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Abstract

Solving multihomogeneous systems, as a wide range ofstructured algebraic systemsoccurring
frequently in practical problems, is of first importance. Experimentally, solving these systems
with Gröbner bases algorithms seems to be easier than solving homogeneous systems of the
same degree. Nevertheless, the reasons of this behaviour are not clear. In this paper, we focus
on bilinear systems (i.e. bihomogeneous systems where all equations have bidegree(1,1)). Our
goal is to provide a theoretical explanation of the aforementioned experimental behaviour and to
propose new techniques to speed up the Gröbner basis computations by using the multihomoge-
neous structure of those systems. The contributions are theoretical and practical. First, we adapt
the classicalF5 criterion to avoid reductions to zero which occur when the input is a set of bilin-
ear polynomials. We also prove an explicit form of the Hilbert series of bihomogeneous ideals
generated by generic bilinear polynomials and give a new upper bound on the degree of regular-
ity of generic affine bilinear systems. We propose also a variant of theF5 Algorithm dedicated to
multihomogeneous systems which exploits a structural property of the Macaulay matrix which
occurs on such inputs. Experimental results show that this variant requires less time and memory
than the classical homogeneousF5 Algorithm. Lastly, we investigate the complexity of comput-
ing a Gr̈obner basis for the grevlex ordering of a generic 0-dimensional affine bilinear system
over k[x1, . . . ,xnx,y1, . . . ,yny]. In particular, we show that this complexity is upper bounded by

O
((nx+ny+min(nx+1,ny+1)

min(nx+1,ny+1)

)ω)
, which is polynomial innx+ny (i.e. the number of unknowns) when

min(nx,ny) is constant.

Keywords: Gröbner bases, bihomogeneous ideals, algorithms, complexity.

1. Introduction

The problem of multivariate polynomial system solving is an important topic in computer
algebra since algebraic systems can arise from many practical applications (cryptology,robotics,
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real algebraic geometry, coding theory, signal processing, etc...). One method to solve them is
based on the Gröbner basis theory. Due to their practical importance, efficient algorithms to
compute Gr̈obner bases of algebraic systems are required: for instance Buchberger’s Algorithm
(Buchberger (2006)), FaugèreF4 (Faug̀ere (1999)) orF5 (Faug̀ere (2002)).

In this article, we focus on theF5 Algorithm. In particular, theF5 criterion is a tool which
removes the so-calledreductions to zero(which are useless) during the Gröbner basis compu-
tation when the input system is a regular sequence. For instance, consider a sequence of poly-
nomials( f1, . . . , fm). The reductions to zero come from the leading monomials in the colon
ideals〈 f1, . . . , fi−1〉 : fi . Given a term order, letLM(I) denote the ideal generated by the lead-
ing monomials of the elements of an idealI . Then the reductions to zero detected by theF5

criterion are those related toLM(〈 f1, . . . , fi−1〉). For regular systems,LM(〈 f1, . . . , fi−1〉) =
LM(〈 f1, . . . , fi−1〉 : fi). Therefore, theF5 criterion removes all useless reductions. In practice, if
a homogeneous polynomial system is chosen “at random”, then it is regular.

In this paper, we consider multihomogeneous systems, which are not regular sequences in
the polynomial ring. Such systems can appear in cryptography (Faugère et al. (2008)), in coding
theory (Ourivski and Johansson (2002)) or in effective geometry (see Safey El Din and Schost
(2003); Safey El Din and Trébuchet (2006)).

A multihomogeneous polynomial is defined with respect to a partition of the unknowns, and
is homogeneous with respect to each subset of variables. The finite sequence of degrees is called
the multi-degreeof the polynomial. For instance, a bihomogeneous polynomialf of bidegree
(d1,d2) overk[x0, . . . ,xnx,y0, . . . ,yny] is a polynomial such that

∀λ ,µ, f (λx0, . . . ,λxnx,µy0, . . . ,µyny) = λ d1µd2 f (x0, . . . ,xnx,y0, . . . ,yny).

In general, multihomogeneous systems are not regular. Consequently, theF5 criterion does not
remove all reductions to zero. Our goal is to understand the underlying structure of these multi-
homogeneous algebraic systems, and then use it to speed up the computation of a Gröbner basis
in the context ofF5. In this paper, we focus on bihomogeneous ideals generated by polynomials
of bidegree(1,1).

1.1. Main results
Let k be a field,f1, . . . fm∈ k[x0, . . . ,xnx,y0, . . . ,yny] be bilinear polynomials. We denote byFi

the polynomial family( f1, . . . , fi) and byIi the ideal〈Fi〉. We start by describing the algorithmic
results of the paper, obtained by exploiting the algebraic structure of bilinear systems.

In order to understand this structure, we study properties of the jacobian matrices with respect
to the two subsets of variablesx0, . . . ,xnx andy0, . . . ,yny:

jacx(Fi) =




∂ f1
∂x0

∙ ∙ ∙ ∂ f1
∂xnx

...
...

...
∂ fi
∂x0

∙ ∙ ∙ ∂ fi
∂xnx


 jacy(Fi) =




∂ f1
∂y0

∙ ∙ ∙ ∂ f1
∂yny

...
...

...
∂ fi
∂y0

∙ ∙ ∙ ∂ fi
∂yny




We show that the kernels of those matrices (whose entries are linear forms) correspond to
the reductions to zero not detected by the classicalF5 criterion. In general, all elements in these
kernels are vectors of maximal minors of the jacobian matrices (Lemma 2). For instance, if
nx = ny = 2 andm= 4, consider

v = (minor(jacx(F4),1),−minor(jacx(F4),2),minor(jacx(F4),3),−minor(jacx(F4),4))
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and

w = (minor(jacy(F4),1),−minor(jacy(F4),2),minor(jacy(F4),3),−minor(jacy(F4),4)),

whereminor(jacx(F4),k) (resp. minor(jacy(F4),k)) denotes the determinant of the matrix ob-
tained fromjacx(F4) (resp. jacy(F4)) by removing thek-th row. The genericsyzygiescorre-
sponding to reductions to zero which are not detected by the classicalF5 criterion are

v ∈ KerL(jacx(F4)) andw ∈ KerL(jacy(F4)).

We show (Corollary 2) that, in general, the idealIi−1 : fi is spanned byIi−1 and by the
maximal minors ofjacx(Fi−1) (if i > ny+1) andjacy(Fi−1) (if i > nx+1). The leading monomial
ideal of Ii−1 : fi describes the reductions to zero associated tofi . Thus we need results about
ideals generated by maximal minors of matrices whose entries are linear forms in order to get a
description of the syzygy module. In particular, we prove that, in general,grevlexGröbner bases
of those ideals are linear combinations of the generators (Theorem 3). Based on this result, one
can compute efficiently a Gröbner basis ofIi−1 : fi once a Gr̈obner basis ofIi−1 is known.

This allows us to design an Algorithm (Algorithm 4) dedicated to bilinear systems, which
yields an extension of the classicalF5 criterion. This subroutine, when merged within a matricial
version of theF5 Algorithm (Algorithm 2), eliminates all reductions to zero during the compu-
tation of a Gr̈obner basis of a generic bilinear system. For instance, during the computation of
a grevlex Gr̈obner basis of a system of 12 generic bilinear equations overk[x0, . . . ,x6,y0, . . . ,y6],
the new criterion detects 990 reductions to zero which are not found by the usualF5 criterion.
Even if this new criterion seems to be more complicated than the usualF5 criterion (some pre-
computations have to be performed), we prove that the cost induced by those precomputations is
negligible compared to the cost of the whole computation.

Next, we introduce a notion ofbi-regularitywhich describes the structure of generic bilinear
systems. When the input of Algorithm 4 is a bi-regular system, then it returns all reductions
to zero. We also give a complete description of the syzygy module of such systems, up to a
conjecture (Conjecture 1) on a linear algebra problem over rings. This conjecture is supported
by practical experiments. We also prove that there are no reductions to zero with the classicalF5

criterion for affine bilinear systems (Proposition 5) which is important for practical applications.
We describe now the main complexity results of the paper. We need some results on the so-

called Hilbert bi-series of ideals generated by bilinear systems. For bi-regular bilinear system,
we give an explicit form of these series (Theorem 5):

HSIm(t1, t2) =
Nm

(1− t1)nx+1(1− t2)ny+1 ,

Nm(t1, t2) = (1− t1t2)m+

∑
m−(ny+1)
ℓ=1 (1− t1t2)m−(ny+1)−ℓt1t2(1− t2)ny+1

[
1− (1− t1)ℓ ∑

ny+1
k=1 t

ny+1−k
1

(ℓ+ny−k
ny+1−k

)]
+

∑m−(nx+1)
ℓ=1 (1− t1t2)m−(nx+1)−ℓt1t2(1− t1)nx+1

[
1− (1− t2)ℓ ∑nx+1

k=1 tnx+1−k
2

(ℓ+nx−k
nx+1−k

)]
.

After this analysis, we propose a variant of the MatrixF5 Algorithm dedicated to multiho-
mogeneous systems. The key idea is to decompose the Macaulay matrices into a set of smaller
matrices whose row echelon forms can be computed independently. We provide some experi-
mental results of an implementation of this algorithm inMagma2.15. This multihomogeneous
variant can be more than 20 times faster for bihomogeneous systems than ourMagma implemen-
tation of the classical MatrixF5 Algorithm. We perform a theoretical complexity analysis based
on the Hilbert series in the case of bilinear systems, which provides an explanation of this gap.
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Finally, we establish a sharp upper bound on the degree of regularity of 0-dimensional affine
bilinear systems (Theorem 6). Letf1, . . . , fnx+ny be an affine bilinear system ofk[x0, . . . ,xnx−1,y0, . . . ,yny−1],
then the maximal degree reached during the computation of a Gröbner basis with respect to the
grevlex ordering is upper bounded by:

dreg ≤min(nx +1,ny +1) .

This bound isexact in practice for generic bilinear systems and permits to derive complexity
estimates for solving bilinear systems (Corollary 3) which can be applied to practical problems
(see for instance Faugère et al. (2010) for an application to the MinRank problem).

1.2. State of the art

The complexity analysis that we perform by proving properties on the Hilbert bi-series of
bilinear ideals follows a path which is similar to the one used to analyze the complexity of theF5

algorithm in the case of homogeneous regular sequences (see Bardet et al. (2005)). In Kreuzer
et al. (2002), the properties of Buchberger’s Algorithm are investigated in the context of multi-
graded rings. Cox et al. (2007a) gives an analysis of the structure of the syzygy module in the
case of three bihomogeneous equations with no common solution in the biprojective space.

The algorithmic use of multihomogeneous structures has been investigated mostly in the
framework of multivariate resultants (see Dickenstein and Emiris (2003); Emiris and Mantzaflaris
(2009) and references therein for the most recent results) following the line of work initiated by
McCoy (1933). In the context of solving polynomial systems by using straight-line programs
as data-structures, Jeronimo and Sabia (2007) provides an alternative way to compute resultant
formula for multihomogeneous systems.

As we have seen in the description of the main results, the knowledge of Gröbner bases
of ideals generated by maximal minors of linear matrices play a crucial role. Theorem 3 which
states that such Gröbner bases are obtained by a single row echelon form computation is a variant
of the main results in Sturmfels and Zelevinsky (1993) and Bernstein and Zelevinsky (1993) (see
also the survey by Bruns and Conca (2003)).

More generally, the theory of multihomogeneous elimination is investigated in Rémond
(2001) providing tools to generalize some well-known notions (e.g. Chow forms, resultant
formula, heights) in the homogeneous case to multihomogeneous situations. Such works are
initiated in Van der Waerden (1929) where the Hilbert bi-series of bihomogeneous ideals is in-
troduced.

1.3. Structure of the paper

This paper is articulated as follows. Some tools from commutative algebra are introduced.
Next, we investigate the case of bilinear systems and propose an algorithm to remove all reduc-
tions to zero during the Gröbner basis computation. Then we prove its correctness and explain
why it is efficient forgenericbilinear systems. To continue our study of the structure of bilinear
ideals, we give the explicit form of the Hilbert bi-series of generic bilinear ideals. Finally, we
prove a new bound on the degree of regularity of generic affine bilinear systems and we use it to
derive new complexity bounds. Technical results and their proofs are postponed in Appendix.
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2. Gröbner bases: the MatrixF5 Algorithm

2.1. Gr̈obner bases: notations

In this section,R denotes the polynomial ringk[x1, . . . ,xn] (wherek is a field) and for all

β = (β1, . . . ,βn) ∈ Nn, xβ denotesxβ1
1 , ∙ ∙ ∙ ,xβn

n . Gröbner bases are defined with respect to a
monomial ordering (see Cox et al. (2007b), page 55, Definition 1). In this paper, we focus in
particular on the so-calledgrevlexordering (degree reverse lexicographical ordering).

Definition 1. Thegrevlexordering is defined by:

xα ≺ xβ ⇔





∑αi < ∑βi or

∑αi = ∑βi and the first coordinates

from the right which are different satisfyαi > βi .

If ≺ is a monomial ordering andf ∈ R is a polynomial, then its greatest monomial with
respect to≺ is calledleading monomialand denoted byLM≺( f ) (or simplyLM( f ) when there
is no ambiguity on the considered ordering).

If I ⊂R is a polynomial ideal, itsleading monomial ideal(i.e. 〈{LM≺( f ) : f ∈ I}〉) is denoted
by LM≺(I) (or simplyLM(I) when there is no ambiguity on the ordering) .

Definition 2. let I ⊂ R be an ideal, and≺ be a monomial ordering. AGröbner basisof I
(relatively to≺) is a finite subset G⊂ I such that:〈LM≺(G)〉= LM≺(I).

Definition 3. Let I⊂R be an ideal,≺ be a monomial ordering and f∈R be a polynomial. Then
there exist unique polynomials̃f ∈ R and g∈ I such that f= f̃ +g and none of the monomials
appearing inf̃ are inLM≺(I). The polynomialf̃ is called thenormal formof f (with respect to
I and≺), and is denotedNFI ,≺( f ).

