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Abstract

Solving multihomogeneous systems, as a wide ranggro€tured algebraic systenoecurring
frequently in practical problems, is of first importance. Experimentally, solving these systems
with Grobner bases algorithms seems to be easier than solving homogeneous systems of the
same degree. Nevertheless, the reasons of this behaviour are not clear. In this paper, we focus
on bilinear systems (i.e. bihomogeneous systems where all equations have bidebredur

goal is to provide a theoretical explanation of the aforementioned experimental behaviour and to
propose new techniques to speed up thél®er basis computations by using the multihomoge-
neous structure of those systems. The contributions are theoretical and practical. First, we adapt
the classicaks criterion to avoid reductions to zero which occur when the input is a set of bilin-

ear polynomials. We also prove an explicit form of the Hilbert series of bihomogeneous ideals
generated by generic bilinear polynomials and give a new upper bound on the degree of regular-
ity of generic affine bilinear systems. We propose also a variant diztiddgorithm dedicated to
multihomogeneous systems which exploits a structural property of the Macaulay matrix which
occurs on such inputs. Experimental results show that this variant requires less time and memory
than the classical homogenedusAlgorithm. Lastly, we investigate the complexity of comput-

ing a Gidbner basis for the grevlex ordering of a generic 0-dimensional affine bilinear system
overk[xy,...,XnY1,---,Yn,]. In particular, we show that this complexity is upper bounded by

O ((“X+’;¥i:{2ir1+(zfr:;ig+l))w) , which is polynomial imy + ny (i.e. the number of unknowns) when

min(ny, ny) is constant.
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1. Introduction

The problem of multivariate polynomial system solving is an important topic in computer
algebra since algebraic systems can arise from many practical applications (cryptobagizs,
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real algebraic geometry, coding theory, signal processing, etc...). One method to solve them is
based on the @bner basis theory. Due to their practical importance, efficient algorithms to
compute Gbbner bases of algebraic systems are required: for instance Buchberger’s Algorithm
(Buchberger (2006)), FaegeF, (Faugere (1999)) ofFs (Faugere (2002)).

In this article, we focus on thBs Algorithm. In particular, thes criterion is a tool which
removes the so-callegductions to zergwhich are useless) during the @mer basis compu-
tation when the input system is a regular sequence. For instance, consider a sequence of poly-
nomials(fg,..., fm). The reductions to zero come from the leading monomials in the colon
ideals(fq,..., fi_1) : fi. Given a term order, letM(l) denote the ideal generated by the lead-
ing monomials of the elements of an idéal Then the reductions to zero detected by Ege
criterion are those related toM((fy,..., fi_1)). For regular systems,LM((fy,..., fi_1)) =
LM((fq,..., fi_1) : fj). Therefore, thés criterion removes all useless reductions. In practice, if
a homogeneous polynomial system is chosen “at random”, then it is regular.

In this paper, we consider multihomogeneous systems, which are not regular sequences in
the polynomial ring. Such systems can appear in cryptography graegal. (2008)), in coding
theory (Ourivski and Johansson (2002)) or in effective geometry (see Safey El Din and Schost
(2003); Safey El Din and Bbuchet (2006)).

A multihomogeneous polynomial is defined with respect to a partition of the unknowns, and
is homogeneous with respect to each subset of variables. The finite sequence of degrees is called
the multi-degreeof the polynomial. For instance, a bihomogeneous polynorhial bidegree
(d1,d2) overk[xo, ..., Xn,,Yo,-- -, Yn ] is @ polynomial such that

V)\a”v f(/\XOw~~,AXn><7IJYO,~~~»Hyny) :)\dludzf(XOa"'aanvy07~"7yny)'

In general, multihomogeneous systems are not regular. Consequenty, dhiterion does not
remove all reductions to zero. Our goal is to understand the underlying structure of these multi-
homogeneous algebraic systems, and then use it to speed up the computatioblofier Basis

in the context ofs. In this paper, we focus on bihomogeneous ideals generated by polynomials
of bidegreg(1, 1).

1.1. Main results

Letk be afield,fy,... fm € K[Xo,. .., Xn,, Y0, - -, Yn,] b€ bilinear polynomials. We denote By
the polynomial family( f1,..., fi) and byl; the ideal(FR). We start by describing the algorithmic
results of the paper, obtained by exploiting the algebraic structure of bilinear systems.

In order to understand this structure, we study properties of the jacobian matrices with respect
to the two subsets of variables, . .., Xy, andyo, ..., Yn,:

oy . 9h ofy . 9fs
% %y Yo Oy
jag(R)y=1{ + + jacy(R)=1 +
ofi . Of ofi .. Ofi
0%o OXny Yo IYny

We show that the kernels of those matrices (whose entries are linear forms) correspond to
the reductions to zero not detected by the classigatiterion. In general, all elements in these
kernels are vectors of maximal minors of the jacobian matrices (Lemma 2). For instance, if
Ny = ny = 2 andm= 4, consider

v = (minor(jacy(Fa),1), —minor(jacy(F4),2), minor(jacy (Fa),3), —minor(jac,(Fa),4))
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and
w = (minor(jacy(F4),1), —minor(jacy (Fa), 2), minor(jacy (F4),3), —minor(jacy (F4),4)),

whereminor(jacy(Fs),K) (resp. minor(jacy(Fs),k)) denotes the determinant of the matrix ob-
tained fromjac, (F4) (resp. jacy(Fs4)) by removing thek-th row. The genericyzygiesorre-
sponding to reductions to zero which are not detected by the claBsiceterion are

v € Keri (jacy(Fs)) andw € Kery (jacy(Fa)).

We show (Corollary 2) that, in general, the ideal; : f; is spanned byi_; and by the
maximal minors ofac, (Fi-1) (if i > ny+1) andjacy(Fi-1) (if i > nx+1). The leading monomial
ideal oflj_; : fj describes the reductions to zero associatef].torhus we need results about
ideals generated by maximal minors of matrices whose entries are linear forms in order to get a
description of the syzygy module. In particular, we prove that, in gengneallexGrobner bases
of those ideals are linear combinations of the generators (Theorem 3). Based on this result, one
can compute efficiently a @bner basis of;_1 : fi once a Gobner basis of;_1 is known.

This allows us to design an Algorithm (Algorithm 4) dedicated to bilinear systems, which
yields an extension of the classi¢alcriterion. This subroutine, when merged within a matricial
version of theFs Algorithm (Algorithm 2), eliminates all reductions to zero during the compu-
tation of a Gbbner basis of a generic bilinear system. For instance, during the computation of
a grevlex Gobner basis of a system of 12 generic bilinear equationsldxgr. . ., Xs, Yo, - - -, Ve,
the new criterion detects 990 reductions to zero which are not found by the Rgscidderion.

Even if this new criterion seems to be more complicated than the &swaiterion (some pre-
computations have to be performed), we prove that the cost induced by those precomputations is
negligible compared to the cost of the whole computation.

Next, we introduce a notion difi-regularity which describes the structure of generic bilinear
systems. When the input of Algorithm 4 is a bi-regular system, then it returns all reductions
to zero. We also give a complete description of the syzygy module of such systems, up to a
conjecture (Conjecture 1) on a linear algebra problem over rings. This conjecture is supported
by practical experiments. We also prove that there are no reductions to zero with the ckassical
criterion for affine bilinear systems (Proposition 5) which is important for practical applications.

We describe now the main complexity results of the paper. We need some results on the so-
called Hilbert bi-series of ideals generated by bilinear systems. For bi-regular bilinear system,
we give an explicit form of these series (Theorem 5):

Nm
(1 -ty (1 —tp) w1’
Nm(tl,tg) = (l—tltz)m—l—
S (1t ™ O (- )Y 1 (L) S (]
I (L tyt) ™ (n DAyt (1 t) L [1— (1 t) gD () )

After this analysis, we propose a variant of the MaffxAlgorithm dedicated to multiho-
mogeneous systems. The key idea is to decompose the Macaulay matrices into a set of smaller
matrices whose row echelon forms can be computed independently. We provide some experi-
mental results of an implementation of this algorithnMigma2.15. This multihomogeneous
variant can be more than 20 times faster for bihomogeneous systems thégnaimplemen-
tation of the classical Matriks Algorithm. We perform a theoretical complexity analysis based
on the Hilbert series in the case of bilinear systems, which provides an explanation of this gap.

