Skip to Main content Skip to Navigation
Conference papers

Diffuse noise robust multiple source localization based on matrix completion via trace norm minimization

Nobutaka Ito 1, 2 Emmanuel Vincent 1 Nobutaka Ono 2 Rémi Gribonval 1 Shigeki Sagayama 2
1 METISS - Speech and sound data modeling and processing
IRISA - Institut de Recherche en Informatique et Systèmes Aléatoires, Inria Rennes – Bretagne Atlantique
Abstract : We aim to improve the robustness of sound localization to diffuse noise coming from various directions. Using a subspace model of the noise covariance matrix, we estimate the signal covariance matrix from the observed covariance matrix and subsequently apply MUSIC (MUltiple SIgnal Classification). In [2], we proposed a maximum likelihood method given the rank of the signal covariance matrix. In this paper, we propose an alternative method based on minimizing the trace norm.
Complete list of metadatas

Cited literature [2 references]  Display  Hide  Download

https://hal.inria.fr/inria-00596138
Contributor : Emmanuel Vincent <>
Submitted on : Friday, September 30, 2011 - 12:35:15 PM
Last modification on : Thursday, March 21, 2019 - 2:20:12 PM
Document(s) archivé(s) le : Saturday, December 31, 2011 - 2:20:07 AM

File

itou_ASJ11.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00596138, version 1

Citation

Nobutaka Ito, Emmanuel Vincent, Nobutaka Ono, Rémi Gribonval, Shigeki Sagayama. Diffuse noise robust multiple source localization based on matrix completion via trace norm minimization. ASJ Spring Meeting, Mar 2011, Tokyo, Japan. ⟨inria-00596138⟩

Share

Metrics

Record views

1069

Files downloads

286