It is well known thatNFI ,≺( f ) = 0 if and only if f ∈ I (see e.g. Cox et al. (2007b)).

Definition 4. Let I⊂R be a homogeneous ideal,≺ be a monomial ordering and D be an integer.
We call D-Gr̈obner basis a finite set of polynomials G such that〈G〉= I and

∀ f ∈ I with deg( f )≤ D, there exists g∈G such thatLM≺(g) dividesLM≺( f ).

The following Lemma is a straightforward consequence of Dickson’s Lemma (Cox et al.,
2007b, page 71, Theorem 5).

Lemma 1. Let I ⊂ R be an ideal and let≺ be a monomial ordering. There exists D∈ N such
that every D-Gr̈obner basis with respect to≺ is a Gröbner basis of I with respect to≺.
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2.2. The Matrix F5 Algorithm

We use a variant of theF5 Algorithm, called MatrixF5 Algorithm, which is suitable to
perform complexity analyses (see Bardet (2004); Bardet et al. (2005); Faugère and Rahmany
(2009)).

Given a set of generators( f1, . . . , fm) of a homogeneous polynomial idealI ⊂ R, an integer
D and a monomial ordering≺, the MatrixF5 Algorithm computes aD-Gröbner basis ofI with
respect to≺. It performs incrementally by considering the idealsIi = 〈 f1, . . . , fi〉 for 1≤ i ≤m.

Let d ∈ N, denote byRd thek-vector space of polynomials inR of degreed. As in Faug̀ere
(2002) and Bardet (2004), we use a definition of the row echelon form of a matrix which is
slightly different from the usual definition: we callrow echelon formthe matrix obtained by
applying the Gaussian elimination Algorithmwithout permuting the rows. The idea of the Matrix
F5 Algorithm (see Algorithm 2 below) is to calculate triangular bases of the vector spacesIi ∩Rd

for 1≤ d≤ D and 1≤ i ≤m and to deduce from them ad-basis ofIi+1. These triangular bases
are obtained by computing row echelon forms of the Macaulay matrices.

Definition 5. Let Fi = ( f1, . . . , fi) ∈ Ri be a sequence of homogeneous polynomials of degrees
(d1, . . . ,di) and≺ be a monomial ordering. The Macaulay matrix in degree dMacaulay≺(Fi ,d)
is the matrix whose rows contain the coefficients of the polynomials{t f j} where1≤ j ≤ i and
t ∈R is a monomial of degree d−d j . The columns correspond to the monomials in R of degree d
and are sorted by≺ in descending order. Each row has a signature(t, f j) and they are sorted as
follows: a row with signature(t1, f j) is preceding a row with signature(t2, fk) if j < k or ( j = k
and t1 ≺ t2). The element at the intersection of the row(t, f j) and the column corresponding to
the monomial m is the coefficient of m in the polynomial t fj .

When the row echelon form of a Macaulay matrix is computed, the rows which are linear
combinations of preceding rows are reduced to zero. Such computations are useless: removing
these rows before computing the row echelon form will not modify the result but lead to signif-
icant practical improvements. The so-calledF5 criterion (see Faug̀ere (2002)) is used to detect
thesereductions to zeroand is given below. In Algorithm 2, the matricesMd,i are similar to
Macaulay matrices: their rows and their columns are sorted with the same orderings and their
rows span the same vector spaces. Moreover, if( f1, . . . , fm) is a regular sequence, then the rows
of their row echelon formM̃d,i are bases ofIi ∩Rd.

Algorithm 1. F5 criterion - returns a boolean

Require:

{
(t, fi) the signature of a row

A matrixM in row echelon form
1: If t is the leading monomial of a row ofM , then returntrue,
2: else returnfalse.

Now, we give a description of the MatrixF5 Algorithm.

Algorithm 2. Matrix F5 (see Faug̀ere and Rahmany (2009); Bardet (2004); Faugère (2002))

6



Require:





( f1, . . . , fm) homogeneous polynomials of degree d1≤ d2≤ . . .≤ dm

D an integer

a monomial ordering≺
Ensure: G is a D-Gr̈obner basis of〈 f1, . . . , fm〉 for ≺

1: G←{ f1, . . . , fm}
2: for d from d1 to D do
3: M̃d,0← matrix with0 rows
4: for i from 1 to mdo

5: ConstructMd,i by adding toM̃d,i−1 the following rows:
6: if di = d then
7: add the row fi with signature(1, fi)
8: end if
9: if d > di then

10: for all f from M̃d−1,i with signature(e, fi), such that xλ is the
11: greatest variable of e, add the n−λ +1 rows xλ f ,xλ+1 f , . . . ,xn f with the
12: signatures(xλ e, fi),(xλ+1e, fi), . . . , (xne, fi) except those which satisfy:

13: F5criterion ((xλ+ke, fi),M̃d−di ,i−1)=true
14: end if
15: ComputeM̃d,i the row echelon form ofMd,i

16: Add to G the polynomials corresponding to rows of̃Md,i such that their
17: leading monomial is different from the leading monomial of
18: the row with same signature inMd,i

19: end for
20: end for
21: return G

We recall now some results mostly given by Faugère (2002) which justify theF5 criterion
by relating reductions to zero appearing in an incremental computation of a Gröbner basis of a
homogeneous ideal with the syzygy module of the polynomial system under consideration.

Definition 6. Let ( f1, . . . , fm) be polynomials in R. A syzygy is an element s= (s1, . . . ,sm) ∈ Rm

such that∑m
j=1 f jsj = 0. The degree of the syzygy is defined bymaxj(deg( f j)+deg(sj)). The set

of all syzygies is a submodule of Rm called thesyzygy moduleof ( f1, . . . , fm).

The next theorem explains how reductions to zero and syzygies are related:

Theorem 1(F5 criterion, Faug̀ere (2002)).

1. If t ∈ LM(Ii−1) then there exists a syzygy(s1, . . . ,si) of ( f1, . . . , fi) such thatLM(si) = t.
2. Let (t, fi) be the signature of a row ofMd,m. Then the following assertions are equivalent:

(a) the row(t, fi) is zero in the row echelon form̃Md,m.
(b) t /∈ LM(Ii−1) and there exists a syzygy s= (s1, . . . ,si) of ( f1, . . . , fi) such that t=

LM(si).

The rows eliminated by theF5 criterion correspond to the trivial syzygies, i.e. the syzygies
(s1, . . . ,sm) such that∀1≤ i ≤m, si ∈ 〈 f1, . . . , fi−1, fi+1, . . . , fm〉. These particular syzygies come
from the commutativity ofR (for all 1≤ i, j ≤m, fi f j − f j fi = 0). It is well known that in the
generic case, the syzygy module of a polynomial system is generated by the trivial syzygies.

7



Definition 7. (Eisenbud, 1995, page 419) Let( f1, . . . , fm) be a sequence of homogeneous poly-
nomials and let Ii ⊂ R be the ideal〈 f1, . . . , fi〉. The following assertions are equivalent:

1. the syzygy module of( f1, . . . , fm) is generated by the trivial syzygies.
2. for 2≤ i ≤m, fi is not a divisor of0 in R/Ii−1.

A sequence of polynomials which satisfies these conditions is called aregular sequence.

This notion of regularity is essential since the regular sequences correspond exactly to the
systems such that there is no reduction to zero during the computation of a Gröbner basis withF5

(see Faug̀ere (2002)). Moreover, generic polynomial systems with less equations than unknowns
are regular.

3. Gröbner bases computation for bilinear systems

3.1. Overview

Let F = ( f1, . . . , f4) be four bilinear polynomials inQ[x0,x1,x2,y0,y1,y2], I be the ideal
generated byF andV ⊂ C6 be its associated algebraic variety. As above,Ii denotes the ideal
〈 f1, . . . , fi〉, and we consider the grevlex ordering withx0 ≻ . . . ≻ xnx ≻ y0 ≻ . . . ≻ yny. Since
f1, . . . , f4 are bilinear, for all(a0,a1,a2) ∈ C3 and 1≤ i ≤ 4, fi(a0,a1,a2,0,0,0) = 0. Hence,
V contains the linear affine subspace defined byy0 = y1 = y2 = 0 which has dimension 3. We
conclude thatV has dimension at least 3.

Consequently, the sequence( f1, f2, f3, f4) is not regular (since the codimension of an ideal
generated by a regular sequence is equal to the length of the sequence). Hence, there are re-
ductions to zero during the computation of a Gröbner basis with theF5 Algorithm (see Faug̀ere
(2002)).

When the four polynomials are chosen randomly, one remarks experimentally that these re-
ductions correspond to the rows with signatures(x3

0, f4) and(y3
0, f4). This experimental observa-

tion can be explained as follows.
Consider the jacobian matrices

jacx(F) =




∂ f1
∂x0

∂ f1
∂x1

∂ f1
∂x2

...
...

...
∂ f4
∂x0

∂ f4
∂x1

∂ f4
∂x2


 and jacy(F) =




∂ f1
∂y0

∂ f1
∂y1

∂ f1
∂y2

...
...

...
∂ f4
∂y0

∂ f4
∂y1

∂ f4
∂y2




and the vectors of variablesX andY. By Euler’s formula, it is immediate that for any sequence
of polynomials(q1,q2,q3,q4),

(q1, . . . ,q4).jacx(F).X =
4

∑
i=1

qi fi and (q1, . . . ,q4).jacy(F).Y =
4

∑
i=1

qi fi (1)

Denote byKerL(jacx(F)) (resp.KerL(jacy(F))) the left kernel ofjacx(F) (resp.jacy(F)).
Therefore, if(q1, . . . ,q4) belongs toKerL(jacx(F)) (resp. KerL(jacy(F))), then the relation

(1) implies that(q1, . . . ,q4) belongs to the syzygy module ofI .
Given a(k+1,k)-matrixM, denote byminor(M, j) the minor obtained by removing thej-th

row fromM. Consider

v = (minor(jacx(F),1),−minor(jacx(F),2),minor(jacx(F),3),−minor(jacx(F),4)).
8



By Cramer’s rule,v ∈ KerL(jacx(F)). A symmetric statement can be made forjacy(F). From
this observation, one deduces thatminor(jacx(F),4) f4 (resp. minor(jacy(F),4) f4) belongs to
I3 = 〈 f1, f2, f3〉.

We conclude that the rows with signature

(LM(minor(jacx(F),4)), f4) and(LM(minor(jacy(F),4)), f4)

are reduced to zero when performing the MatrixF5 Algorithm described in the previous section.
A straightforward computation shows that ifF contains polynomials which are chosen randomly,
LM(minor(jacx(F),4)) = y3

0 andLM(minor(jacy(F),4)) = x3
0.

In this section, we generalize this approach to sequences of bilinear polynomials of arbitrary
length. Hence, the jacobian matrices have a number of rows which is is not the number of
columns incremented by 1. But, even in this more general setting, we exhibit a relationship
between the left kernels of the jacobian matrices and the syzygy module of the ideal spanned
by the sequence under consideration. This allows us to prove a newF5-criterion dedicated to
bilinear systems. On the one hand, when plugged into the MatrixF5 Algorithm, this criterion
detects reductions to zero which are not detected by the classical criterion. On the other hand,
we prove that aD-Gröbner basis is still computed by the MatrixF5 Algorithm when it uses the
new criterion.

3.2. Jacobian matrices of bilinear systems and syzygies

From now on, we use the following notations:

• R= k[x0, . . . ,xnx,y0, . . . ,yny];

• F = ( f1, . . . , fm) ⊂ Rm is a sequence of bilinear polynomials andFi = ( f1, . . . , fi) for 1≤
i ≤m;

• I is the ideal generated byF andIi is the ideal generated byFi ;

• Let M be aℓ×c matrix, withℓ > c. We callmaximal minorsof M the determinants of the
c×c sub-matrices ofM;

• jacx(Fi) andjacy(Fi) are respectively the jacobian matrices




∂ f1
∂x0

∙ ∙ ∙ ∂ f1
∂xnx

...
...

...
∂ fi
∂x0

∙ ∙ ∙ ∂ fi
∂xnx


 and




∂ f1
∂y0

∙ ∙ ∙ ∂ f1
∂yny

...
...

...
∂ fi
∂y0

∙ ∙ ∙ ∂ fi
∂yny


 ;

• Given a matrixM, KerL(M) denotes the left kernel ofM;

• X is the vector[x0, . . . ,xnx]
t andY is the vector[y0, . . . ,yny]

t ;

• ( f1, . . . , fm) ∈ k[x0, . . . ,xnx−1,y0, . . . ,yny−1]
m is anaffine bilinear systemif there exists a

homogeneous bilinear system( f h
1 , . . . , f h

m) ∈ k[x0, . . . ,xnx,y0, . . . ,yny]
m such that

fi(x0, . . . ,xnx−1,y0, . . . ,yny−1) = f h
i (x0, . . . ,xnx−1,1,y0, . . . ,yny−1,1).

9



Lemma 2. Let i > nx + 1 (resp. i> ny + 1), and lets be a maximal minor ofjacx(Fi−1) (resp.
jacy(Fi−1)). Then there exists a vector(s1, . . . ,si−1,s) in KerL(jacx(Fi)) (resp.KerL(jacy(Fi))).

Proof. The proof is done when considerings as a maximal minor ofjacx(Fi−1) with i > nx +1.
The case wheres is a maximal minor ofjacy(Fi−1) with i > ny +1 is proved similarly.

Notice thatjacx(Fi−1) is a matrix with i− 1 rows andnx + 1 columns andi− 1≥ nx + 1.
Denote by( j1, . . . , j i−nx−2) the rows deleted fromjacx(Fi−1) to construct its submatrixJ whose
determinant iss.

Consider now thei× (i−nx−2)-matrixT such that its(ℓ,k) entry is 1 if and only ifℓ = jk,
else it is 0.N denotes the followingi× (i−1) matrix:

N =
[

jacx(Fi) T
]
.

A straightforward use of Cramer’s rule shows that

(minor(N,1),−minor(N,2), . . . , (−1)i+1minor(N, i)) ∈ KerL(N).