3

HS|m(t1,t2) =



Finally, we establish a sharp upper bound on the degree of regularity of 0-dimensional affine
bilinear systems (Theorem 6). L&t ..., fn,+n, be an affine bilinear systemkifo, . . ., Xn,—1,Y0, - - -, Yn,—1],
then the maximal degree reached during the computation obar@r basis with respect to the
grevlex ordering is upper bounded by:

dreg <mMin(ny+1,ny+1).

This bound isexactin practice for generic bilinear systems and permits to derive complexity
estimates for solving bilinear systems (Corollary 3) which can be applied to practical problems
(see for instance Faage et al. (2010) for an application to the MinRank problem).

1.2. State of the art

The complexity analysis that we perform by proving properties on the Hilbert bi-series of
bilinear ideals follows a path which is similar to the one used to analyze the complexityfef the
algorithm in the case of homogeneous regular sequences (see Bardet et al. (2005)). In Kreuzer
et al. (2002), the properties of Buchberger’s Algorithm are investigated in the context of multi-
graded rings. Cox et al. (2007a) gives an analysis of the structure of the syzygy module in the
case of three bihomogeneous equations with no common solution in the biprojective space.

The algorithmic use of multihomogeneous structures has been investigated mostly in the
framework of multivariate resultants (see Dickenstein and Emiris (2003); Emiris and Mantzaflaris
(2009) and references therein for the most recent results) following the line of work initiated by
McCoy (1933). In the context of solving polynomial systems by using straight-line programs
as data-structures, Jeronimo and Sabia (2007) provides an alternative way to compute resultant
formula for multihomogeneous systems.

As we have seen in the description of the main results, the knowledgedtth&r bases
of ideals generated by maximal minors of linear matrices play a crucial role. Theorem 3 which
states that such @bner bases are obtained by a single row echelon form computation is a variant
of the main results in Sturmfels and Zelevinsky (1993) and Bernstein and Zelevinsky (1993) (see
also the survey by Bruns and Conca (2003)).

More generally, the theory of multihomogeneous elimination is investigatedemoRd
(2001) providing tools to generalize some well-known notions (e.g. Chow forms, resultant
formula, heights) in the homogeneous case to multihomogeneous situations. Such works are
initiated in Van der Waerden (1929) where the Hilbert bi-series of bihomogeneous ideals is in-
troduced.

1.3. Structure of the paper

This paper is articulated as follows. Some tools from commutative algebra are introduced.
Next, we investigate the case of bilinear systems and propose an algorithm to remove all reduc-
tions to zero during the @bner basis computation. Then we prove its correctness and explain
why it is efficient forgenericbilinear systems. To continue our study of the structure of bilinear
ideals, we give the explicit form of the Hilbert bi-series of generic bilinear ideals. Finally, we
prove a new bound on the degree of regularity of generic affine bilinear systems and we use it to
derive new complexity bounds. Technical results and their proofs are postponed in Appendix.
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2. Grobner bases: the MatrixF5 Algorithm

2.1. Grobner bases: notations
In this section,R denotes the polynomial rinfgxs,...,X,] (wherek is a field) and for all

B=(B,...,B) € N", xB denotesxfl,--- ,xﬁ”. Grobner bases are defined with respect to a
monomial ordering (see Cox et al. (2007b), page 55, Definition 1). In this paper, we focus in
particular on the so-callegreviexordering (degree reverse lexicographical ordering).

Definition 1. Thegrevlexordering is defined by:

2ai <3 pior
x* <xP = {5 ai =5 B and the first coordinates
from the right which are different satisty > f3;.

If < is a monomial ordering andl € R is a polynomial, then its greatest monomial with
respect to< is calledleading monomiahnd denoted byM_ (f) (or simply LM(f) when there
is no ambiguity on the considered ordering).

If | C Ris a polynomial ideal, iteeading monomial idedi.e. ({LM~(f) : f € 1})) is denoted
by LM(1) (or simplyLM(I) when there is no ambiguity on the ordering) .

Definition 2. let | C R be an ideal, and< be a monomial ordering. ASrobner basiof |
(relatively to<) is a finite subset @& | such that: (LM< (G)) = LM (I).

Definition 3. Let | C R be an ideal< be a monomial ordering and ¢ R be a polynomial. Then
there exist unique polynomiafse R and ge | such that f= f + g and none of the monomials
appearing inf are in LM<(1). The polynomial is called thenormal formof f (with respect to

| and <), and is denotedlF - (f).

Itis well known thatNF, - (f) =0ifand only if f € | (see e.g. Cox et al. (2007b)).

Definition 4. Let | C R be a homogeneous ideal,be a monomial ordering and D be an integer.
We call D-Gibbner basis a finite set of polynomials G such @&t = | and

Vf €1 with deq f) < D, there exists g G such thaLM_(g) dividesLM_(f).

The following Lemma is a straightforward consequence of Dickson’s Lemma (Cox et al.,
2007b, page 71, Theorem 5).

Lemma 1. Let | C R be an ideal and lek be a monomial ordering. There existsdDN such
that every D-Gbbner basis with respect ta is a Grobner basis of | with respect ta.
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2.2. The Matrix E Algorithm

We use a variant of thés Algorithm, called MatrixF5 Algorithm, which is suitable to
perform complexity analyses (see Bardet (2004); Bardet et al. (2005)gFaagd Rahmany
(2009)).

Given a set of generato(ds, ..., fm) of a homogeneous polynomial iddat R, an integer
D and a monomial ordering, the Matrix F5 Algorithm computes @-Grobner basis of with
respect to<. It performs incrementally by considering the idelals: (fq,..., fj) for 1 <i<m.

Letd € N, denote byRy the k-vector space of polynomials iR of degreed. As in Faugre
(2002) and Bardet (2004), we use a definition of the row echelon form of a matrix which is
slightly different from the usual definition: we catbw echelon fornthe matrix obtained by
applying the Gaussian elimination Algorithmithout permuting the rowsThe idea of the Matrix
Fs Algorithm (see Algorithm 2 below) is to calculate triangular bases of the vector shaces
for1<d <Dand 1<i < mand to deduce from themdrbasis ofl;. ;. These triangular bases
are obtained by computing row echelon forms of the Macaulay matrices.

Definition 5. Let F = (f1,..., ;) € R be a sequence of homogeneous polynomials of degrees
(dg,...,d;) and< be a monomial ordering. The Macaulay matrix in degrellakaulay_ (F,d)

is the matrix whose rows contain the coefficients of the polynor{ii&j$ wherel < j <iand

t € Ris a monomial of degree-dd;. The columns correspond to the monomials in R of degree d
and are sorted by in descending order. Each row has a signatiref;) and they are sorted as
follows: a row with signaturéts, ;) is preceding a row with signaturg,, fi) if j <k or (j =k

and § < tp). The element at the intersection of the rwf;) and the column corresponding to
the monomial m is the coefficient of m in the polynomigal t f

When the row echelon form of a Macaulay matrix is computed, the rows which are linear
combinations of preceding rows are reduced to zero. Such computations are useless: removing
these rows before computing the row echelon form will not modify the result but lead to signif-
icant practical improvements. The so-calledcriterion (see Fauge (2002)) is used to detect
thesereductions to zerand is given below. In Algorithm 2, the matricegy; are similar to
Macaulay matrices: their rows and their columns are sorted with the same orderings and their
rows span the same vector spaces. Moreovéf;if .., f) is a regular sequence, then the rows

of their row echelon form%/Ii are bases df NRy.

Algorithm 1. Fs criterion - returns a boolean
(t, fj) the signature of a row

A matrix.# in row echelon form
1: Ift is the leading monomial of a row o#7, then returntrue,
2: else returnfalse.

Require:

Now, we give a description of the Matrkg Algorithm.

Algorithm 2. Matrix Fs (see Faugre and Rahmany (2009); Bardet (2004); Fauvg (2002))
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(f1,..., fm) homogeneous polynomials of degree<dd, < ... < dm
Require: < D an integer
a monomial ordering<
Ensure: G is a D-Gidbner basis offy,.. ., fm) for <
1: G—{f1,..., fm}
2: for d from d, to D do
3 % «— matrix with0 rows

4 for i from 1to mdo

5: Construct#y i by adding ta.#q ;1 the following rows:

6: if di = dthen

7 add the row fwith signature(1, f;)

8 end if

9 if d > dj then
10: for all f from .#4_1; with signature(e, f;), such that x is the
11: greatest variable of e, add the-mA + 1 rows x, f,X) 1 f,..., % f with the
12: signatures(x, e, fi), (Xy 18, fi),..., (Xne, fj) except those which satisfy:
13: Fscriterion ((X) 1€, i), #4_q i—1)=true

14 end if

15: Compute#g; the row echelon form o7y

16: Add to G the polynomials corresponding to rows#f; such that their

17: leading monomial is different from the leading monomial of

18: the row with same signature iy ;

19: end for
20: end for
21: return G

We recall now some results mostly given by Fareg(2002) which justify thés criterion
by relating reductions to zero appearing in an incremental computation dftan&r basis of a
homogeneous ideal with the syzygy module of the polynomial system under consideration.

