.02.002

L. Devroye, E. Peter-mücke, and B. Zhu, A Note on Point Location in Delaunay Triangulations of Random Points, Algorithmica, vol.22, issue.4, pp.477-482, 1998.
DOI : 10.1007/PL00009234

P. J. Green and R. R. Sibson, Computing Dirichlet Tessellations in the Plane, The Computer Journal, vol.21, issue.2, pp.168-173, 1978.
DOI : 10.1093/comjnl/21.2.168

L. Guibas and D. Russel, An empirical comparison of techniques for updating Delaunay triangulations, Proceedings of the twentieth annual symposium on Computational geometry , SCG '04, pp.170-179, 2004.
DOI : 10.1145/997817.997846

L. J. Guibas, D. Salesin, and J. Stolfi, Epsilon geometry: building robust algorithms from imprecise computations, Proc. 5th Annu. Sympos, pp.208-217, 1989.

L. J. Guibas, D. Salesin, and J. Stolfi, Constructing strongly convex approximate hulls with inaccurate primitives, Algorithmica, vol.37, issue.2, pp.534-560, 1993.
DOI : 10.1007/BF01190154

URL : http://doi.org/10.1007/3-540-52921-7_75

C. L. Lawson, $C^1$ surface interpolation for scattered data on a sphere, Rocky Mountain Journal of Mathematics, vol.14, issue.1, pp.177-202, 1984.
DOI : 10.1216/RMJ-1984-14-1-177

M. Löffler and J. Snoeyink, Delaunay triangulation of imprecise points in linear time after preprocessing, Computational Geometry, vol.43, issue.3, pp.234-242, 2009.
DOI : 10.1016/j.comgeo.2008.12.007

T. Nagai, S. Yasutome, and N. Tokura, Convex Hull Problem with Imprecise Input, Japanese Conference on Discrete and Computational Geometry, pp.207-219, 2004.
DOI : 10.1007/978-3-540-46515-7_18

S. Pion and M. Teillaud, 3D triangulations, CGAL User and Reference Manual. CGAL Editorial Board, p.3, 2011.

R. Seidel, Backwards Analysis of Randomized Geometric Algorithms, New Trends in Discrete and Computational Geometry, pp.37-68, 1993.
DOI : 10.1007/978-3-642-58043-7_3

J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry: Towards Geometric Engineering, pp.30-45, 2011.
DOI : 10.1007/BFb0014497