Remark that this implies

(minor(N,1),−minor(N,2), . . . , (−1)i+1minor(N, i)) ∈ KerL(jacx(Fi)).

Computingminor(N, i) by going across the last columns ofN shows thatminor(N, i) =±s.

Theorem 2. Let i> nx+1 (resp. i> ny+1) and let s be a linear combination of maximal minors
of jacx(Fi−1) (resp.jacy(Fi−1)). Then s∈ Ii−1 : fi .

Proof. By assumption,s= ∑ℓ aℓ sℓ where eachsℓ is a maximal minor ofjacx(Fi−1). According

to Lemma 2, for each minorsℓ there exists(s(ℓ)
1 , . . . ,s(ℓ)

i−1) such that

(s(ℓ)
1 , . . . ,s(ℓ)

i−1,sℓ) ∈ KerL(jacx(Fi))

Thus, by summation overℓ, one obtains

(∑
ℓ

aℓs
(ℓ)
1 , . . . ,∑

ℓ

aℓs
(ℓ)
i−1,s) ∈ KerL(jacx(Fi)). (2)

Moreover, by Euler’s formula

(∑
ℓ

aℓs
(ℓ)
1 , . . . ,∑

ℓ

aℓs
(ℓ)
i−1,s)jacx(Fi)X = s fi +

i−1

∑
j=1

(

∑
ℓ

aℓs
(ℓ)
j

)
f j .

By the relation (2),s fi +∑i−1
j=1

(
∑ℓ aℓs

(ℓ)
j

)
f j = 0, which implies thats∈ Ii−1 : fi .

Corollary 1. Let i > nx + 1 (resp. i> ny + 1), M(i)
x (resp. M(i)

y ) be the ideal generated by the

maximal minors ofjacx(Fi) (resp.jacy(Fi)). Then M(i−1)
x ⊂ Ii−1 : fi (resp. M(i−1)

y ⊂ Ii−1 : fi).

Proof. By Theorem 2, all minors ofjacx(Fi−1) (resp.jacy(Fi−1)) are elements ofIi−1 : fi . Thus,

Ii−1 : fi contains a set of generators ofM(i−1)
x (resp. M(i−1)

y ). SinceIi−1 : fi is an ideal, our
assertion follows.
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Example 1. Consider the following bilinear system inGF(7)[x0,x1,x2,y0,y1,y2,y3]:

f1 = x0y0 +5x1y0 +4x2y0 +5x0y1 +3x1y1 +x0y2 +4x1y2 +5x2y2 +5x0y3 +x1y3 +2x2y3,
f2 = 2x0y0 +4x1y0 +6x2y0 +2x0y1 +5x1y1 +6x0y2 +4x2y2 +3x0y3 +2x1y3 +4x2y3,
f3 = 5x0y0 +5x1y0 +2x2y0 +4x0y1 +6x1y1 +4x2y1 +6x1y2 +4x2y2 +x0y3 +x1y3 +5x2y3,
f4 = 6x0y0 +5x2y0 +4x0y1 +5x1y1 +x2y1 +x0y2 +x1y2 +6x2y2 +2x0y3 +4x1y3 +5x2y3,
f5 = 6x0y0 +3x1y0 +6x2y0 +3x0y1 +5x2y1 +2x0y2 +4x1y2 +5x2y2 +2x0y3 +4x1y3 +5x2y3.

Its jacobian matricesjacx(F4) and jacy(F4) are:

jacx(F4) =




y0 +5y1 +y2 +5y3 5y0 +3y1 +4y2 +y3 4y0 +5y2 +2y3
2y0 +2y1 +6y2 +3y3 4y0 +5y1 +2y3 6y0 +4y2 +4y3

5y0 +4y1 +y3 5y0 +6y1 +6y2 +y3 2y0 +4y1 +4y2 +5y3
6y0 +4y1 +y2 +2y3 5y1 +y2 +4y3 5y0 +y1 +6y2 +5y3


 .

jacy(F4) =




x0 +5x1 +4x2 5x0 +3x1 x0 +4x1 +5x2 5x0 +x1 +2x2
2x0 +4x1 +6x2 2x0 +5x1 6x0 +4x2 3x0 +2x1 +4x2
5x0 +5x1 +2x2 4x0 +6x1 +4x2 6x1 +4x2 x0 +x1 +5x2

6x0 +5x2 4x0 +5x1 +x2 x0 +x1 +6x2 2x0 +4x1 +5x2


 .

An straightforward computation shows that the maximal minors of the matrixjacx(F4) and
jacy(F4) are in 〈 f1, f2, f3, f4〉 : f5, in accordance with Corollary 1. An example of a correspond-
ing syzygy is obtained by the vanishing of the determinant

det[jacx(F5)|T|F5]=det




y0 +5y1 +y2 +5y3 5y0 +3y1 +4y2 +y3 4y0 +5y2 +2y3 1 f1
2y0 +2y1 +6y2 +3y3 4y0 +5y1 +2y3 6y0 +4y2 +4y3 0 f2

5y0 +4y1 +y3 5y0 +6y1 +6y2 +y3 2y0 +4y1 +4y2 +5y3 0 f3
6y0 +4y1 +y2 +2y3 5y1 +y2 +4y3 5y0 +y1 +6y2 +5y3 0 f4
6y0 +3y1 +2y2 +2y3 3y0 +4y2 +4y3 6y0 +5y1 +5y2 +5y3 0 f5




= 0.

The above results imply that for allg ∈ M(i−1)
x (resp. g ∈ M(i−1)

y ), the rows of signature
(LM(g), fi) are reduced to zero during the MatrixF5 Algorithm. In order to remove these rows, it

is crucial to compute a Gröbner basis of the idealsM(i−1)
x andM(i−1)

y . These ideals are generated
by the maximal minors of matrices whose entries are linear forms. The goal of the following
section is to understand the structure of such ideals and how Gröbner bases can be efficiently
computed in that case.

3.3. Gr̈obner bases and maximal minors of matrices with linear entries

LetL be the set of homogeneous linear forms in the ringRX = k[x0, . . . ,xnx],≺ be thegrevlex
ordering onRX (with x0≻ ∙∙ ∙ ≻ xnx) andMatL (p,q) be the set ofp×q matrices with entries in
L with p≥ q andnx≥ p−q. Note thatMatL (p,q) is ak-vector space of finite dimension.

Given M ∈ MatL (p,q), we denote byMaxMinors(M) the set of maximal minors ofM.
We denote byMacaulay≺(MaxMinors(M),q) the Macaulay matrix in degreeq associated to
MaxMinors(M) and to the ordering≺ (each row represents a polynomial ofMaxMinors(M) and
the columns represent the monomials of degreeq in k[x0, . . . ,xnx] sorted by≺, see Definition 5).

The main result of this paragraph lies in the following theorem: it states that, in general, a
Gröbner basis of〈MaxMinors(M)〉 is a linear combination of the generators.

Theorem 3. There exists a nonempty Zariski-open set O inMatL (p,q) such that for allM ∈O,
a grevlex Gr̈obner basis of〈MaxMinors(M)〉 with respect to≺ is obtained by computing the row
echelon form ofMacaulay≺(MaxMinors(M),q).
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This theorem is related with a result from Sturmfels, Bernstein and Zelevinsky (1993), which
states that the ideal generated by the maximal minors of a matrix whose entries are variables is a
universal Gr̈obner Basis. We tried without success to use this result in order to prove Theorem 3.
Therefore, we propose an ad-hoc proof, which is based on the following Lemmas whose proofs
are postponed to the end of the paragraph.

Lemma 3. Let Monomialsp−q(q) be the set of monomials of degree q in k[x0, . . . ,xp−q]. There
exists a Zariski-open subset O′ of MatL (p,q) such that for allM ∈O′

〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(M)〉)
Lemma 4. Let Monomialsp−q(q) be the set of monomials of degree q in k[x0, . . . ,xp−q]. There
exists a Zariski-open subset O′′ of MatL (p,q) such that for allM ∈O′′

LM(〈MaxMinors(M)〉)⊂ 〈Monomialsp−q(q)〉
Lemma 5. The Zariski-open set O′∩O′′ ⊂MatL (p,q) is nonempty.

Proof of Theorem 3.From Lemmas 3, 4 and 5,O = O′ ∩O′′ is a nonempty Zariski open set.
Now letM be a matrix inO⊂MatL (p,q).

〈Monomialsp−q(q)〉= LM(〈MaxMinors(M)〉).
Thus all polynomials in a minimal Gröbner basis of〈MaxMinors(M)〉 have degreeq and then
can be obtained by computing the row echelon form ofMacaulay≺(MaxMinors(M),q).

We prove now Lemmas 3, 4 and 5.

Proof of Lemma 3.LetM be the(p,q)-matrix whose(i, j)-entry is a generic homogeneous lin-

ear form∑nx
k=0a

(i, j)
k xk ∈ k(a(i, j)0 , . . . ,a

(i, j)
k )[x0, . . . ,xnx]. Denote bya the set

a= {a(i, j)k ,0≤ k≤ nx, 1≤ i ≤ p, 1≤ j ≤ q}.
Given a set

a = {a(i, j)
k ∈ k,0≤ k≤ nx, 1≤ i ≤ p, 1≤ j ≤ q}

consider the specialization mapϕa :M 7→Ma ∈MatL (p,q) such that the(i, j)-entry ofMa is

∑nx
k=0a(i, j)

k xk ∈ k[x0, . . . ,xnx]. We prove below that there exists a polynomialg∈ k[a] such that, if
g(a) 6= 0 then

〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(ϕa(M))〉).
Consider the Macaulay matrixMacaulay≺(MaxMinors(M),q).
Remark that the number of monomials inMonomialsp−q(q) equals the number of maximal

minors ofM. Moreover, by construction ofMacaulay≺(MaxMinors(M),q) and by definition
of ≺ (see Definition 1), the first

(p
q

)
columns ofMacaulay≺(MaxMinors(M),q) contain the

coefficients of the monomials inMonomialsp−q(q) of the polynomials inMaxMinors(M).
Saying that〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(M)〉) is equivalent to saying that the

determinant of the square submatrix ofMacaulay≺(MaxMinors(M),q) containing its first
(p

q

)

columns is non-zero. Letg∈ k[a] be this determinant.
The inequalityg 6= 0 defines a Zariski-open setO′ such that for alla∈O′

〈Monomialsp−q(q)〉 ⊂ LM(〈MaxMinors(ϕa(M))〉).
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In the followingψ denotes the canonical inclusion morphism fromk[x0, . . . ,xnx] tok′[x0, . . . ,xp−q],
wherek′ is the field of fractionsk(xp−q+1, . . . ,xnx).

For (v1, . . . ,vnx−p+q), ψv denotes the specialization morphism:

ψv : k[x0, . . . ,xnx] −→ k[x0, . . . ,xp−q]
f (x0, . . . ,xnx) 7−→ f (x0, . . . ,xp−q,v1, . . . ,vnx−p+q)

Lemma 6. There exists a Zariski open set O′′′, such that ifa∈O′′′, then the ideal〈MaxMinors(ψ ◦
ϕa(M))〉 is radical and its degree is

( p
q−1

)
.

Proof. There exists an affine bilinear systemf1, . . . , fp ∈ k′(a)[x0, . . . ,xp−q,y0, . . . ,yq−2], such
that:

ψ(M) ∙




y0
...

yq−2

1


=




f1
...
fp


 .

Let I denote the ideal〈 f1, . . . , fp〉. According to Lemma 17 (in Appendix), there exists a polyno-
mial h1∈ k[a], such that ifh1(a) 6= 0, then

√
〈MaxMinors(ψ ◦ϕa(M))〉= 〈ϕa( f1), . . . ,ϕa( fp)〉∩

k′[x0, . . . ,xp−q].
One remarks that there also exists a polynomialh2 ∈ k[a] such that ifh2(a) 6= 0, thenϕa(I)

is 0-dimensional (sincef1, . . . , fp is a generic affine bilinear system withp equations andp
variables, see Proposition 8). From Lemma 16 (in Appendix), there exists a polynomialh3 such
that if h3(a) 6= 0, thenϕa(I) is radical. From now on, we suppose thath1(a)h2(a)h3(a) 6= 0.
If (w0, . . . ,wp−q) ∈ Var(〈MaxMinors(ψ ◦ϕa(M))〉) (whereVar denotes the variety), then the
set of points inVar(ϕa(I)) whose projection is(w0, . . . ,wp−q) can be obtained by solving an
affine linear system. The set of solutions of this system is nonempty and finite (sinceϕa(I) is
0-dimensional), thus it contains a unique element. So there is a bijection betweenVar(ϕa(I))
andVar(〈MaxMinors(ψ ◦ϕa(M))〉). As ϕa(I) is radical,

deg(ϕa(I)) = deg(
√
〈MaxMinors(ψ ◦ϕa(M))〉).

By Corollary 4, this degree is
( p

q−1

)
. According to Lemma 3,

deg(
√
〈MaxMinors(ψ ◦ϕa(M))〉) ≤ deg(〈MaxMinors(ψ ◦ϕa(M))〉)

≤ deg(〈Monomialsp−q(q)〉) =
( p

q−1

)
.

Therefore,

deg(
√
〈MaxMinors(ψ ◦ϕa(M))〉) = deg(〈MaxMinors(ψ ◦ϕa(M))〉)

and thus √
〈MaxMinors(ψ ◦ϕa(M))〉= 〈MaxMinors(ψ ◦ϕa(M))〉.

Furthermore, the inequalityh1(a)h2(a)h3(a) 6= 0 defines the wanted Zariski openset.

Proof of Lemma 4.Consider the Zariski open setO′′ = O′∩O′′′ (whereO′ is defined in Lemma
3 andO′′′ is defined in Lemma 6) and leta be taken inO′′. According to Lemma 3,

Monomialsp−q(q)⊂ LM(〈MaxMinors(ψ ◦ϕa(M))〉).
13



A basis ofk′[x0, . . . ,xp−q]/〈Monomialsp−q(q)〉 is given by the set of all monomials of degree less
thanq. Therefore, the dimension ofk′[x0, . . . ,xp−q]/〈Monomialsp−q(q)〉 (as ak′-vector space) is( p

q−1

)
. Thus, from Lemma 6,

deg(〈MaxMinors(ψ ◦ϕa(M))〉) =

(
p

q−1

)
= deg(〈Monomialsp−q(q)〉).