Definition 6. Let(fy,..., fn) be polynomials in R. A syzygy is an elemest (s, ...,Sn) € R™
suchthaty ', fjsj = 0. The degree of the syzygy is definedriay; (deg fj) +ded(s;j)). The set
of all syzygies is a submodule ofRalled thesyzygy moduleof (f1,..., fm).

The next theorem explains how reductions to zero and syzygies are related:

Theorem 1(Fs criterion, Faugre (2002))

1. Ift € LM(li_1) then there exists a syzyést,...,S) of (f1,..., fi) such thalLM(s) =t.
2. Let(t, fi) be the signature of a row o#7y m. Then the following assertions are equivalent:

(a) the row(t, f;) is zero in the row echelon for%.
(b) t ¢ LM(l;_1) and there exists a syzygy=s(si,...,S) of (f1,..., fi) such that t=

LM(s).

The rows eliminated by thEs criterion correspond to the trivial syzygies, i.e. the syzygies
(s1,...,Sm) suchthavl <i<m,s € (fq,..., fi_1, fit1,..., fm). These particular syzygies come
from the commutativity oR (for all 1 <i,j <m, fif; — f; fi = 0). It is well known that in the
generic case, the syzygy module of a polynomial system is generated by the trivial syzygies.

7



Definition 7. (Eisenbud, 1995, page 419) L, ..., fm) be a sequence of homogeneous poly-
nomials and let;|C R be the ideal f4,..., fi). The following assertions are equivalent:

1. the syzygy module ¢f1, ..., f) is generated by the trivial syzygies.
2. for2<i<m, fis notadivisor o0 in R/l;_;.

A sequence of polynomials which satisfies these conditions is calegflilar sequence

This notion of regularity is essential since the regular sequences correspond exactly to the
systems such that there is no reduction to zero during the computation 6ba&asis witlirs
(see Faugre (2002)). Moreover, generic polynomial systems with less equations than unknowns
are regular.

3. Grobner bases computation for bilinear systems

3.1. Overview

Let F = (fy,..., f4) be four bilinear polynomials irQQ[xo, X1, X2, Yo,Y1,Y2], | be the ideal
generated by andV c C® be its associated algebraic variety. As abdyelenotes the ideal
(f1,..., fi), and we consider the grevlex ordering Wik~ ... = Xn, > Yo > ... = Yn,. Since
f1,..., f4 are bilinear, for all(ag,a;,a) € C3 and 1<i < 4, f; (ap,a1,a2,0,0,0) = 0. Hence,

V contains the linear affine subspace defined/dy: y1 = y» = 0 which has dimension 3. We
conclude thaV has dimension at least 3.

Consequently, the sequenth, fo, f3, f4) is not regular (since the codimension of an ideal
generated by a regular sequence is equal to the length of the sequence). Hence, there are re-
ductions to zero during the computation of ad8ner basis with th&s Algorithm (see Faugre
(2002)).

When the four polynomials are chosen randomly, one remarks experimentally that these re-
ductions correspond to the rows with signatupels f4) and(yg, f4). This experimental observa-
tion can be explained as follows.

Consider the jacobian matrices

of,  ofy ofy af,  ofy dfy
dxg Ox3  OX dyg dy1 9y
jack(F) = and jacy(F) =
oty 0fs  Ofs 0t 0fs  Ofs
Oxg Ox1 0% dyo Ody1 Oy2

and the vectors of variables andY. By Euler's formula, it is immediate that for any sequence
of polynomials(qy, o2, 03, Ga),

(O, ., 0a)-jacy(F).X = Zq|f| and (qu,...,d4)-jacy(F).Y = Zq|f| (1)

Denote byKery (jac,(F)) (resp.Kery (jacy(F))) the left kernel ofac, (F) (resp.jacy(F)).
Therefore, if(dy,...,0s) belongs toKer (jacy(F)) (resp. Ker (jacy(F))), then the relation
(1) implies that(qy, . .., ds) belongs to the syzygy module bf
Given a(k+ 1,k)-matrix M, denote byminor(M, j) the minor obtained by removing ttjeth
row from M. Consider

v = (minor(jacX(F),1),—minor(jacX(F),é),minor(jacX(F),3)7—minor(jacX(F),4)).



By Cramer’s ruley € Keri (jacy(F)). A symmetric statement can be made fa, (F). From
this observation, one deduces thahor (jac,(F),4)fs (resp. minor(jacy(F),4)fs) belongs to
I3 = (f1, f2, f3).

We conclude that the rows with signature

(LM(minor(jacy(F),4)), fa) and(LM(minor(jacy(F),4)), fa)

are reduced to zero when performing the MagixAlgorithm described in the previous section.
A straightforward computation shows thaFifcontains polynomials which are chosen randomly,
LM(minor(jacy(F),4)) = y§ andLM(minor(jacy(F),4)) = x3.

In this section, we generalize this approach to sequences of bilinear polynomials of arbitrary
length. Hence, the jacobian matrices have a number of rows which is is not the number of
columns incremented by 1. But, even in this more general setting, we exhibit a relationship
between the left kernels of the jacobian matrices and the syzygy module of the ideal spanned
by the sequence under consideration. This allows us to prove dseviterion dedicated to
bilinear systems. On the one hand, when plugged into the MBdrilgorithm, this criterion
detects reductions to zero which are not detected by the classical criterion. On the other hand,
we prove that &-Grobner basis is still computed by the Matfix Algorithm when it uses the
new criterion.

3.2. Jacobian matrices of bilinear systems and syzygies
From now on, we use the following notations:

hd R: k[XOv--~aan7YO7---7Yny];

F = (f,..., fm) C R"is a sequence of bilinear polynomials afd= (f1,..., fi) for 1 <
i<m;

¢ | is the ideal generated Wy andl; is the ideal generated by,

Let M be a¢ x ¢ matrix, with¢ > ¢. We callmaximal minorsof M the determinants of the
C X € sub-matrices oM;

jacy(Fi) andjacy (Fi) are respectively the jacobian matrices

oty . 9f ofy ... 9fs

X OXny 9Yo IYny
. : and | Co

ofi .. O ot .. Ofi

%o Xy Yo IYny

Given a matrixM, Ker_ (M) denotes the left kernel dfl;

X is the vectorfXxo,. .., X J' andY is the vectofyo, ..., yn|';

(f1,--, fm) € KXo, -+, Xn—1,Y0,-- -, Yn,—1]™ is @anaffine bilinear systenif there exists a
homogeneous bilinear systefy',..., f1}) € k[Xo, ..., Xn,, Yo, - - -, Yn,|™ such that

fi (X07 s 7an—l7y07 e 7yny—1) = fih(X07 LR 7an—1a 17)/07 LR ayny—la 1)
9



Lemma 2. Leti> ny+1 (resp. i> ny+ 1), and lets be a maximal minor ofac, (F_1) (resp.
jacy(Fi-1)). Then there exists a vect@®, ...,S-1,5) in Keri (jac,(F)) (resp.Kery (jacy(F))).

Proof. The proof is done when consideria@s a maximal minor ofac,(F_1) with i > ny+ 1.
The case whergis a maximal minor ofacy (F-1) with i > ny + 1 is proved similarly.

Notice thatjac,(F_1) is a matrix withi — 1 rows andny + 1 columns and — 1 > ny + 1.
Denote by(j1,..., ji—n.2) the rows deleted frorfac,(F_1) to construct its submatri¥ whose
determinant is.

Consider now thé x (i — ny — 2)-matrix T such that it§¢, k) entry is 1 if and only if¢ = jy,
else itis 0.N denotes the followingx (i — 1) matrix:

N=[ja(R) | T ].
A straightforward use of Cramer’s rule shows that
(minor(N, 1), —minor(N,2),...,(—1)"tminor(N,i)) € Ker_(N).
Remark that this implies
(minor(N, 1), —minor(N,2),...,(—1)"tminor(N,i)) € Ker_(jacy(F)).
Computingminor(N,i) by going across the last columnsifshows thaminor(N,i) = +s. O

Theorem 2. Leti> ny+ 1 (resp. i> ny+1) and let s be a linear combination of maximal minors
of jacy(Fi-1) (resp.jacy(Fi-1)). Thensc iy : fi.

Proof. By assumptions= 3 ,a,s, where eacl, is a maximal minor ofac,(F_1). According
to Lemma 2, for each minay; there exist:{s(la, - ,g@l) such that
(87,89, 50) € Ker, (jacy ()

Thus, by summation ové one obtains
(Sas’....3 as’ys) e Ken ac(F)) @

Moreover, by Euler’s formula

i-1
(0) o) - _of )\ ¢.
(Zafsl 7...,;a[§71,S)JaCX(F|)X =sf+ gl (;agsj ) f;.
By the relation (2)s f + 2 gags(/') f; = 0, which implies thas € I;_1 : f. O
ZJ 1 > j J

Corollary 1. Leti> ny+1 (resp. i>ny+1), M)(<i> (resp. I\/ﬁ”) be the ideal generated by the
maximal minors ofac, (F) (resp.jac,(F)). Then MY cliiq: fi (resp. W‘D Cli_g: f).

Proof. By Theorem 2, all minors gfc, (Fi-1) (resp.jacy(Fi-1)) are elements df_; : fi. Thus,
li_1 : fj contains a set of generators mﬁ'*” (resp. Mﬁ'fl)). Sincel;_1 : fi is an ideal, our
assertion follavs. O
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Example 1. Consider the following bilinear system GF(7)[xo, X1, X2, Yo, Y1, Y2, Y3

f1 = XoYo + 5X1Yo + 4X2Yo + 5XoY1 + 3X1Y1 + XoY2 + 4X1Y2 + 5XaY2 + BXoy3 4 X1Y3 + 2X2Y3,

f2 = 2XoYo + 4X1Yo + 6X2Yo -+ 2XoY1 + SX1Y1 + BXoY2 + 4X2Y2 + 3XoY3 + 2X1Y3 + 4XaY3,

f3 = 5XoYo + 5X1Yo + 2X2Yo + 4XoY1 + 6XaY1 + 4XaY1 + 6XaY2 + 4X2Y2 + XoY3 + Xa1Y3 + SXaYs,

f4 = 6XoYo + SX2Yo + 4XoY1 + 5X1y1 + X2Y1 4 XoY2 4+ X1Y2 + 6X2Y2 4 2XoY3 + 4X1Y3 + SX2Y3,

f5 = 6XoYo -+ 3X1Yo + 6X2Y0 + 3X0Y1 + SX2Y1 + 2XoY2 + 4X1Y2 + SX2Y2 + 2XoY3 + 4X1Y3 + 5XoYs.

Its jacobian matricegac, (F4) andjac, (F4) are:

Yo+5y1+Y2+5ys  Syo+3yi+4y2+Yys 4yo +5y2 +2y3

jac,(Fa) = 20+2y1+6y2+3ys  Ao+5y1+2y3 6yo -+ 4y2 +4y3
Syo+4y1+Ys Syo+6y1+6y2+Yys  2yo+4y1+4y2+5y3
6yo +4y1+Y2+2y3 Sy1+Y2 +4y3 5y0 +Y1+6y2 +5y3
Xo + 5X1 + 4X2 5x0 + 3x1 Xo+4X1 +5%  5Xg+ X1+ 2%
jac, (Fa) = 2Xg + 4x1 + 6x2 2Xo + 5X1 6Xo + 4% 3Xo + 2X1 + 4%
Jacy(Fa BXg+5x%1 + 2% 4Xg + 6X1 + 4xo 6x1 + 4x2 Xo + X1 + 5%
6x + 52 AX0+5X1+X2  Xo+X1+6X2 2% +4x1+5%

An straightforward computation shows that the maximal minors of the mgitiXF,) and
jacy(F4) are in (f1, o, f3, f4) : fs, in accordance with Corollary 1. An example of a correspond-
ing syzygy is obtained by the vanishing of the determinant

Yo+5y1+Y2+5ys  Syo+3y1+4Y2+Ys 4yo+5y2+2y3

2o+ 2y1 +6y2+3y3 4yo+5y1+2y3 Byo + 4y2 +4ys
detfjac, (Fs)|T|Fs|=det Syo+4y1+Y3 Syo+6y1+6y2+ys  2yo+4y1+4y2+5y3
6Yo+4y1+Y2+2y3 Sy1+Y2+4y3 5yo+ Y1+ 6y2+5y3
Yo+ 3y1+2y2 +2y3 3yo +4y2+4y3 6yo -+ 5y1 + 5y2 + 5y

[eNeoNeRoN ol
—
w

The above results imply that for aj € M)((H) (resp. g € M,(,H)), the rows of signature
(LM(9g), f;) are reduced to zero during the MatFix Algorithm. In order to remove these rows, it

is crucial to compute a @bner basis of the ideam)(('_l) and Mf,'_l). These ideals are generated
by the maximal minors of matrices whose entries are linear forms. The goal of the following
section is to understand the structure of such ideals and hdbr®r bases can be efficiently
computed in that case.

3.3. Gibner bases and maximal minors of matrices with linear entries

Let.# be the set of homogeneous linear forms in the Rag= k[xo, . . ., X, ], < be thegrevliex
ordering onRy (with xg > - -- > X, ) andMat «(p, q) be the set op x g matrices with entries in
% with p> qandny > p—g. Note thatMat « (p, g) is ak-vector space of finite dimension.

Given M € Mat»(p,q), we denote byMaxMinors(M) the set of maximal minors of/.
We denote byMacaulay_ (MaxMinors(M),q) the Macaulay matrix in degreg associated to
MaxMinors(M) and to the ordering< (each row represents a polynomialMixMinors(M) and
the columns represent the monomials of degréek|xo, .. ., Xn,] sSorted by<, see Definition 5).

The main result of this paragraph lies in the following theorem: it states that, in general, a
Grobner basis ofMaxMinors(M)) is alinear combination of the generators.

Theorem 3. There exists a nonempty Zariski-open set ™t (p,q) such that for allM € O,
a grevlex Gbbner basis ofMaxMinors(M)) with respect to< is obtained by computing the row
echelon form oMacaulay_ (MaxMinors(M),q).

11



This theorem is related with a result from Sturmfels, Bernstein and Zelevinsky (1993), which
states that the ideal generated by the maximal minors of a matrix whose entries are variables is a
universal Gbbner Basis. We tried without success to use this result in order to prove Theorem 3.
Therefore, we propose an ad-hoc proof, which is based on the following Lemmas whose proofs
are postponed to the end of the paragraph.

Lemma 3. Let Monomialsp_q(q) be the set of monomials of degree q [Rok...,Xp—g]. There
exists a Zariski-open subset 6f Mat »(p,q) such that for allM € O’

(Monomialsp_g(q)) € LM({MaxMinors(M)))

Lemma 4. Let Monomialsp_q(q) be the set of monomials of degree q [Rok. .., Xp—q]. There
exists a Zariski-open subset @f Mat »(p,q) such that for allM € O”

LM((MaxMinors(M))) C (Monomialsp_q(q))

Lemma 5. The Zariski-open set'@ 0" C Mat(p,q) is nonempty.

Proof of Theorem 3From Lemmas 3, 4 and ¥ = O'n 0" is a nonempty Zariski open set.
Now letM be a matrix inO C Mat.»(p,q).

(Monomialsp_g(q)) = LM({MaxMinors(M))).

Thus all polynomials in a minimal @bner basis ofMaxMinors(M)) have degreg and then
can be obtained by computing the row echelon fornviataulay _ (MaxMinors(M), ). O

We prove now Lemmas 3, 4 and 5.

Proof of Lemma 3 Let9omn be the(p, q) -matrix whose(i, j)-entry is a generic homogeneous lin-
ear formzk_oa % € k( ) ( >)[x0, ..+, Xn,]. Denote byu the set

a—{a Jo<k<n,1<i<p, 1<j<q}.

Given a set -
a={alV ek0<k<n,1<i<p 1<j<q}
consider the specialization mag : 9t — M, € Mat»(p,q) such that thei, j)-entry of M1, is
o af("”xk € K[Xo, - - ., Xn,]. We prove below that there exists a polynonga k[a] such that, if
g(a) #0then
(Monomialsp_g(q)) C LM({MaxMinors(¢a(91)))).

Consider the Macaulay matrMacaulay_ (MaxMinors(1), ).