Therefore, all polynomials in〈MaxMinors(ψ ◦ϕa(M))〉 have degree at leastq.
Now letg 6= 0 be a polynomial in〈MaxMinors(ϕa(M))〉. Then there existsv =(v1, . . . ,vnx−p+q)

such that the specialized polynomial verifiesψv(g) 6= 0 and such that deg(〈MaxMinors(ψv ◦
ϕa(M))〉) =

( p
q−1

)
. Thusψv(g) is a polynomial of degree at leastq in k[x0, . . . ,xp−q]. Now

suppose by contradiction thatLM(g) /∈ 〈Monomialsp−q(q)〉. Since deg(ψv(g))≥ q, there exists
a monomialm in g such thatm ∈ 〈Monomialsp−q(q)〉. Thus considerg1 = g−λm+ λNF(m)
(whereλ is the coefficient ofm in g). One remarks thatLM(g) = LM(g1) /∈ 〈Monomialsp−q(q)〉.
Sinceg1 ∈ 〈MaxMinors(ϕa(M))〉, by a similar argument there also exists a monomialm1 ∈
〈Monomialsp−q(q)〉 in g1. By induction construct the sequencegi = gi−1−λi−1mi−1+λi−1NF(mi−1).
This sequence is infinite and strictly decreasing (for the induced partial ordering on polynomi-
als: h1 ≺ h2 if LM(h1) ≺ LM(h2) or if LM(h1) = LM(h2) andh1− LM(h1) ≺ h2− LM(h2)).
But, when≺ is the grevlex ordering, there does not exist such an infinite and strictly decreasing
sequence.

ThereforeLM(g) ∈ 〈Monomialsp−q(q)〉, which concludes theproof.

Proof of Lemma 5.In order to prove that the Zariski open setO′ ∩O′′ is nonempty, we exhibit
an explicit element. Consider the matrixM of MatL (p,q) whose(i, j)-entry isxi+ j−2 if 0 ≤
i + j−2≤ p−q andi ≥ j, else it is 0.

M =




x0 0 . . . 0

x1 x0
... 0

... x1
...

...

xp−q
...

...
...

...
...

... xp−q−1

0 0 . . . xp−q




.

Remark thatMaxMinors(M)⊂ k[x0, . . . ,xp−q]. Since〈Monomialsp−q(q)〉 is a zero-dimensional
ideal ink[x0, . . . ,xp−q], the fact thatLM(MaxMinors(M))= Monomialsp−q(q) implies thatLM(〈MaxMinors(M)〉)=
〈Monomialsp−q(q)〉. Thus, we prove in the sequel thatLM(MaxMinors(M))= Monomialsp−q(q).

A first observation is that the cardinality ofMaxMinors(M) equals the cardinality ofMonomialsp−q(q).
Let m be a maximal minor ofM. Thusm is the determinant of aq×q submatrixM′ obtained by
removingp−q rows fromM. Let i1, . . . , ip−q be the indices of these rows (withi1 < .. . < ip−q).
Denote by⋆ the product coefficient by coefficient of two matrices (i.e. theHadamard product)
and letSq be the set ofq×q permutation matrices. Thusm= ∑σ∈Sq(−1)sgn(σ) det(σ ⋆M′).

Since for allσ ∈ Sq, det(σ ⋆M′) is a monomial, there existsσ0 ∈ Sq such thatLM(m) =
±det(σ0 ⋆M′)

We prove now thatσ0 = id. Suppose by contradiction thatσ0 6= id. In the sequel, we denote
by
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• M′[i, j] the(i, j)-entry ofM′.

• ei theq×1 unit vector whosei-th coordinate is 1 and all its other coordinates are 0;

• σ0
j is the integeri such thatσ0ej = ei .

Since, by assumption,σ0 6= id, there exists 1≤ i < j ≤ q such thatσ0
j > σ0

i . Because of the
structure ofM, we know that for thegrevlexorderingx0≻ ∙∙ ∙ ≻ xnx,

M′[i,σ0
j ]M

′[ j,σ0
i ]≻M′[i,σ0

i ]M′[ j,σ0
j ].

Let σ ′ be defined by

σ ′k =





σ0
k if k 6= i andk 6= j

σ0
j if k = i

σ0
i if k = j

Then det(σ ′ ⋆M′)≻ det(σ0⋆M′) and by induction det(id⋆M′)≻ det(σ0⋆M′). This also proves
that the coefficient of det(id⋆M′) in MaxMinors(M) is 1 and contradicts the fact thatLM(m) =
±det(σ0 ⋆M′).

This proved thatLM(m) = |det(id⋆M′)|. Now one can remark that

det(id⋆M′) = xi1−1
0 xi2−i1−1

1 xi3−i2−1
2 . . .x

p−ip−q−1
p−q .

Thus ifm1,m2 are distinct elements inMaxMinors(M), thenLM(m1) 6= LM(m2). Since for allm
in MaxMinors(M), LM(m) ∈Monomialsp−q(q), andMaxMinors(M) has the same cardinality as
Monomialsp−q(q), we can deduce thatLM(MaxMinors(M)) = Monomialsp−q(q).

3.4. An extension of the F5 criterion for bilinear systems

We can now present the main algorithm of this section. Given a sequence of homogeneous bi-
linear formsF = ( f1, . . . , fm)⊂Rgenerating an idealI ⊂Rand≺ a monomial ordering, it returns
a set of pairs(g, fi) such thatg∈ Ii−1 : fi andg /∈ Ii−1 (for i > min(nx+1,ny+1)). Following The-
orem 2 and 3, this is done by considering the matricesjacx(Fi) (resp.jacy(Fi)) for i > nx+1 (resp.
i > ny + 1) and performing a row echelon form onMacaulay≺(MaxMinors(jacx(Fi)),nx + 1)
(resp.Macaulay≺(MaxMinors(jacy(Fi)),ny +1)).

First we describe the subroutineReduce(Algorithm 3) which reduces a set of homogeneous
polynomials of the same degree:

Algorithm 3. Reduce
Require: ≺ a monomial ordering and(S,q) where S is a set of homogeneous polynomials of

degree q.
Ensure: T is a reduced set of homogeneous polynomials of degree q.

1: M←Macaulay≺(S,q).
2: M← RowEchelonForm(M).
3: Return T the set of polynomials corresponding to the rows ofM.

The main algorithm uses this subroutine in order to compute a row echelon form ofMacaulay≺(MaxMinors(jacx(Fi)),nx+
1) (resp.Macaulay≺(MaxMinors(jacy(Fi)),ny +1)):

Algorithm 4. BLcriterion
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Require:

{
m bilinear polynomials f1, . . . , fm such that m≤ nx +ny.

≺ a monomial ordering over k[x0, . . . ,xnx,y0, . . . ,yny]

Ensure: V a set of pairs(h, fi) such that h∈ Ii−1 : fi and h/∈ Ii−1.
1: V← /0
2: for i from 2 to mdo
3: if i > ny +1 then
4: T← Reduce(MaxMinors(jacy(Fi−1)),ny +1).
5: for h in T do
6: V←V ∪{(h, fi)}
7: end for
8: end if
9: if i > nx +1 then

10: T ′← Reduce(MaxMinors(jacx(Fi−1)),nx +1).
11: for h in T′ do
12: V←V ∪{(h, fi)}
13: end for
14: end if
15: end for
16: Return V

The following proposition explains how the output of Algorithm 4 is related to reductions to
zero occurring during the MatrixF5 Algorithm.

Proposition 1 (ExtendedF5 criterion for bilinear systems). Let f1, . . . , fm be bilinear polynomi-
als and≺ be a monomial ordering. Let(t, fi) be the signature of a row during the Matrix F5

Algorithm and let V be the output of AlgorithmBLCRITERION. Then if there exists(h, fi) in V
such thatLM(h) = t, then the row with signature(t, fi) will be reduced to zero.

Proof. According to Theorem 2,h fi ∈ Ii−1. Therefore

t fi = (h− t) fi +
i−1

∑
j=1

g j f j .

This implies that the row with signature(t, fi) is a linear combination of preceding rows in
Macaulay(Fi ,deg(t fi)). Hence this row will be reduced tozero.

Now we can merge this extended criterion with the MatrixF5 Algorithm. To do so, we denote
by V the output of BLCRITERION (V has to be computed at the beginning of MatrixF5 Algo-
rithm), and we replace in Algorithm 2 theF5CRITERION by the following BILIN F5CRITERION:

Algorithm 5. BILIN F5CRITERION - returns a boolean

Require:

{
(t, fi) the signature of a row

A matrixM in row echelon form

1: Returntrue if

{
t is the leading monomial of a row ofM or

∃(h, fi) ∈V such thatLM(h) = t
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4. F5 without reduction to zero for generic bilinear systems

4.1. Main results

The goal of this part of the paper is to show that Algorithm 4 finds all reductions to zero for
generic bilinear systems. In order to describe the structure of ideals generated by generic bilinear
systems, we define a notion ofbi-regularity (Definition 8). For bi-regular systems, we give a
complete description of the syzygy module (Proposition 3 and Corollary 2). Finally, we show
that, for such systems, Algorithm 4 finds all reductions to zero and that generic bilinear systems
are bi-regular (Theorem 4), assuming a conjecture about the kernel of generic matrices whose
entries are linear forms (Conjecture 1).

4.2. Kernel of matrices whose entries are linear forms

Consider a monomial ordering≺ such that its restriction tok[x0, . . . ,xnx] (resp.k[y0, . . . ,yny])
is thegrevlexordering (for instance the usualgrevlexordering withx0 ≻ x1 ≻ . . . ≻ y0 ≻ . . . ≻
yny).

Let ℓ,c,nx be integers such thatc < ℓ≤ nx +c−1. LetM be the set of matricesℓ×c whose
coefficients are linear forms ink[x0, . . . ,xnx]. Let T be the set ofℓ× (ℓ−c−1) matricesT such
that:

• each column ofT has exactly one 1 and the rest of the coefficients are 0.

• each row ofT has at most one 1 and all the other coefficients are 0.

• (T[i1, j1] = T[i2, j2] = 1 andi1 < i2)⇒ j1 < j2

If T ∈ T andM ∈M , we denote byMT the ℓ× (ℓ− 1) matrix obtained by adding toM the
columns ofT. According to the proof of Lemma 2, some elements of the left kernel of a matrix
M can be expressed as vectors of maximal minors:

∀T ∈T ,




minor(MT,1)
−minor(MT,2)

...
(−1)m+1minor(MT,m)


 ∈ KerL(M).

Actually, we observed experimentally that kernels of random matricesM ∈M are generated
by those vectors of minors. This leads to the formulation of the following conjecture:

Conjecture 1. The set of matricesM ∈M such that

KerL(M) =

〈







minor(MT,1)
−minor(MT,2)

...
(−1)m+1minor(MT,m)








T∈T

〉

contains a nonempty Zariski open subset ofM .

17



4.3. Structure of generic bilinear systems

With the following definition, we try to give an analog of regular sequences for bilinear
systems. This definition is closely related to the generic behaviour of Algorithm 4.

Remark 1. In the following,Monomialsx
n(d) (resp.Monomialsy

n(d)) denotes the set of monomi-
als of degree d in k[x0, . . . ,xn] (resp. k[y0, . . . ,yn]). If n< 0, we use the conventionMonomialsx

n(d)=
Monomialsy

n(d) = /0.

Definition 8. Let ≺ be a monomial ordering such that its restriction to k[x0, . . . ,xnx] (resp.
k[y0, . . . ,yny]) is the grevlex ordering. Let m≤ nx + ny and f1, . . . , fm be bilinear polynomials
of R. We say that the polynomial sequence( f1, . . . , fm) is a bi-regular sequenceif m = 1 or if
( f1, . . . , fm−1) is a bi-regular sequence and

LM(Im−1 : fm) = 〈Monomialsx
m−ny−2(ny +1)〉

+〈Monomials
y
m−nx−2(nx +1)〉

+LM(Im−1)

In the following, we use the notations:

• BL (nx,ny) thek-vector space of bilinear polynomials inK[x0, . . . ,xnx,y0, . . . ,yny];

• X (resp.Y) is the ideal〈x0, . . . ,xnx〉 (resp.〈y0, . . . ,yny〉);

• An ideal is calledbihomogeneousif it admits a set of bihomogeneous generators.

• Ji denotes the saturated idealIi : (X∩Y)∞;

• Given a polynomial sequence( f1, . . . , fm), we denote bySyztriv the module of trivial syzy-
gies, i.e. the set of all syzygies(s1, . . . ,sm) such that

∀i,si ∈ 〈 f1, . . . , fi−1, fi+1, . . . , fm〉;

• A primary idealP⊂ R is calledadmissibleif X 6⊂
√

P andY 6⊂
√

P;

• Let E be ak-vector space such that dim(E) < ∞. We say that a propertyP is generic
if it is satisfied on a nonempty open subset ofE (for the Zariski topology), i.e.∃h ∈
k[a1, . . . ,adim(E)],h 6= 0, such that

P does not hold on(a1, . . . ,adim(E))⇒ h(a1, . . . ,adim(E)) = 0.

Without loss of generality, we suppose in the sequel thatnx≤ ny.

Lemma 7. Let Im be an ideal spanned by m generic bilinear equations f1, . . . , fm and Im =
∩P∈PP be a minimal primary decomposition.

• If m < nx +1, then all components of Im are admissible.

• If nx+1≤m< ny+1 and P0 ∈P is a primary non-admissible component, then Y6⊂ √P0.
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Proof. We prove that ifm < nx + 1 (resp. m < ny + 1) andP0 is a primary non-admissible
component, thenX 6⊂ √P0 (resp.Y 6⊂ √P0). Lemma 7 is a consequence of this fact.