Remark that the number of monomialsMonomialsp_q(q) equals the number of maximal
minors of M. Moreover, by construction dflacaulay_ (MaxMinors(9),q) and by definition
of < (see Definition 1), the firs{f) columns ofMacaulay . (MaxMinors(0),q) contain the
coefficients of the monomials Monomialsy_q(q) of the polynomials irtMaxMinors(90t).

Saying that{Monomialsp_q(q)) C LM({MaxMinors(91))) is equivalent to saying that the
determinant of the square submatrixMhcaulay_ (MaxMinors(901),q) containing its first(g)
columns is non-zero. L&t € K[a] be this determinant.

The inequalityg # 0 defines a Zariski-open sé& such that for alb € O’

(Monomialsp_g(q)) C LM({MaxMinors(¢a(91)))).

12



In the followingy denotes the canonical inclusion morphism frikm, . . . , Xn, ] toK'[Xo, . . ., Xp—q],
wherek' is the field of fractionk(Xp—_q+1, - - - » Xny)-
For (vi,...,Vn,—ptq), Yy denotes the specialization morphism:

Wi KXo,....Xn] — K[Xo, .- Xp—q]
f(X0,..-, %) +—  f(X0,...,Xp—q;V1,---,Vie—ptq)

Lemma 6. There exists a Zariski open set'Osuch thatifac O”, then the idea{MaxMinors(( o
$a(9))) is radical and its degree i§, ;).

Proof. There exists an affine bilinear systein..., fy € K'(a)[Xo,...,Xp—q, Y0, - --,Yq—2], such
that:

Yo f,
Y(om)- : =1 :
yq—2 f

1 p

Let| denote the ided|fy,.. ., fp). According to Lemma 17 (in Appendix), there exists a polyno-
mial hy € K[a], such that ity (a) # 0, then,/(MaxMinors(i o §a(IMN))) = (Pa(f1), ..., Pa(fp))N
K [Xo, ..., Xp—q]-

One remarks that there also exists a polynorat k[a] such that ithy(a) # 0, thenga(1)
is O-dimensional (sincdy, ..., fy is a generic affine bilinear system with equations andg
variables, see Proposition 8). From Lemma 16 (in Appendix), there exists a polyriarsiath
that if hz(a) # 0, theng,(l) is radical. From now on, we suppose thata)hy(a)hs(a) # 0.
If (Wo,...,Wp_q) € Var({MaxMinors(i o ¢a(9M)))) (WhereVar denotes the variety), then the
set of points invar(¢a(l)) whose projection igwo, ...,wp_q) can be obtained by solving an
affine linear system. The set of solutions of this system is nonempty and finite ¢sifiges
0-dimensional), thus it contains a unique element. So there is a bijection betaegh (1))
andVar({MaxMinors(o ¢a(91)))). As ¢a(l) is radical,

ded ¢a(1)) = ded \/(MaxMinors(@ o ga(9)))).
By Corollary 4, this degree igfl). According to Lemma 3,

ded \/(MaxMinors(( o a(9N)))) geg(MaxMinors(qJ o Pa(IM))))

<
< deg(Monomialsy_q(q))) = (qfl).

Therefore,

deg \/(MaxMinors( o ¢a(M)))) = ded (MaxMinors(( o a(9M))))

and thus

v/ (MaxMinors( o ¢a(MM))) = (MaxMinors( o ¢a(9M))).
Furthermore, the inequality,(a)h2(a)hs(a) # 0 defines the wanted Zariski opeet. O

Proof of Lemma 4 Consider the Zariski open s&t' = O’ N O” (whereQ' is defined in Lemma
3 andO” is defined in Lemma 6) and letbe taken inD”. According to Lemma 3,

Monomialsy_q(q) C LM({(MaxMinors( o ¢a(91)))).
13



A basis ofk'[Xo, . . . , Xp—g] / (Monomialsp_q(0)) is given by the set of all monomials of degree less
thanq. Therefore, the dimension &f[xo, .. .,Xp_q]/(Monomials,_q(q)) (as ak'-vector space) is
(qfl). Thus, from Lemma 6,

deg(MaxMinors({o $a(9N)))) = (q P 1) = deg (Monomialsp_q(Q)))-

Therefore, all polynomials iiMaxMinors(( o §a(91))) have degree at least

Now letg # 0 be a polynomial ifMaxMinors(¢a(91))). Then there existe= (v1,...,Vn,p+q)
such that the specialized polynomial verifiggg(g) #£ O and such that dé@gVlaxMinors(yx o
$a(M)))) = (471). Thusyx(g) is a polynomial of degree at leagtin K[xo, ..., Xp-q]. Now
suppose by contradiction thaM(g) ¢ (Monomialsp_q(q)). Since de@yx(g)) > q, there exists
a monomiatm in g such thatm € (Monomialsy_q(q)). Thus consideg; = g—Am+ANF(m)
(whereA is the coefficient ofn in g). One remarks thatM(g) = LM(g1) ¢ (Monomialsp_q(Q)).
Sinceg; € (MaxMinors($a(901))), by a similar argument there also exists a monomigle
(Monomialsp_g(0))) in g1. By induction construct the sequergze= gi_1 — Ai_1mj_1 +Ai_1NF(mj_1).
This sequence is infinite and strictly decreasing (for the induced partial ordering on polynomi-
als: hy < hy if LM(hl) < LM(hz) or if LM(hl) = LM(hz) andhy — LM(hl) < hy — LM(hz)).
But, when< is the grevlex ordering, there does not exist such an infinite and strictly decreasing
sequence.

ThereforeLM(g) € (Monomialsy_q(q)), which concludes thproof. O

Proof of Lemma 5.In order to prove that the Zariski open €8tn Q" is nonempty, we exhibit
an explicit element. Consider the matihk of Mat (p,q) whose(i, j)-entry isxj_2 if 0 <
i+j—2<p-qandi> j,elseitisO.

X0 0o ... 0
X1 Xo - 0
- S .
Xp—q
: Xp-q-1
0 0 ... Xpq

Remark thaMaxMinors(M) C KXo, . .. ,Xp—g]. Since(Monomialsp_q(0)) is a zero-dimensional
ideal ink[xo, . . ., Xp—q], the fact that M(MaxMinors(M)) = Monomialsp_q() implies thal_M((MaxMinors(M))) =
(Monomialsp_g(0))). Thus, we prove in the sequel thal (MaxMinors(M)) = Monomialsp_q(0).
Afirst observation is that the cardinality BfaxMinors(M) equals the cardinality dflonomialsp_q(Q).
Let mbe a maximal minor oM. Thusmis the determinant of g x g submatrixM’ obtained by
removingp — g rows fromM. Letiy,...,ip_q be the indices of these rows (with< ... <ip_g).
Denote byx the product coefficient by coefficient of two matrices (i.e. Hedamard produgt
and letSq be the set of| x g permutation matrices. Thus= zgesq(—l)sg”(‘f) detlo+xM’).

Since for allo € G4, def{o xM’) is a monomial, there exists® € G4 such that. M(m) =
+deta®«M’)

We prove now that® = id. Suppose by contradiction thaf # id. In the sequel, we denote
by
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o M'[i,j] the(i, j)-entry of M'.
e ¢ theqx 1 unit vector whosé-th coordinate is 1 and all its other coordinates are 0;
o O'J-O is the integer such thaoej = &.

Since, by assumptiorg® # id, there exists K i < j < g such thatajo > o?. Because of the
structure oM, we know that for thereviexorderingxg > - - - > Xn,,
M'li, a7 IM'[j, 6] = M'fi, o7 IM'[], o7,
Let o’ be defined by
ol if ki andk # |
O = ajo if k=i
alif k=j

Then deto’ xM’) - det a®«M’) and by induction détd x M’) - det a®«M’). This also proves
that the coefficient of déid « M’) in MaxMinors(M) is 1 and contradicts the fact thiab(m) =
+det(a®xM’).
This proved that M(m) = | def(id x M’)|. Now one can remark that
detlid«M’) = xiolflxif*ilflxif_iz_1 . .xgiiq”’qfl.
Thus if my, mp are distinct elements iMaxMinors(M), thenLM(my) # LM(mp). Since for allm

in MaxMinors(M), LM(m) € Monomialsp_q(0), andMaxMinors(M) has the same cardinality as
Monomialsy_q(q), we can deduce th&tM(MaxMinors(M)) = Monomialsp_g(Q). O

3.4. An extension of the;Eriterion for bilinear systems

We can now present the main algorithm of this section. Given a sequence of homogeneous bi-
linear formsk = (fq,..., f,) C Rgenerating an idedlCc Rand< a monomial ordering, it returns
aset of pairgg, fi) suchthag < li_1 : fi andg ¢ l;_1 (for i > min(ny+1,ny+1)). Following The-
orem 2 and 3, this is done by considering the matrjsggF ) (resp.jacy(F)) fori > ny+1 (resp.
i > ny+ 1) and performing a row echelon form dfacaulay _(MaxMinors(jacy(F)),nx + 1)
(resp.Macaulay . (MaxMinors(jacy (Fi)), ny +1)).

First we describe the subroutifeduce(Algorithm 3) which reduces a set of homogeneous
polynomials of the same degree:

Algorithm 3. Reduce

Require: < a monomial ordering andS,q) where S is a set of homogeneous polynomials of
degree q.
Ensure: T is a reduced set of homogeneous polynomials of degree q.
1: M «— Macaulay_(SQ).
2: M «— RowEchelonForm(M).
3: Return T the set of polynomials corresponding to the rowd .of

The main algorithm uses this subroutine in order to compute a row echelon fédacetilay _ (MaxMinors(jac, (F)), Ny
1) (resp.Macaulay  (MaxMinors(jacy (Fi)),ny + 1)):

Algorithm 4. BLcriterion
15



m bilinear polynomials f,. .., fm such that m< ny+ny.
< amonomial ordering over(ko, ..., Xn,,Yo, - -, Yn,]
Ensure: V aset of pairgh, f;) such that he I;_1 : fi and het I;_.

Require:

1. V<0

2: for i from 2to mdo

3 ifi >ny+1then

4: T < ReducgMaxMinors(jacy(Fi-1)),ny+1).
5: for hin T do

6: V —VU{(hf)}

7: end for

8: endif

9: if i > ny+1then
10: T’ «— ReducdMaxMinors(jac, (F-1)),nx+ 1).
11: for hin T' do
12: V —VUuU{(h f)}
13: end for
14: endif
15: end for
16: ReturnV

The following proposition explains how the output of Algorithm 4 is related to reductions to
zero occurring during the Matribs Algorithm.

Proposition 1 (Extendeds criterion for bilinear systems)Let fy, ..., f, be bilinear polynomi-
als and< be a monomial ordering. L€, fi) be the signature of a row during the Matrix F
Algorithm and let V be the output of AlgorithBL CRITERION. Then if there existéh, f;) in V
such that.M(h) =t, then the row with signaturé, f;) will be reduced to zero.

Proof. According to Theorem A f; € I;_1. Therefore

i—1
tfi=(h—-t)fi+ Z g;fj.
=1

This implies that the row with signaturg, fi) is a linear combination of preceding rows in
Macaulay(F,dedtf;)). Hence this row will be reduced tero. O

Now we can merge this extended criterion with the Mafg»Algorithm. To do so, we denote
by V the output of BICRITERION (V has to be computed at the beginning of MaffixAlgo-
rithm), and we replace in Algorithm 2 tHg CRITERION by the following BLIN F5CRITERION:

Algorithm 5. BILIN FsCRITERION - returns a boolean
. t, fi) the signature of a row
Require: (t. ) ¢ 819
A matrix.# in row echelon form
t is the leading monomial of a row o# or

1: Returntrue if
3(h, fi) € V such thaLM(h) =t
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4. F5 without reduction to zero for generic bilinear systems

4.1. Main results

The goal of this part of the paper is to show that Algorithm 4 finds all reductions to zero for
generic bilinear systems. In order to describe the structure of ideals generated by generic bilinear
systems, we define a notion bi-regularity (Definition 8). For bi-regular systems, we give a
complete description of the syzygy module (Proposition 3 and Corollary 2). Finally, we show
that, for such systems, Algorithm 4 finds all reductions to zero and that generic bilinear systems
are bi-regular (Theorem 4), assuming a conjecture about the kernel of generic matrices whose
entries are linear forms (Conjecture 1).

4.2. Kernel of matrices whose entries are linear forms

Consider a monomial ordering such that its restriction tk[xo, . . ., Xn,] (resp.k[yo, - - -, ¥n,])
is thegrevlexordering (for instance the usugievlexordering withxg = X1 > ... > Yo > ... >

Yny)-

Let/,c,ny be integers such that< ¢ < ny+c—1. Let.# be the set of matricesx c whose
coefficients are linear forms k{xo, ..., %n,]. Let 7 be the set of x (¢ — c— 1) matricesT such
that:

e each column off has exactly one 1 and the rest of the coefficients are 0.
e each row ofT has at most one 1 and all the other coefficients are 0.
e (T[ig, ja] = Tliz, jo] = L andiy <iz) = j1 < J2

If Te.Z andM € .#, we denote byM+ the ¢ x (¢ — 1) matrix obtained by adding td the
columns ofT. According to the proof of Lemma 2, some elements of the left kernel of a matrix
M can be expressed as vectors of maximal minors:

minor(M+, 1)
—minor(Mr, 2)
vT e 7, . € Ker (M).

(—l)mHmi.nor(MT,m)

Actually, we observed experimentally that kernels of random mathtes # are generated
by those vectors of minors. This leads to the formulation of the following conjecture:

Conjecture 1. The set of matricedl € .# such that

minor(M+, 1)

(][ |y
(=)™ minor(Mr,m) /) ) -

contains a nonempty Zariski open subsetsf
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4.3. Structure of generic bilinear systems

With the following definition, we try to give an analog of regular sequences for bilinear
systems. This definition is closely related to the generic behaviour of Algorithm 4.

Remark 1. In the following,Monomials)(d) (resp.Monomials¥,(d)) denotes the set of monomi-
als of degree d in[ko, . .., Xn] (resp. Kyo, ..., ¥n]). If n <0, we use the conventidionomialsy(d) =
Monomials)(d) = 0.

Definition 8. Let < be a monomial ordering such that its restriction tfg. .., X ] (resp.
K[Yo,---,¥n,]) is the greviex ordering. Let i nx+ny and f;,..., fm be bilinear polynomials
of R. We say that the polynomial sequefitg..., fm) is a bi-regular sequencé m = 1 or if
(f1,..., fm-1) is a bi-regular sequence and

LM(Im-1: fm) = (Monomialsg,_, _5(ny +1))
+<|\/Ionomia|s¥n7nxfz(nx+l))
+LM(Im-1)

In the following, we use the notations:

* B.L(ny,ny) thek-vector space of bilinear polynomials Kixo, . . ., Xn,, Yo, - - -, Yn,I;

o X (resp.Y) is the ideakXo, . .., Xn,) (resp.(Yo,-- -, ¥n,));

e Anideal is callechihomogeneous it admits a set of bihomogeneous generators.
¢ J denotes the saturated idéal (X NY)*;

e Given a polynomial sequencgé, ..., fn), we denote bySyzi, the module of trivial syzy-
gies, i.e. the set of all syzygiésy, ..., Sn) such that

Vi,s € (f1,..., ficg, figq,..., fm);

e A primary idealP C Ris calledadmissiblef X ¢ +/P andY ¢ /P;

e Let E be ak-vector space such that d{f) < . We say that a property” is generic
if it is satisfied on a nonempty open subsetboffor the Zariski topology), i.e.3h €
Klaa, ..., agim)],h # 0, such that

& does not hold oftay, . . ., agim(g)) = h(aa, - - -, 8gimee)) = 0.

Without loss of generality, we suppose in the sequelniat ny.

Lemma 7. Let I, be an ideal spanned by m generic bilinear equatiops.f, f, and |, =
Npe P be a minimal primary decomposition.

e If m < ny+ 1, then all components of,lare admissible.

e Ifny+1<m<ny+landR e 2 is aprimary non-admissible component, theg X/P.
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Proof. We prove that ifm < n,+1 (resp. m< ny+ 1) andR is a primary non-admissible
component, theX ¢ /P, (resp.Y ¢ /P). Lemma 7 is a consequence of this fact.
Consider the fiel&’ = k(yo, .., yn,) and the canonical inclusion

Y:R—KXo,...,Xn]-

Y(lm) is an ideal ofk'[xo,..., X, ] spanned bym polynomials inK'[xo,...,Xs]. Generically,
(Y(f1),...,@(fm)) is aregular sequence kifxo, ..., Xn,]. Thus there exists an polynomifie X
(homogeneous in thes) such thaty(f) is not a divisor of 0ifk'[Xo, . . ., X ]/W(Im). This means
that ¢(Im) : Y(f) = Y(Im). Suppose the assertion of Lemma 7 is false. TKen /R and
hence,f € \/R. Therefore there existg € K[yo, ...,Yn,] such that, inR, gf € /I, (takeg in

(Mpe 2\ (ry} VP) \ {/Po} which is nonempty). Thug/(f) € v/¢(Im) (sincey(g) is invertible in
k'), which is impossible sincg/(Im) : W(f) = Y(Im). O

Lemma 8. e If m < ny there exists a nonempty Zariski-open &etC #.Zk (ny,ny)™ such
that (f1,..., fm) C & implies that }, has codimension m and all the components of a
minimal primary decomposition aof,lare admissible;

e if ny+1 < m, then there exists a nonempty Zariski-operzset .k (ny, ny)™ such that
(f1,..., fm) C € implies that X is a prime associated {dm;

e if ny+1<m, then there exists a nonempty Zariski-operzset 2Lk (ny, ny)™ such that
(f1,..., fm) C € implies that Y is a prime associated {d,.