Consider the fieldk′ = k(y0, . . . ,yny) and the canonical inclusion

ψ : R→ k′[x0, . . . ,xnx].

ψ(Im) is an ideal ofk′[x0, . . . ,xnx] spanned bym polynomials ink′[x0, . . . ,xnx]. Generically,
(ψ( f1), . . . ,ψ( fm)) is a regular sequence ofk′[x0, . . . ,xnx]. Thus there exists an polynomialf ∈X
(homogeneous in thexis) such thatψ( f ) is not a divisor of 0 ink′[x0, . . . ,xnx]/ψ(Im). This means
that ψ(Im) : ψ( f ) = ψ(Im). Suppose the assertion of Lemma 7 is false. ThenX ⊂ √P0 and
hence, f ∈ √P0. Therefore there existsg ∈ k[y0, . . . ,yny] such that, inR, g f ∈

√
Im (takeg in

(∩P∈P\{P0}
√

P)\{√P0} which is nonempty). Thusψ( f ) ∈
√

ψ(Im) (sinceψ(g) is invertible in
k′), which is impossible sinceψ(Im) : ψ( f ) = ψ(Im).

Lemma 8. • If m≤ nx there exists a nonempty Zariski-open setO ⊂BL K(nx,ny)
m such

that ( f1, . . . , fm) ⊂ O implies that Im has codimension m and all the components of a
minimal primary decomposition of Im are admissible;

• if nx +1≤m, then there exists a nonempty Zariski-open setO ⊂BL K(nx,ny)
m such that

( f1, . . . , fm)⊂O implies that X is a prime associated to
√

Im;

• if ny +1≤m, then there exists a nonempty Zariski-open setO ⊂BL K(nx,ny)
m such that

( f1, . . . , fm)⊂O implies that Y is a prime associated to
√

Im.

Proof. • If m≤ nx, then by Lemma 7,Jm = Im. Then according to Theorem 7, there exists
a nonempty Zariski-open setO ⊂BL K(nx,ny)

m such that( f1, . . . , fm) ⊂ O implies that
( f1, . . . , fm) is a regular sequence. Therefore,Im has codimensionmand all the components
of a minimal primary decomposition ofIm are admissible.

• If nx +1≤m, then according to Proposition 8,Jm = (Im : Y∞) : X∞ is equidimensional of
codimensionm. Let Vx be the set{(0, . . . ,0,a0, . . . ,any)|ai ∈ k}. SinceVx ⊂Var(Im : Y∞)
andcodim(Vx) = nx+1, it can be deduced thatVx 6⊂Var(Jm) andVar(Im :Y∞) =Var(Jm)∪
Vx. This means that

√
Im : Y∞ =

√
Jm∩X and

√
Jm 6⊂ X. ThusX is a prime associated to√

Im : Y∞. SinceY is not a subset ofX, X is also a prime ideal associated to
√

Im.

• Similar proof in the caseny +1≤m.

Lemma 9. Suppose that the local ring RX/IX (resp. RY/IY) is regular and that X (resp. Y) is a
prime ideal associated to

√
I and let Q be an isolated primary component of a minimal primary

decomposition of I containing X (resp. Y). Then Q= X (resp. Q= Y).

Proof. By assumption,X is a prime ideal associated to
√

I . Then, there exists an isolated primary
component of a minimal primary decomposition ofI which contains a power ofX and does not
meetR\X. This proves thatIX does not contain a unit inRX.

By assumptionRX/IX is regular and local, thenRX/IX is an integral ring (see e.g. (Eisenbud,
1995, Corollary 10.14)) which implies thatIX is prime and does not contain a unit inRX.

Let I = Q1∩∙∙ ∙∩Qs be a minimal primary decomposition ofI . In the sequel,QiX denotes the
localization ofQi by X. Suppose first that there exists 1≤ i ≤ s such thatIX = QiX with Qi non-
admissible which does not meet the multiplicatively closed partR\X . ThenQiX is obviously
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prime which implies thatQi itself is prime (Atiyah and MacDonald, 1969, Proposition 3.11 (iv)).
Our claim follows.

It remains to prove thatIX = QiX for some 1≤ i ≤ s. Suppose that theQi ’s are numbered
such thatQ j meets the multiplicatively closed setR\X for r + 1≤ j ≤ s but notQ1, . . . ,Qr .
IX = Q1X ∩ ∙∙ ∙∩QrX and it is a minimal primary decomposition (Atiyah and MacDonald, 1969,
Proposition 4.9). Hence, sinceIX is prime,r = 1 andQ1 is the isolated minimal primary compo-
nent containingX.

Proposition 2. Let k be a field of characteristic0. There exists a nonempty Zariski-open set
O ⊂BL (nx,ny)

m such that for all( f1, . . . , fm)⊂O the non-admissible components of a minimal
primary decomposition of〈 f1, . . . , fm〉 are either X or Y .

Proof. Suppose thatnx + 1≤m. Then, by Lemma 8, there exists a nonempty Zariski-open set
O1 such thatX is an associated prime to

√
I . Note also that this implies thatIX has codimension

nx +1. Thus, by Lemma 9, it is sufficient to prove that there exists a nonempty Zariski-open set
O2 such that for all( f1, . . . , fm) ∈O1∩O2, RX/IX is a regular local ring.

From the Jacobian Criterion (see e.g. Eisenbud (1995), Theorem 16.19), the local ringRX/IX
is regular if and only if jac( f1, . . . , fm) taken moduloX has codimensionnx +1. Since the gener-
ators ofI are bilinear, the latter condition is equivalent to saying that the matrix

JX =




∂ f1
∂x0

∙ ∙ ∙ ∂ f1
∂xnx

... ∙ ∙ ∙
...

∂ fm
∂x0

∙ ∙ ∙ ∂ fm
∂xnx




has ranknx +1. We prove below that there exists a nonempty Zariski-open setO3 such that for
all ( f1, . . . , fm) ∈O3, JX has ranknx +1.

Let c1, . . . , cm be vectors of coordinates ofBL (nx,ny)
m, M be the vector of all bilinear

monomials inR andK be the field of rational fractionsk(c1, . . . , cm). Consider the polyno-
mials gi =M.cTi for 1 ≤ i ≤ m and the Zariski-open setO3 in BL (nx,ny)

m defined by the
non-vanishing of all the coefficients of the maximal minors of the generic matrix

JX =




∂g1
∂x0

∙ ∙ ∙ ∂g1
∂xnx

... ∙ ∙ ∙
...

∂gm
∂x0

∙ ∙ ∙ ∂gm
∂xnx


 .

It is obvious that( f1, . . . , fm) ∈O3 implies thatJX has ranknx +1; our claim follows.

In the case whereny ≤ m, the proof follows the same pattern using Lemmas 8 and 9 and
the Jacobian criterion. The only difference is that one has to prove that there exists a nonempty
Zariski-open setO4 such that for all( f1, . . . , fm) ∈O4 the matrix

JY =




∂ f1
∂y0

∙ ∙ ∙ ∂ f1
∂ynx

... ∙ ∙ ∙
...

∂ fm
∂y0

∙ ∙ ∙ ∂ fm
∂yny




has rankny +1, which is done as above.
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Remark 2. The proof of Proposition 2 relies on the use of the Jacobian Criterion. From (Eisen-
bud, 1995, Theorem 16.19), it remains valid if the characteristic of k is large enough so that the
residue class field of X (resp. Y) is separable.

The two following propositions explain why the rows reduced to zero in the generic case
during theF5 Algorithm have a signature(t, fi) such thatt ∈ k[x0, . . . ,xnx] or t ∈ k[y0, . . . ,yny].

Proposition 3. Let m be an integer such that m≤ nx + ny. Let L be the set of bilinear systems
with m polynomials (L⊂Rm). Then the set of bilinear systems f1, . . . , fm such that Syz= 〈(Syz∩
k[x0, . . . ,xnx]

m)∪ (Syz∩k[y0, . . . ,yny]
m)∪Syztriv〉 contains a nonempty Zariski-open subset of L.

Proof. Let s = (s1, . . . ,sm) be a syzygy. Thus,sm is in Im−1 : fm. We can suppose without
loss of generality that thesi are bihomogeneous of same bidegree (Proposition 6). Accord-
ing to Theorem 7, there exists a nonempty Zariski open setO1 ⊂ BL (nx,ny)

m, such that if
( f1, . . . , fm) ∈O1, then fm is not a divisor of 0 inR/Jm−1. We can deduce from this observation
thatsm∈ Jm−1. Sosm∈ Im−1 or there existsP a non-admissible primary component ofIm−1 such
thatsm /∈P. Assume thatsm /∈ Im−1. From Proposition 2, there exists a nonempty Zariski open set
O2 ⊂BL (nx,ny)

m, such that if( f1, . . . , fm) ∈ O2, then〈x0, . . . ,xnx〉 = P (or 〈y0, . . . ,yny〉 = P),
which implies thatsm∈ k[y0, . . . ,yny] (or sm∈ k[x0, . . . ,xnx]).

Finally, we see that, if( f1, . . . , fm) ∈ O1∩O2, thensm ∈ Im−1∪k[y0, . . . ,yny]∪k[x0, . . . ,xnx].
Since the syzygy module of a bihomogeneous system is generated by bihomogeneous syzygies,
it can be deduced thatSyz= 〈(Syz∩k[x0, . . . ,xnx]

m)∪ (Syz∩k[y0, . . . ,yny]
m)∪Syztriv〉.

Proposition 4. Let V be the output of AlgorithmBLCRITERION and let(h, fi) be an element of
V . Then

• if h ∈ k[x0, . . . ,xnx], then∀ j,y jh∈ Ii−1.

• if h ∈ k[y0, . . . ,yny], then∀ j,x jh∈ Ii−1.

Proof. Suppose thath ∈ k[x0, . . . ,xnx] is a maximal minor ofjacy(Fi−1) (the proof is similar if
h∈ k[y0, . . . ,yny]). Consider the matrixjacy(Fi−1) as defined in Algorithm 4. Then there exists
an(i−1)× (i−1) extensionMT of jacy(Fi−1) such that det(MT) = h (similarly to the proof of
Lemma 2). Let 0≤ j ≤ ny be an integer. Consider the polynomialsh1, . . . ,hi−1, wherehk is the
determinant of the(i−2)×(i−2) matrix obtained by removing the( j +1)th column and thekth
row fromMT .

Then we can remark that
(
h1 −h2 . . . (−1)ihi−1

)
∙MT =

(
0 . . . 0 (−1) j det(MT) 0 . . . 0

)

where the only non-zero component is in the( j + 1)th column. Keeping only theny + 1 first
columns ofMT , we obtain

(
h1 −h2 . . . (−1)ihi−1

)
∙ jacy(Fi−1) =

(
0 . . . 0 (−1) j det(MT) 0 . . . 0

)

Sincejacy(Fi−1) ∙




y0
...

yny


=




f1
...

fi−1


, the following equality holds

(
h1 −h2 . . . (−1)i−1hi−2 (−1)ihi−1

)
∙




f1
...

fi−1


= y j det(MT) = y jh.
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This implies thaty jh∈ Ii−1.

Corollary 2. Let m be an integer such that m≤ nx+ny and let f1, . . . , fm be bilinear polynomials.
Let V be the output of AlgorithmBLCRITERION. Assume that

(Im−1 : fm)∩k[x0, . . . ,xnx] = 〈{h∈ k[x0, . . . ,xnx] : (h, fm) ∈V}〉.

(Im−1 : fm)∩k[y0, . . . ,yny] = 〈{h∈ k[y0, . . . ,yny] : (h, fm) ∈V}〉.
Let Gx (resp Gy) be a Gr̈obner basis of(Im−1 : fm)∩k[x0, . . . ,xnx] (resp.(Im−1 : fm)∩k[y0, . . . ,yny])
and let Gm−1 be a Gr̈obner basis of Im−1. If Syz= 〈(Syz∩k[x0, . . . ,xnx]

m)∪(Syz∩k[y0, . . . ,yny]
m)∪

Syztriv〉, then Gx∪Gy∪Gm−1 is a Gröbner basis of Im−1 : fm.

Proof. Let f ∈ Im−1 : fm be a polynomial. Thus there exists1, . . . ,sm−1 such that(s1, . . . ,sm−1, f )∈
Syz. SinceIm−1 and fm are bihomogeneous, we can suppose without loss of generality thatf is
bihomogeneous (Proposition 6). Let(d1,d2) denote its bidegree.

• If d2 = 0 (resp.d1 = 0), then f ∈ 〈Gx〉 (resp. f ∈ 〈Gy〉).

• Let Gx = {g(x)
i }1≤i≤card(Gx) andGy = {g(y)

i }1≤i≤card(Gy). If d1 6= 0 andd2 6= 0 then, since
Syz= 〈(Syz∩k[x0, . . . ,xnx]

m)∪ (Syz∩k[y0, . . . ,yny]
m)∪Syztriv〉,

f = ∑
1≤i≤card(Gx)

qig
(x)
i + ∑

1≤i≤card(Gy)

q′ig
(y)
i + t

wheret ∈ Im−1 is a bihomogeneous polynomial and theqi andq′i are also bihomogeneous.

Sinced2 6= 0 andg(x)
i ∈ k[x0, . . . ,xnx], qi must be in〈y0, . . . ,yny〉. According to Proposition

4,∀i,qig
(x)
i ∈ Im−1. By a similar argument,∀i,q′ig

(y)
i ∈ Im−1. Finally, f ∈ Im−1.

We just proved thatIm−1 : fm ⊂ Im−1∪ 〈Gx〉 ∪ 〈Gy〉. By construction, we also have the other
inclusion Im−1∪ 〈Gx〉 ∪ 〈Gy〉 ⊂ Im−1 : fm. Thus,Gx∪Gy∪Gm−1 is a Gr̈obner basis ofIm−1 :
fm.

Corollary 2 shows that, when a bilinear system is bi-regular, it is possible to find a Gröbner
basis ofIm−1 : fm (which yields the monomialst such that the row(t, fm) reduces to zero) as soon
as we know the three Gröbner basesGx, Gy, andGm−1. In fact, we only needGx andGy since the
reductions to zero corresponding toGm−1 are eliminated by the usualF5 criterion. Fortunately,
we can obtainGx andGy just by performing linear algebra over the maximal minors of a matrix
(Theorem 3).