Proof. e If m< ny, then by Lemma 7J,, = Im. Then according to Theorem 7, there exists
a nonempty Zariski-open sét C B.Zx (ny,ny)™ such that(fy,..., fm) C € implies that
(f1,..., fm) isaregular sequence. Therefdighas codimensiomand all the components
of a minimal primary decomposition &f, are admissible.

e If ny+1 < m, then according to Proposition &, = (I : Y*) : X* is equidimensional of
codimensiom. LetVy be the se{(0,...,0,ap,.. .,any)\ai € k}. SinceVy C Var(lm: Y*®)
andcodim(Vy) = ny+ 1, it can be deduced thel ¢ Var(Jm) andvVar(lm: Y®) =Var(Jdn) U
Vi. This means thay/lI : Y® = v/IJnNX and+/Jn ¢ X. ThusX is a prime associated to
VIm :Y®. SinceY is not a subset dX, X is also a prime ideal associated\f.

e Similar proof in the casay +1 <m.
O

Lemma 9. Suppose that the local ringxRlx (resp. R/ly) is regular and that X (resp. Y) is a
prime ideal associated t¢/l and let Q be an isolated primary component of a minimal primary
decomposition of | containing X (resp. Y). Thea=X (resp. Q=Y).

Proof. By assumptionX is a prime ideal associatedtd . Then, there exists an isolated primary
component of a minimal primary decompositionl afhich contains a power of and does not
meetR\ X. This proves thakx does not contain a unit iRx.

By assumptiorRy /Ix is regular and local, theRx /1x is an integral ring (see e.g. (Eisenbud,
1995, Corollary 10.14)) which implies thbt is prime and does not contain a unitRg.

Letl =Q1N---NQs be a minimal primary decomposition bfin the sequel;, denotes the
localization ofQ; by X. Suppose first that there exists<li < ssuch thalx = Q;, with Q; non-
admissible which does not meet the multiplicatively closed RarK . ThenQj, is obviously
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prime which implies tha®); itself is prime (Atiyah and MacDonald, 1969, Proposition 3.11 (iv)).
Our claim follows.

It remains to prove thaik = Q;, for some 1< i <'s. Suppose that th€;’s are numbered
such thatQ; meets the multiplicatively closed sBt\ X for r +1 < j < sbut notQq,...,Q.
Ix = Q1 N---NQry and it is a minimal primary decomposition (Atiyah and MacDonald, 1969,
Proposition 4.9). Hence, sintg is prime,r = 1 andQ; is the isolated minimal primary compo-
nent containingy. O

Proposition 2. Let k be a field of characteristi®. There exists a nonempty Zariski-open set
0 C BL(ng,ny)"such that for all( f,. .., fm) C € the non-admissible components of a minimal
primary decomposition dffy, ..., fm) are either X or Y.

Proof. Suppose thaty +1 < m. Then, by Lemma 8, there exists a nonempty Zariski-open set
01 such thaiX is an associated prime igl. Note also that this implies that has codimension
nx+ 1. Thus, by Lemma 9, it is sufficient to prove that there exists a nonempty Zariski-open set
O, such that for all( fy,.. ., f) € O1N Oy, Rx/Ix is a regular local ring.

From the Jacobian Criterion (see e.g. Eisenbud (1995), Theorem 16.19), the lo€¥ fIrg
is regular if and only if ja¢fy, . .., fm) taken moduloX has codimensiony + 1. Since the gener-
ators ofl are bilinear, the latter condition is equivalent to saying that the matrix

ofy . Ofy
0Xo OXny
Ix = oL
9fm . Ofm
2% OXny

has rankny + 1. We prove below that there exists a nonempty Zariski-ope®sgstch that for
all (fy,..., fm) € O3, Jx has rankn, + 1.

Let c1,...,cm be vectors of coordinates oB.Z (ny,ny)™, M be the vector of all bilinear
monomials inR and & be the field of rational fraction&(cs,...,cm). Consider the polyno-
mials gi = M.¢f for 1 <i < mand the Zariski-open sés in B.Z(ny,n,)™ defined by the
non-vanishing of all the coefficients of the maximal minors of the generic matrix

91 ... 9m
%o OXny
=1 :
9m ... 9gm
0Xo OXny

It is obvious tha{( fy,..., fm) € Oz implies thatJx has rankny + 1; our claim follows.

In the case wherey < m, the proof follows the same pattern using Lemmas 8 and 9 and
the Jacobian criterion. The only difference is that one has to prove that there exists a nonempty
Zariski-open se©, such that for all fy, ..., fn) € O4 the matrix

ofy . 0fy
Yo 5Yn><
Jy = s
Ofm . Ofm
Yo IYny
has ranky + 1, which is done as abev O
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Remark 2. The proof of Proposition 2 relies on the use of the Jacobian Criterion. From (Eisen-
bud, 1995, Theorem 16.19), it remains valid if the characteristic of k is large enough so that the
residue class field of X (resp. Y) is separable.

The two following propositions explain why the rows reduced to zero in the generic case
during theFs Algorithm have a signaturg, fi) such that € kxo, ..., Xn,] ort € K[yo, ..., ¥n |-

Proposition 3. Let m be an integer such that sin,+ ny. Let L be the set of bilinear systems
with m polynomials (LC R™). Then the set of bilinear systems.f., fy, such that Syz ((Syzh
KXo, -, %n]™) U (Syz K[yo, .- .,Yn,]™) USyziy) contains a nonempty Zariski-open subset of L.

Proof. Let s= (s1,...,5m) be a syzygy. Thussy is in Im—1: fm. We can suppose without
loss of generality that thg are bihomogeneous of same bidegree (Proposition 6). Accord-
ing to Theorem 7, there exists a nonempty Zariski operCget %.Z (ny,ny)™, such that if
(f1,..., fm) € O, thenfy is not a divisor of 0 inR/Jn—1. We can deduce from this observation
thatsy € Jm—1. SOSh € Im—1 Or there exist® a non-admissible primary componentigf 1 such
thatsy ¢ P. Assume thasm, ¢ Im—1. From Proposition 2, there exists a nonempty Zariski open set
Oz C BL (nk,ny)™, such that if(fy, ..., fm) € O, then(xo, ..., Xn,) = P (O (Yo,-.-,Yn,) = P),
which implies thatm € K[yo, - - -, Yn,] (Or Sm € KXo, - - -, X, ])-

Finally, we see that, iff1,..., f;)) € 01N Oy, thensy € Inm—1 UK[yo, .- ,yny] UK[Xo, - - -, Xn,]-
Since the syzygy module of a bihomogeneous system is generated by bihomogeneous syzygies,
it can be deduced th&8yz= ((SyzK[xo, - .., Xn]™) U (SyzZ K[yo, - -, Yn,]") U SYZiv)- O

Proposition 4. LetV be the output of AlgorithBL cRITERION and let(h, f;) be an element of
V. Then

e ifh cKxo,...,Xn], thenvj,yjh e li_s.
e ifheKlyo,...,Yn |, thenvj,x;h € li_1.