We now present the main result of this section. If we suppose that Conjecture 1 is true, then
the following Theorem shows that generic bilinear systems are bi-regular.

Theorem 4. Let m,nx,ny ∈ N such that m< nx +ny. If Conjecture 1 is true, then the set of bi-
regular sequences( f1, . . . , fm) contains a nonempty Zariski-open set. Moreover, if( f1, . . . , fm) is
a bi-regular sequence, then there are no reductions to zero with the extended F5 criterion.

Proof. Let Gm be a minimal Gr̈obner basis ofIm−1 : fm. The reductions to zero(t, fm) which
are not detected by the usualF5 criterion are exactly those such thatt ∈ LM(Gm) and t /∈
LM(Im−1). We showed that there exists a nonempty Zariski-open subsetO1 of BL (nx,ny)
such that if fm ∈O1, thent ∈ LM(Im−1 : fm∩k[x0, . . . ,xnx]) or t ∈ LM(Im−1 : fm∩k[y0, . . . ,yny])

22



(Proposition 3). If we suppose that Conjecture 1 is true, then there exists a nonempty Zariski-
open subsetO2 of BL (nx,ny) such that if fm ∈ O2, Im−1 : fm∩ k[x0, . . . ,xnx] (resp. Im−1 :
fm∩ k[y0, . . . ,yny]) is spanned by the maximal minors ofjacx(Fm−1) (resp. jacy(Fm−1)). Thus,
by Theorem 3, there exists a nonempty Zariski-open subsetO3 of BL (nx,ny) such that if
fm ∈ O3, LM(Im−1 : fm∩ k[x0, . . . ,xnx]) = Monomialsx

m−ny−2(ny + 1)〉 (resp. LM(Im−1 : fm∩
k[y0, . . . ,yny])= Monomials

y
m−nx−2(nx+1)〉). Suppose thatfm∈O1∩O2∩O3 (which is a nonempty

Zariski-open subset) and that(t, fm) is a reduction to zero such thatt /∈ LM(Im−1). Then

t ∈ 〈Monomialsx
m−ny−2(ny +1)〉

or

t ∈ 〈Monomials
y
m−nx−2(nx +1)〉.

By Lemma 3,t is a leading monomial of a linear combination of the maximal minors ofjacx(Fm−1)
(or jacy(Fm−1)). Consequently, the reduction to zero(t, fm) is detected by the extendedF5 crite-
rion.

Remark 3. Thanks to the analysis of Algorithm 4, we know exactly which reductions to zero can
be avoided during the computation of a Gröbner basis of a bilinear system. If a bilinear system is
bi-regular, then Algorithm 4 finds all reductions to zero. Indeed, this algorithm detects reductions
to zero coming from linear combinations of maximal minors of the matricesjacx(Fi) andjacy(Fi).
According to Theorem 4, there are no other reductions to zero for bi-regular systems.

Example 1 (continued). The system f1, . . . , f5 given in Example 1 is bi-regular and there are no
reduction to zero during the computation of a Gröbner basis with the extended F5 criterion.

5. Hilbert bi-series of bilinear systems

An important tool to describe ideals spanned by bilinear equations is the so-calledHilbert
series. In the homogeneous case, complexity results forF5 were obtained with this tool (see e.g.
Bardet et al. (2005)). In this section, we provide an explicit form of the Hilbert bi-series – a
bihomogeneous analog of the Hilbert series – for ideals spanned by generic bilinear systems. To
find this bi-series, we use the combinatorics of the syzygy module of bi-regular systems. With
this tool, we will be able to do a complexity analysis of a special version of theF5 which will be
presented in the next section.

The following notation will be used throughout this paper: the vector space of bihomoge-
neous polynomials of bidegree(α,β ) will be denoted byRα,β . If I is a bihomogeneous ideal,
thenIα,β will denote the vector spaceI ∩Rα,β .

Definition 9 (Van der Waerden (1929); Safey El Din and Trébuchet (2006)). Let I be a bihomo-
geneous ideal of R. The Hilbert bi-series is defined by

HSI (t1, t2) = ∑
(α,β )∈N2

dim(Rα,β /Iα,β )tα
1 tβ

2 .

Remark 4. The usual univariate Hilbert series for homogeneous ideals can easily be deduced
from the Hilbert bi-series by putting t1 = t2 (see Safey El Din and Trébuchet (2006)).
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We can now present the main result of this section: an explicit form of the bi-series for
bi-regular bilinear systems.

Theorem 5. Let f1, . . . , fm∈ R be a bi-regular bilinear sequence, with m≤ nx +ny. Then

HSIm(t1, t2) =
Nm(t1, t2)

(1− t1)nx+1(1− t2)ny+1 ,

where
Nm(t1, t2) = (1− t1t2)m+

∑
m−(ny+1)
ℓ=1 (1− t1t2)m−(ny+1)−ℓt1t2(1− t2)ny+1

[
1− (1− t1)ℓ ∑

ny+1
k=1 t

ny+1−k
1

(ℓ+ny−k
ny+1−k

)]
+

∑m−(nx+1)
ℓ=1 (1− t1t2)m−(nx+1)−ℓt1t2(1− t1)nx+1

[
1− (1− t2)ℓ ∑nx+1

k=1 tnx+1−k
2

(ℓ+nx−k
nx+1−k

)]
.

We decompose the proof of this theorem into a sequence of lemmas.

If I is an ideal ofR and f is a polynomial, we denote bȳf the equivalence class off in R/I
and

annR/I ( f ) = {v∈ R/I : vf̄ = 0},
annR/I ( f )α,β = {v∈ R/I of bidegree(α ,β ) : vf̄ = 0}.

If I is a bihomogeneous ideal andf is a bihomogeneous polynomial, we use the following nota-
tion:

GI , f (t1, t2) = ∑
(α,β )∈N2

dim(annR/I ( f )α,β )tα
1 tβ

2 .

Lemma 10. Let f1, . . . , fm∈R be bihomogeneous polynomials, with1< m≤ nx+ny. Let(d1,d2)
be the bidegree of fm. Then

HSIm(t1, t2) = (1− td1
1 td2

2 )HSIm−1 + td1
1 td2

2 GIm−1, f (t1, t2).

Proof. We have the following exact sequence:

0→ annR/Im−1
( f )

ϕ1−→ R/Im−1
ϕ2−→ R/Im−1

ϕ3−→ R/Im→ 0.

whereϕ1 andϕ3 are the canonical inclusion and projection, andϕ2 is the multiplication byfm.
From this exact sequence of ideals, we can deduce an exact sequence of vector spaces:

0→ (annR/Im−1
( f ))α,β

ϕ1−→
(

R
Im−1

)

α,β

ϕ2−→
(

R
Im−1

)

α+d1,β+d2

ϕ3−→
(

R
Im

)

α+d1,β+d2

→ 0.

Thus the alternate sum of the dimensions of vector spaces of an exact sequence is 0:

dim((annR/Im−1
( f ))α,β )−dim

((
R

Im−1

)
α ,β

)
+

dim

((
R

Im−1

)
α+d1,β+d2

)
−dim

((
R
Im

)
α+d1,β+d2

)
= 0.

By multiplying this relation bytα
1 tβ

2 and by summing over(α,β ), we obtain the claimed recur-
rence:

HSIm(t1, t2) = (1− td1
1 td2

2 )HSIm−1 + td1
1 td2

2 GIm−1, f (t1, t2).
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Lemma 11. Let f1, . . . , fm∈R be a bi-regular bilinear sequence, with m≤ nx+ny. Then, for all
2≤ i ≤m,

GIi−1, fi (t1, t2) = g(i−1)
x (t1)+g(i−1)

y (t2),

where

g(i−1)
x (t) =





0 if i ≤ ny +1

1
(1−t)nx+1 −∑1≤ j≤ny+1

( i−1− j
ny+1− j)tny+1− j

(1−t)nx+ny−i+2

.

g(i−1)
y (t) =





0 if i ≤ nx +1

1
(1−t)ny+1 −∑1≤ j≤nx+1

( i−1− j
nx+1− j)tnx+1− j

(1−t)nx+ny−i+2

.

Proof. Saying thatv∈ annR/Ii−1
( fi) is equivalent to saying that the row with signature(LM(v), fi)

is not detected by the classicalF5 criterion. According to Theorem 4, if the system is bi-regular,
the reductions to zero corresponding to non-trivial syzygies are exactly:

m⋃

i=nx+2

{(t, fi) : t ∈Monomials
y
i−nx−2(nx +1)}

m⋃

i=ny+2

{(t, fi) : t ∈Monomialsx
i−ny−2(ny +1)}.

By Proposition 4, we know that ifP ∈ k[x0, . . . ,xnx]∩ (Ii−1 : fi) (resp. k[y0, . . . ,yny]∩ (Ii−1 :
fi)), then∀ j,y jP∈ Ii−1 (resp.x jP∈ Ii−1). ThusGIi−1, fi (t1, t2) is the generating bi-series of the
monomials ink[x0, . . . ,xnx] which are a multiple of a monomial of degreeny+1 in x0, . . . ,xi−ny−2

and of the monomials ink[y0, . . . ,yny] which are a multiple of a monomial of degreenx + 1 in

y0, . . . ,yi−nx−2. Denote byg(i−1)
x (t) (resp. g(i−1)

y (t)) the generating series of the monomials in
k[x0, . . . ,xnx] (resp. k[y0, . . . ,yny]) which are a multiple of a monomial of degreeny + 1 (resp.
nx +1) in x0, . . . ,xi−ny−2 (resp.y0, . . . ,yi−nx−2). Then we have

GIi−1, fi (t1, t2) = g(i−1)
x (t1)+g(i−1)

y (t2).

Next we use combinatorial techniques to give an explicit form ofg(i−1)
x (t) andg(i−1)

y (t). Let c(t)
denote the generating series of the monomials ink[xi−ny−1, . . . ,xnx]:

c(t) =
∞

∑
j=0

(
nx +ny− i + j +1

j

)
t j =

1

(1− t)nx+ny−i+2 .

Let B j denote the number of monomials ink[x0, . . . ,xi−ny−2] of degreej. Then

1

(1− t)nx+ny+2 = c(t)+B1c(t)t + ∙ ∙ ∙+Bnyc(t)t
ny +g(i−1)

x (t).

SinceB j =
(i−ny−1+ j

j

)
, we can conclude:

g(i−1)
x (t) =





0 if i ≤ ny +1

1
(1−t)nx+1 −∑1≤ j≤ny+1

( i−1− j
ny+1− j)tny+1− j

(1−t)nx+ny−i+2

.
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Proof of Theorem 5.Since the polynomials are bilinear, by Lemma 10, we have

HSIi (t1, t2) = (1− t1t2)HSIi−1 + t1t2GIi−1, fi (t1, t2).

Lemma 11 gives the value ofGIi−1, fi (t1, t2). To initiate the recurrence, we need

HSI0(t1, t2) = HS〈0〉(t1, t2) =
1

(1− t1)nx+1(1− t2)ny+1 .

Then we can obtain the claimed form of the bi-series by solving the recurrence:

HSIi (t1, t2) =
Ni(t1, t2)

(1− t1)nx+1(1− t2)ny+1

Ni(t1, t2) = (1− t1t2)
i +

m−1

∑
j=0

t1t2(1− t1t2)
jGI j , f j+1(t1, t2).

Example 1 (continued). The Hilbert bi-series of the ideal generated by the five polynomials of
Example 1 is

HS(t1, t2) = 1
(1−t1)3(1−t2)4 (t15t25−4t15t24 +6t15t23−4t15t22 + t15t2−6t13t25+

15t13t24−10t13t23 +8t12t25−15t12t24 +10t12t22−3t1t25 +5t1t24−5t1t2 +1),

and is in accordance with the formula given in Theorem 5. Also, notice that the intermediate
series gx(t) and gy(t) match the theoretical values. For instance:

g(3)
y =

t3

(1− t)4 .

6. Towards complexity results

6.1. A multihomogeneous F5 Algorithm

We now describe how it is possible to use the multihomogeneous structure of the matrices
arising in the MatrixF5 Algorithm to speed-up the computation of a Gröbner basis. In order to
have simple notations, the description is made in the context of bihomogeneous systems, but it
can be easily transposed in the context of multihomogeneous systems.

Let f1, . . . , fm be a sequence of bihomogeneous polynomials. Consider the matricesMd in
degreed appearing during the MatrixF5 Algorithm. One can remark that each row represents
a bihomogeneous polynomial. Let(d1,d2) be the bidegree of one row of this matrix. Then the
only non-zero coefficients on this row are in columns which represent a monomial of bidegree
(d1,d2). Therefore a possible strategy to use the bihomogeneous structure is the following:

• For each couple(d1,d2) such thatd1 + d2 = d, construct the matrixMd1,d2. The rows of
this matrix represent the polynomials ofMd of bidegree(d1,d2) and the columns represent
the monomials ofRd1,d2.

• Compute the row echelon form of the matricesMd1,d2. This gives bases ofId1,d2.

• The union of the bases gives a basis ofId sinceId =
⊕

d1+d2=d Id1,d2.
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Multihomogeneous Homogeneous
nx ny m bidegree D time memory time memory speed-up

3 4 7 (1,1) 6 16.9s 30MB 265.7s 280MB 16
3 4 7 (1,1) 7 105s 92MB 2018s 1317MB 19
4 4 8 (1,1) 7 582s 275MB 13670s 4210MB 23
5 4 9 (1,1) 7 3343s 957MB 66371s 12008MB 20
5 5 10 (1,1) 6 645s 435MB 10735s 4330MB 17
2 2 4 (1,2) 10 11.4s 19MB 397s 299MB 35
2 2 4 (1,2) 8 1.7s 10MB 16s 52MB 9
3 3 6 (1,2) 8 67s 80MB 1146s 983MB 17
4 4 8 (1,2) 8 2222s 1031MB 40830s 12319MB 63
2 2 4 (2,2) 11 29s 27MB 899s 553MB 31
3 3 6 (2,2) 8 27s 47MB 277s 452MB 10
3 3 6 (2,2) 9 152s 154MB 2380s 1939MB 16
3 4 7 (2,2) 9 1034s 505MB 18540s 7658MB 18
4 4 8 (2,2) 8 690s 385MB 7260s 4811MB 11
4 4 8 (2,2) 9 6355s 2216MB — >20000MB —

Table 1: Execution time and memory usage of the multihomogeneous variant ofF5

This way, instead of computing the row echelon form of a big matrix, we can decompose the
problem and compute independently the row echelon form of smaller matrices. This strategy can
be extended to multihomogeneous systems.

In Table 1, the execution time and the memory usage of this multihomogeneous variant of
F5 are compared to the classical homogeneous MatrixF5 Algorithm for computing aD-Gröbner
basis for random bihomogeneous systems (for the grevlex ordering). Both implementations are
made inMagma2.15-7. The experimental results have been obtained with a Xeon processor
2.50GHz cores and 20 GB of RAM. We are aware that we should compare efficient implemen-
tations of these two algorithms to have a more precise evaluation of the speed-up we can expect
for practical applications. However, these experiments give a first estimation of that speed-up.
Furthermore, we can also expect to save a lot of memory by decomposing the Macaulay matrix
into smaller matrices. This is crucial for practical applications, since untractability is often due
to the lack of memory.

6.2. A theoretical complexity analysis in the bilinear case

In this section, we provide a theoretical explanation of the speed-up observed when using
the bihomogeneous structure of bilinear systems. To estimate the complexity of the MatrixF5

Algorithm, we consider that the cost is dominated by the cost of the reductions of the matrices
with the highest degree. By using the new criterion described in Section 3.4, all the matrices
appearing during the computations have full rank for generic inputs (these ranks are the dimen-
sions of thek-vector spacesId1,d2). We consider that the complexity of reducing ar × c matrix
with Gauss elimination isO(r2c). Thus the complexity of computing aD-Gröbner basis with the
usual MatrixF5 Algorithm and the extended criterion for a bilinear system ofm equations over
k[x0, . . . ,xnx,y0, . . . ,yny] is

Thom= C1

(((
D+nx +ny +1

D

)
− [tD]HS(t, t)

)2(D+nx +ny +1
D

))
.
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nx ny m D experimental
speed−up F(nx,ny,m,D)

3 4 7 6 16 29
3 4 7 7 19 34
4 4 8 7 23 34
5 4 9 7 20 32
5 5 10 6 17 27

Table 2: Decomposing the matrices: experimental speed-up

When using the multihomogeneous structure, the complexity becomes:

Tmultihom= C2


 ∑

d1+d2=D
1≤d1,d2≤D−1

(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)2
dim(Rd1,d2)


 ,

where dim(Rd1,d2) =
(d1+nx

d1

)(d2+ny
d2

)
. Thus the theoretical speed-up that we expect is:

speedupth = C3F(nx,ny,m,D)

whereC3 = C1
C2

is a constant and

F(nx,ny,m,D) =




((D+nx+ny+1
D

)
− [tD]HS(t, t)

)2(D+nx+ny+1
D

)

∑
d1+d2=D

1≤d1,d2≤D−1

(
dim(Rd1,d2)− [td1

1 td2
2 ]HS(t1, t2)

)2
dim(Rd1,d2)




.

Now let us compare this theoretical speed-up with the one observed in practice. We can see in
Table 2 that experimental results match the theoretical complexity:

speedup≈ 0.6F(nx,ny,m,D).

6.3. Number of reductions to zero removed by the extended F5 criterion

Table 3 shows the number of reductions to zero during the execution of the Buchberger,F4

and F5 algorithm. The input systems are random bilinear systems ofnx + ny equations over
GF(65521)[x0, . . . ,xnx,y0, . . . ,yny]. Experimentally, there is no reduction to zero when using the
extended criterion (Algorithm 4). Notice that the number of reductions to zero which are not de-
tected by the classicalF5 criterion matches the theorical value for a bi-regular system (Definition
8):

nx+ny−1

∑
i=ny+1

(
i

ny +1

)
+

nx+ny−1

∑
i=nx+1

(
i

nx +1

)
.

Although the number of reductions to zero removed by the extended criterion is not small com-
pared to the number of useful reductions, they arise in low degree (nx +1 andny +1). Hence, it
is not clear what speed-up could be expected with an efficient implementation.
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(nx,ny)
Nb. useful red.

(Buch./F4)
Nb red. to 0
(Buch./F4)

Nb red. to 0
(F5)

(5,5) 752 5772 240
(5,6) 1484 13063 495
(6,6) 3009 29298 990
(6,7) 5866 64093 2002
(4,8) 1912 19055 990
(4,9) 2869 31737 1794
(3,10) 1212 13156 1300
(3,11) 1665 19780 2016
(3,12) 2123 27295 3018

Table 3: Experimental number of reductions to zero

6.4. Structure of generic affine bilinear systems

In this section, we show that genericaffinebilinear systems have a particular structure: they
are regular (Definition 7). Consequently, the usualF5 criterion removes all reductions to zero.

Proposition 5. Let S be the set of affine bilinear systems over k[x1, . . . ,xnx,y1, . . . ,yny] with m≤
nx +ny equations. Then the subset

{( f1, . . . , fm) ∈ S : ( f1, . . . , fm) is a regular sequence}

contains a Zariski nonempty open subset of S.

Proof. Let ( f1, . . . , fm) be a generic affine bilinear system. Assume that it is not regular. Then for
somei, there existsg∈ R such thatg /∈ Ii−1 andg fi ∈ Ii−1. Denote bygh the bi-homogenization
of g. Thengh ∈ 〈 f h

1 , . . . , f h
i−1〉 : f h

i . ( f h
1 , . . . , f h

m) is a generic bilinear system, hence it is bi-regular
(Theorem 4). Thusgh ∈ k[x0, . . . ,xnx] or gh ∈ k[y0, . . . ,yny]. Let us suppose thatgh ∈ k[x0, . . . ,xnx]

(the proof is similar ifgh ∈ k[y0, . . . ,yny]). Thereforeynyg
h ∈ 〈 f h

1 , . . . , f h
i−1〉 when the system is

bi-regular (Proposition 4). By puttingxnx = 1 andyny = 1, we see that in this case,g ∈ Ii−1,
which yields a contradiction. This shows that generic affine bilinear systems are regular.

6.5. Degree of regularity of affine bilinear systems

In this part,m, nx andny are three integers such thatm= nx + ny. We consider a system of
bilinear polynomialsF = ( f1, . . . , fm)∈ k[x0, . . . ,xnx,y0, . . . ,yny]

m. ϑ denotes the dehomogeniza-
tion morphism:

k[x0, . . . ,xnx,y0, . . . ,yny] −→ k[x0, . . . ,xnx−1,y0, . . . ,yny−1]
f (x0, . . . ,xnx,y0, . . . ,yny) 7−→ f (x0, . . . ,xnx−1,1,y0, . . . ,yny−1,1)

.

Also, I stands for the ideal〈 f1, . . . , fm〉 andϑ(I) denotes the ideal〈ϑ( f1), . . . ,ϑ( fm)〉. In the
following, we suppose without loss of generality thatnx≤ ny. We also assume in this part of the
paper that the characteristic ofk is 0 (although the results remain true when the characteristic is
large enough).

The goal of this section is to give an upper bound on the so-calleddegree of regularityof
an idealI generated by a generic affine bilinear system withm equations andm variables. The
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degree of regularity is a crucial indicator of the complexity of Gröbner basis algorithms: for
0-dimensional ideals, it is the lowest integerdreg such that all monomials of degreedreg are in
LM(I) (see Bardet et al. (2005)). As a consequence, the degrees of all polynomials occurring in
theF5 algorithm are lower thandreg+1. In the following,≺ still denotes the grevlex ordering.

Lemma 12. If the system F is generic, then there exists polynomials g0, . . . ,gnx−1∈ k[y0, . . . ,yny−1]
such that

∀ j ∈ {0, . . . ,nx−1},x j −g j(y0, . . . ,yny−1) ∈ ϑ(I).

Proof. We consider them×nx matrixA = jacx(ϑ(F)) and the vector

B =
(
ϑ( f1)(0, . . . ,0,y0, . . . ,yny−1) . . . ϑ( fm)(0, . . . ,0,y0, . . . ,yny−1)

)
.

ThusA∙




x0
...

xnx−1


+B =




ϑ( f1)
...

ϑ( fm)


 .

We denote by{A(i)} all thenx×nx sub-matrices ofA.
Let (α0, . . . ,αny−1)∈Var(〈MaxMinors(ϑ(jacx(F)))〉) be an element of the variety. LetAα (resp.
Bα ) denote the matrixA (resp. B) whereyi has been substituted byαi for all i. Sinceϑ(I) is
0-dimensional, the affine linear system

Aα ∙




x0

. . .
xnx−1


+Bα = 0

has a unique solution. Therefore, the matrixAα is of full rank. Consequently, there exists an
invertiblenx×nx sub-matrix ofAα .

Sincek is infinite, we can suppose without loss of generality that, if the system is generic,

then for all α in the variety, the matrixA(1)
α obtained by considering thenx first rows of Aα

is invertible (if A(1)
α is not invertible, just replace the original bilinear system by an equivalent

system where each new equation is a generic linear combination of the original equations). Thus

det(A(1)
α ) 6= 0.

According to Lemma 6 and 17,〈MaxMinors(ϑ(jacx(F)))〉= 〈ϑ( f1), . . . ,ϑ( fm)〉∩k[y0, . . . ,yny−1].

Thus det(A(1)) (i.e. the matrix of thenx first rows ofA) does not vanish on any element of the vari-
ety ofϑ(I). Therefore, the Nullstellensatz says that det(A(1)) is invertible ink[y0, . . . ,yny−1]/(ϑ(I)∩
k[y0, . . . ,yny−1]). Let h denote its inverse. We know from Cramer’s rule that there exists polyno-
mialsg j ∈ k[y0, . . . ,yny−1] such that

x j det(A(1))−g j(y0, . . . ,yny−1) ∈ ϑ(I).

Multiplying this relation byh, we obtain:

x j −hgj(y0, . . . ,yny−1) ∈ ϑ(I).

Theorem 6. If the system F is generic, then the degree of regularity ofϑ(I) is upper bounded by

dreg≤min(nx +1,ny +1).
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Proof. We supposed thatnx≤ny, so we want to prove thatdreg≤nx+1. Lett = ∏nx−1
j=0 x

α j
j ∏ny−1

k=0 yβk
k

be a monomial of degreenx +1. According to Lemma 12,

t−
nx−1

∏
j=0

g j(y0, . . . ,yny−1)
α j

ny−1

∏
k=0

yβk
k ∈ ϑ(I).

Now consider the normal form with respect to the idealJ = 〈MaxMinors(ϑ(jacx(F)))〉. Then

t−NFJ,≺(
nx−1

∏
j=0

g j(y0, . . . ,yny−1)
α j

ny−1

∏
k=0

yβk
k ) ∈ ϑ(I).

Since all monomials of degreenx +1 are inLM(〈MaxMinors(ϑ(jacx(F)))〉) (Lemma 3),

deg(NFJ,≺(
nx−1

∏
j=0

g j(y0, . . . ,yny−1)
α j

ny−1

∏
k=0

yβk
k )) < nx +1.

This implies that

LM(t−NFJ,≺(
nx−1

∏
j=0

g j(y0, . . . ,yny−1)
α j

ny−1

∏
k=0

yβk
k )) = t.

Therefore, for each monomialt of degreenx + 1, t ∈ LM(ϑ(I)). This means thatdreg ≤ nx +
1.

Example 1 (continued). The degree of regularity of the affine system(ϑ( f1), . . . ,ϑ( f5)) is 3 in
accordance with Theorem 6 and the classical F5 criterion removes all reductions to zero during
the computation of a Gröbner basis for the grevlex ordering.

The following corollary is a consequence of Theorem 6.

Corollary 3. The arithmetic complexity of computing a Gröbner basis of a generic bilinear
system f1, . . . , fnx+ny ∈ k[x0, . . . ,xnx−1,y0, . . . ,yny−1] with the F5 Algorithm is upper bounded by

O

((
nx +ny +min(nx +1,ny +1)

min(nx +1,ny +1)

)ω)
,

where2≤ ω ≤ 3 is the linear algebra constant.

Proof. According to Bardet et al. (2005), the complexity of the computation of the Gröbner basis
of a 0-dimensional ideal is upper bounded by

O

((
n+dreg

dreg

)ω)
,

wheren is the number of variables anddreg denotes the degree of regularity. In the case of a
generic affine bilinear system ink[x0, . . . ,xnx−1,y0, . . . ,yny−1], n = nx + ny anddreg≤ min(nx +
1,ny +1) (Theorem6).
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nx ny nb. eq. dreg nb. reductions to0

2 3 5 3 0
2 4 6 3 0
3 10 13 4 0
5 8 13 6 0
6 6 12 7 0

Table 4: Experimental results: degree of regularity and reductions to zero for random affine bilinear systems

Remark 5. This bound on the degree of regularity should be compared with the degree of reg-
ularity of a generic quadratic system with n equations and n variables. The Macaulay bound
(see Lazard (1983)) says that the degree of regularity of such systems is m+1. The complexity of
computing a Gr̈obner basis of a generic quadratic system of n equations in k[x1, . . . ,xn] is upper

bounded by O
(( 2n

n+1

)ω)
, which is larger than O

((nx+ny+min(nx+1,ny+1)
min(nx+1,ny+1)

)ω)
when n= nx+ny. No-

tice also that ifmin(nx,ny) is constant, then the complexity of computing a Gröbner basis of a0-
dimensional generic affine bilinear system is polynomial in the number of unknowns n= nx+ny.
Moreover, the inequality dreg≤min(nx +1,ny +1) is experimentally sharp, it is an equality for
random bilinear systems (see Table 4).

7. Perspectives and conclusion

In this paper, we analyzed the structure of ideals generated by generic bilinear equations. We
proposed an explicit description of their syzygy module. With this analysis, we were able to
propose an extension of theF5 criterion dedicated to bilinear systems. Furthermore, an explicit
formula for the Hilbert bi-series is deduced from the combinatorics of the syzygy module. With
this tool, we made a complexity analysis of a multihomogeneous variant of theF5 Algorithm.

We also analyzed the complexity of computing Gröbner bases of affine bilinear systems. We
showed that generic affine bilinear systems are regular, and we proposed an upper bound for the
degree of regularity of those systems.

Interestingly, properties of the ideals generated by the maximal minors of the jacobian matri-
ces are especially important. In particular, a Gröbner basis (for the grevlex ordering) of such an
ideal is a linear combination of the generators. In the affine case, this ideal permits to eliminate
variables.

The next step of this work would be to generalize the results to more general multihomoge-
neous systems. For the time being, it is not clear how the results can be extended. In particular,
it would be interesting to understand the structure of the syzygy module of general multihomo-
geneous systems, and to have an explicit formula of their Hilbert series. Also, having sharp
upper bounds on the degree of regularity of multihomogeneous systems would be important for
practical applications.
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Appendix A. Bihomogeneous ideals

In this part, we use notations similar to those used in Section 4:

• BH (nx,ny) thek-vector space of bilinear polynomials ink[x0, . . . ,xnx,y0, . . . ,yny];

• X (resp.Y) is the ideal〈x0, . . . ,xnx〉 (resp.〈y0, . . . ,yny〉);

• An ideal is calledbihomogeneousif it admits a set of bihomogeneous generators.

• Ji denotes the saturated idealIi : (X∩Y)∞;

• Given a polynomial sequence( f1, . . . , fm), we denote bySyztriv the module of trivial syzy-
gies, i.e. the set of all syzygies(s1, . . . ,sm) such that∀1≤ i≤m, si ∈ 〈 f1, . . . , fi−1, fi+1, . . . , fm〉;

• A primary idealP⊂ R is calledadmissibleif X 6⊂
√

P andY 6⊂
√

P;

• Let E be ak-vector space such that dim(E) < ∞. We say that a propertyP is generic
if it is satisfied on a nonempty open subset ofE (for the Zariski topology), i.e.∃h ∈
k[a1, . . . ,adim(E)],h 6= 0, such that

P does not hold on(a1, . . . ,adim(E))⇒ h(a1, . . . ,adim(E)) = 0.

Proposition 6 (Safey El Din and Tŕebuchet (2006)). Let I be an ideal of R. The two following
assertions are equivalent:

• I is bihomogeneous.

• For all h ∈ I, every bihomogeneous component of h is in I.

Lemma 13 (Safey El Din and Tŕebuchet (2006)). Let f1, . . . , fm ∈ R be polynomials, and Im =
∩Pl be a minimal primary decomposition of Im and let Adm be the set of the admissible ideals of
the decomposition. Then Jm = ∩P∈AdmP.

Proposition 7. let f1, . . . , fm ∈ R be polynomials with m≤ nx + ny, and Ass(Ii−1) be the set of
prime ideals associated to Ii−1. The following assertions are equivalent:

1. for all i such that2≤ i ≤m, fi is not a divisor of0 in R/Ji−1.
2. for all i such that2≤ i ≤m,( fi ∈ P,P∈ Ass(Ii−1))⇒ P is non-admissible.

Proof. It is a straightforward consequence of Lemma13.
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Remark 6. All results in this section can be generalized to multihomogeneous systems. Since
we focus on bilinear systems in this paper, we describe them in this more restrictive context.

Lemma 14. Let P be an admissible prime ideal of R. The set of bilinear polynomials f∈R such
that f /∈ P contains a Zariski nonempty open set.

Proof. Let f be the generic bilinear polynomial

f= ∑
j,k

a j,kx jyk

in k({a j,k}0≤ j≤nx,0≤k≤ny)[x0, . . . ,xnx,y0, . . . ,yny]. SinceP is admissible, there existsx j0yk0 such
thatx j0yk0 /∈ P (this shows the non-emptiness). Let≺ be an admissible order. Then consider the
normal form for this order

NFP(f) = ∑
t monomial

ht(a0,0 . . . ,anx,ny)t.

By multiplying by the least common multiple of the denominators, we can assume without loss
of generality that for eacht, ht is a polynomial. Thus, if a bilinear polynomial is inP, then its
coefficients are in the variety of the polynomial system∀t,ht(a0,0, . . . ,anx,ny) = 0.

Theorem 7. Let m,nx,ny ∈ N such that m≤ nx +ny. Then the set of bilinear systems f1, . . . , fm
such that for all i, fi does not divide0 in R/Ji−1 contains a Zariski nonempty open subset.

Proof. We prove the Theorem by recurrence onm. Suppose that for alli such that 2≤ i ≤m−1,
fi is not a divisor of 0 inR/Ji−1. We prove that the set of bilinear polynomialsf such thatf is not
a divisor of 0 inR/Jm−1 contains a nonempty Zariski open subset. According to Lemma 14, for
each admissible prime idealP∈ Ass(Im−1), the setOP = { f /∈ P} contains a nonempty Zariski
open subset. Thus

⋂
POP contains a nonempty Zariski subset. Therefore, the set of bilinear

polynomialsf which are not divisor of 0 inR/Jm−1 (this set is exactly
⋂

POP) contains a Zariski
nonempty opensubset.

Proposition 8. Let m≤ nx + ny and f1, . . . , fm be bilinear polynomials such that for all i such
that2≤ i ≤m, fi is not a divisor of0 in R/Ji−1. Then for all i such that1≤ i ≤m, the ideal Ji is
equidimensional and its codimension is i.

Proof. We prove the Proposition by recurrence onm.

• J1 = I1 is equidimensional andcodim(I1) = 1;

• Suppose thatJi−1 is equidimensional of codimensioni−1. ThenJi = (Ji−1 + fi) : (X ∩
Y)∞. fi does not divide 0 inR/Ji−1 (Theorem 7), thusJi−1 + fi is equidimensional of
codimensioni. The saturation does not decrease the dimension of any primary component
of Ji−1 + fi . Therefore,Ji is equidimensional and its codimension isi.
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Appendix B. Ideals generated by generic affine bilinear systems

Let k be a field of characteristic 0,m= nx +ny, anda be the set

a= {a(i)j,k : 1≤ i ≤m,0≤ j ≤ nx,0≤ k≤ ny}.

We consider generic polynomialsf1, . . . , fm in k(a)[x0, . . . ,xnx,y0, . . . ,yny]:

fi = ∑a(i)j,kx jyk

and we denote byI ⊂ k(a)[x0, . . . ,xnx,y0, . . . ,yny] the ideal they generate. In the sequel,ϑ denotes
the dehomogenization morphism:

k[x0, . . . ,xnx,y0, . . . ,yny] −→ k[x0, . . . ,xnx−1,y0, . . . ,yny−1]
f (x0, . . . ,xnx,y0, . . . ,yny) 7−→ f (x0, . . . ,xnx−1,1,y0, . . . ,yny−1,1)

.

Fora∈ km(nx+ny+2), ϕa stands for the specialization:

ϕa : k(a)[x0, . . . ,xnx,y0, . . . ,yny] → k[x0, . . . ,xnx,y0, . . . ,yny]
f (a)(x0, . . . ,xnx,y0, . . . ,yny) 7→ f (a)(x0, . . . ,xnx,y0, . . . ,yny)

Also Var(ϕa(I)) ⊂ Pnx ×Pny (resp. Var(ϑ ◦ϕa(I)) ⊂ k̄nx+ny) denotes the variety ofϕa(I)
(resp.ϑ ◦ϕa(I)).

Lemma 15. There exists a nonempty Zariski open set O1 such that ifa ∈ O1, then for all
(α0, . . . ,αnx,β0, . . . ,βny) ∈Var(ϕa(I)), αnx 6= 0 andβny 6= 0. This implies that the application

Var(ϑ ◦ϕa(I)) −→ Var(ϕa(I))
(α0, . . . ,αnx−1,β0, . . . ,βny−1) 7−→ (α0, . . . ,αnx−1,1,β0, . . . ,βny−1,1)

is a bijection.

Proof. See (Van der Waerden, 1929, page751).

Lemma 16. There exists a nonempty Zariski open set O2, such that ifa ∈ O2, then the ideal
ϑ ◦ϕa(I) is radical.

Proof. Denote byF the polynomial family( f1, . . . , fm) ∈ k[a,X,Y]m. Let J ⊂ k[a] be the ideal(
I + 〈det(jacX,Y(F))〉

)
∩k[a] andJ be its associated algebraic variety. By the Jacobian Criterion

(see e.g. (Eisenbud, 1995, Theorem 16.19)), ifa does not belong toJ , thenϑ ◦ϕa(I) is radical.
Thus, it is sufficient to prove thatkm(nx+ny+2) \J is non-empty.

To do that, we prove that for alla∈ km(nx+ny+2), there exists(ε1, . . . ,εm) such that the ideal
〈ϑ ◦ϕa( f1)+ ε1, . . . ,ϑ ◦ϕa( fm)+ εm〉 is radical. Denote bygi = ϑ ◦ϕa( fi) for 1≤ i ≤ m and
consider the mappingΨ

x∈ km→ (g1(x), . . . ,gm(x)) ∈ km.

Suppose first thatΨ(km) is not dense inkm. SinceΨ(km) is a constructible set, it is contained in
a Zariski-closed subset ofkm and there exists(ε1, . . . ,εm) such that the algebraic variety defined
by g1− ε1 = ∙ ∙ ∙= gm− εm = 0 is empty. Since there existsa′ such thatgi− εi = ϑ ◦ϕa′( fi), we
conclude thatϑ ◦ϕa′(I) = 〈1〉. This implies thata′ /∈J .
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Suppose now thatΨ(km) is dense inkm. By Sard’s theorem (Shafarevich, 1977, Chap. 2,
Section 6.2, Theorem 2), there exists(ε1, . . . ,εm) ∈ km which does not lie in the set of critical
values ofΨ. This implies that at any point of the algebraic variety defined byg1− ε1 = ∙ ∙ ∙ =
gm− εm = 0, ϑ ◦ϕa(det(jacX,Y(F))) does not vanish. Remark now that there existsa′ such that
gi− εi = ϑ ◦ϕa′( fi). We conclude thata′ ∈ km(nx+ny+2) \J , which ends theproof.

Lemma 17. There exists a nonempty Zariski open set O3, such that ifa∈O3,
√
〈MaxMinors(ϑ ◦ϕa(jacy(F)))〉= 〈ϑ ◦ϕa( f1), . . . ,ϑ ◦ϕa( fm)〉∩k[x0, . . . ,xnx−1].

Proof. Let a be an element inO2 (as defined in Lemma 16). Thusϑ ◦ϕa(I) is radical. Now let
(v0, . . . ,vnx−1,w0, . . . ,wny−1) ∈Var(ϑ ◦ϕa(I)) be an element of the variety. Then

(
ϑ ◦ϕa(jacy(F))xi=vi

)
∙




w0
...

wny−1

1


=




0
...
0


 .

This implies thatrank(ϑ ◦ϕa(jacy(F))xi=vi ) < ny +1, and therefore

(v0, . . . ,vnx−1) ∈Var(〈MaxMinors(ϑ ◦ϕa(jacy(F)))〉).

Conversely, let(v0, . . . ,vnx−1) ∈ Var(〈MaxMinors(ϑ ◦ϕa(jacy(F)))〉). Thus there exists a
non trivial vector(w0, . . . ,wny) in the right kernelKer(ϑ ◦ϕa(jacy(F))xi=vi ). This means that
(v0, . . . ,vnx−1,1,w0, . . . ,wny) is in the variety ofϕa(I):

(v0, . . . ,vnx−1,1,w0, . . . ,wny) ∈Var(ϕa
(
jacy(F)

)
∙




y0
...

yny


)

From Lemma 15,wny 6= 0 if the system is generic. Hence

(v0, . . . ,vnx−1,
w0

wny

, . . . ,
wny−1

wny

) ∈Var(ϑ ◦ϕa(I)).

Finally, we have

Var(〈MaxMinors(ϑ ◦ϕa(jacy(F)))〉) = Var(〈ϑ ◦ϕa( f1), . . . ,ϑ ◦ϕa( fm)〉∩k[x0, . . . ,xnx−1])

andϑ ◦ϕa(I) is radical (Lemma 16). The Nullstellensatz concludes theproof.

Corollary 4. There exists a nonempty Zariski open set O4, such that ifa∈O4,

card(Var(ϑ ◦ϕa(I))) = deg(ϑ ◦ϕa(I)) =

(
nx +ny

nx

)

Proof. According to Lemma 16 and Lemma 15, ifa∈O1∩O2, then deg(ϑ ◦ϕa(I))= card(Var(ϑ ◦
ϕa(I)) = card(Var(ϕa(I))). This value is the so-called multihomogeneous Bézout number of
ϕa(I), i.e. the coefficient ofznx

1 z
ny
2 in (z1 + z2)

nx+ny (see e.g. Morgan and Sommese (1987)),
namely

(nx+ny
nx

)
.

37



Remark 7. Actually, by studying ideals spanned by maximal minors of matrices whose entries
are linear forms, it can be shown that, for a generic affine bilinear system,〈MaxMinors(ϑ ◦
ϕa(jacy(F)))〉 is radical (see Lemma 6). Hence Lemma 17 shows that, for generic affine bilinear
systems,

〈MaxMinors(ϑ ◦ϕa(jacy(F)))〉= 〈ϑ ◦ϕa( f1), . . . ,ϑ ◦ϕa( fm)〉∩k[x0, . . . ,xnx−1],

〈MaxMinors(ϑ ◦ϕa(jacx(F)))〉= 〈ϑ ◦ϕa( f1), . . . ,ϑ ◦ϕa( fm)〉∩k[y0, . . . ,yny−1].
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