Proof. Suppose thalt € K[Xo, ..., Xn,] is @ maximal minor ofacy(F-1) (the proof is similar if

h € k[yo, .- .,¥n,]). Consider the matrijac,(F-1) as defined in Algorithm 4. Then there exists
an (i —1) x (i — 1) extensionMr of jacy(Fi—1) such that déMr) = h (similarly to the proof of
Lemma 2). Let 0< j < ny be an integer. Consider the polynomibls. .., hi_1, wherehy is the
determinant of th¢i — 2) x (i — 2) matrix obtained by removing thg + 1)th column and thé&th

row from M.
Then we can remark that
(hl —h2 (—1)ihi_1)-MT:(0 ... 0 (—1)jdei(|\/|'|') o ... 0)

where the only non-zero component is in ttje+- 1)th column. Keeping only they + 1 first
columns ofM, we obtain

(h —h2 ... (=D'hi1)-jacy(R1)=(0 ... 0 (-1)idetMr) 0 ... 0
Yo f1
Sincejacy(Fi-1)- | @ | = : |, the following equality holds
Yny fi_a
f1
(h —hy ... (=D hiz (-D'hia)-| @ | =yjdetMr)=yjh.
fi-1
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This implies thay;h € I;_1. O

Corollary 2. Let m be an integer such thatshn,+ny andlet ,..., f,, be bilinear polynomials.
LetV be the output of AlgorithfL CRITERION. Assume that

(Im-1: fm)NKXo,...,Xn ] = ({h€KkXo,..., %] : (h,fm) €V}).

(lmfl : fm)mk[y()a"'7yny] = <{h € k[yOa"'ayny] : (hv fm) GV}>

Let G, (resp G) be a Gibbner basis 0flm-1: fm) KXo, .. ., Xn,] (resp. (Im-1: fm) NK[yo, ... ,yny])
and let Gn_1 be a Gibbner basis ofh_;. If Syz= ((SyzKk[xo, . . ., Xn]™) U(SyzK[yo, . . -, Yn,] ") U
Syziv), then GUGyUGm_1 is a Grobner basis ofh—1 : fm.

Proof. Let f € I_1: fmbe apolynomial. Thus there exst . .., sn-1 suchthats,...,sm-1,f) €
Syz Sincely,_1 and fr, are bihomogeneous, we can suppose without loss of generality that
bihomogeneous (Proposition 6). Lk, d,) denote its bidegree.

e If dy =0 (resp.di = 0), thenf € (Gy) (resp.f € (Gy)).

o LetGy= {gi(x>}1§iSCard(Gx) ande = {gi(y)}lﬁiﬁcard(Gy)' If dl 7& 0 andd2 7& 0 then! since
Syz= ((SyzK[Xo, - .., %n]™) U (SyzK[yo, - - -, Y, |™) U SYZiv ),

f= Y ag’+ Y dg”+t

1<i<card(Gy) 1<i<card(Gy)

wheret € Iy_1 is a bihomogeneous polynomial and tiheandq are also bihomogeneous.
Sinced, #0 andgi(x) €KX, .-, %n,], G must be inyo, ..., yn,). According to Proposition
4,Vi,qigi(x) € Iy_1. By a similar argumentv/i,q{gfy) € ly_1. Finally, f € I_1.

We just proved thatm 1 : fm C Im-1U (Gx) U (Gy). By construction, we also have the other
inclusionlm_1 U (Gx) U(Gy) C Im-1: fm. Thus,GxUGy U Gn_1 is a Glbbner basis ofy_1 :
fm. O

Corollary 2 shows that, when a bilinear system is bi-regular, it is possible to findnér
basis ofly,_1 : fm (Which yields the monomialssuch that the rowt, f) reduces to zero) as soon
as we know the three @Gbner base6y, Gy, andGny_1. In fact, we only nee@®y andGy since the
reductions to zero corresponding®g,_; are eliminated by the usuB criterion. Fortunately,
we can obtairGy, andGy just by performing linear algebra over the maximal minors of a matrix
(Theorem 3).

We now present the main result of this section. If we suppose that Conjecture 1 is true, then
the following Theorem shows that generic bilinear systems are bi-regular.

Theorem 4. Let mny,ny € N such that mx ny+ ny. If Conjecture 1 is true, then the set of bi-
regular sequenceffy, .. ., fm) contains a nonempty Zariski-open set. Moreoveif4f. .., fy) is
a bi-regular sequence, then there are no reductions to zero with the extepdeteFon.

Proof. Let Gy, be a minimal Gdbner basis ofy,_1 : fm. The reductions to zerft, f,) which

are not detected by the usul criterion are exactly those such that LM(Gy) andt ¢

LM(Im-1). We showed that there exists a nonempty Zariski-open subseif 2.2 (ny,ny)

such that iffy, € Oy, thent € LM(Im-1: fmNK[Xo, ..., X ]) ort € LM(Ip_1 : fmmk[yo,...,yny})
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(Proposition 3). If we suppose that Conjecture 1 is true, then there exists a nonempty Zariski-
open subseO, of Z.Z(ny,ny) such that if fn € Oz, Im—1: fTmNKXo,...,%n,] (resp. Im-1:
fmNK[Yo,...,Yn,]) is spanned by the maximal minors jat, (Fm-1) (resp. jacy(Fm-1)). Thus,

by Theorem 3, there exists a nonempty Zariski-open subsedf .2 (ny,ny) such that if

fm € Og, LM(Im-1 : fmNk[Xo, ..., Xn,]) = Monomialsy,_ _5(ny +1)) (resp. LM(Im-1: fm N
K[Yo,---,Yn]) = Monomiabﬁknﬁz(nﬁ' 1))). Suppose thaty, € 01N 02N O3 (which is a nonempty
Zariski-open subset) and thdt fr,) is a reduction to zero such tha¢ LM(I,—1). Then

t € (Monomialsy,_ _»(ny+1))
or
te (Monomials%fnxfz(nx+1)).

By Lemma 3t is a leading monomial of a linear combination of the maximal minoisQ{Fm_1)
(or jacy(Fm-1)). Consequently, the reduction to z€tofm) is detected by the extendég crite-
rion. O

Remark 3. Thanks to the analysis of Algorithm 4, we know exactly which reductions to zero can
be avoided during the computation of adbner basis of a bilinear system. If a bilinear system is
bi-regular, then Algorithm 4 finds all reductions to zero. Indeed, this algorithm detects reductions
to zero coming from linear combinations of maximal minors of the matjiegé ) andjacy (F).
According to Theorem 4, there are no other reductions to zero for bi-regular systems.

Example 1 (continued). The systemsf..., f5 given in Example 1 is bi-regular and there are no
reduction to zero during the computation of adBner basis with the extendeg ériterion.

5. Hilbert bi-series of bilinear systems

An important tool to describe ideals spanned by bilinear equations is the so-cilbedt
series In the homogeneous case, complexity results§orere obtained with this tool (see e.g.
Bardet et al. (2005)). In this section, we provide an explicit form of the Hilbert bi-series — a
bihomogeneous analog of the Hilbert series — for ideals spanned by generic bilinear systems. To
find this bi-series, we use the combinatorics of the syzygy module of bi-regular systems. With
this tool, we will be able to do a complexity analysis of a special version dfglvehich will be
presented in the next section.

The following notation will be used throughout this paper: the vector space of bihomoge-
neous polynomials of bidegréer, ) will be denoted byR; 5. If | is a bihomogeneous ideal,
thenl, g will denote the vector spadenR; g.

Definition 9 (Van der Waerden (1929); Safey El Din ancebuchet (2006))Let | be a bihomo-
geneous ideal of R. The Hilbert bi-series is defined by

HS ()= Y dim(Ra/1ap)t15

(a,B)eN?

Remark 4. The usual univariate Hilbert series for homogeneous ideals can easily be deduced
from the Hilbert bi-series by putting t=t, (see Safey El Din and &buchet (2006)).
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We can now present the main result of this section: an explicit form of the bi-series for
bi-regular bilinear systems.

Theorem 5. Let fi,..., f € R be a bi-regular bilinear sequence, withamy +ny. Then

Nm(tlatz)
(1 _ tl)”x"'l(l _tz)ny+1 )

HS, (t1,t2) =

where
Nm(t,t2) = (1—tit)"+

—(ny+1 - 7 ) +1. ny+1-k ¢ —k
S -t ™ Dy (1 - )Y 1 (1) S (] +

I (L tatg) ™ (e DAyt (1 t) L [L— (1 t) Pt (St )

We decompose the proof of this theorem into a sequence of lemmas.

If I is an ideal ofRandf is a polynomial, we denote bf;the equivalence class dfin R/I
and
anrg (f) ={ve R/l :vf =0},

anrg) () = {ve R/I of bidegree(a, B) : vf = 0}.

If | is a bihomogeneous ideal arfids a bihomogeneous polynomial, we use the following nota-
tion:

Giiltt)= 3  dim(anngy (f)ap)tfts.
(a,B)eN?

Lemma10. Let fi,..., fm € R be bihomogeneous polynomials, wlith m< ny+ny. Let(dy,do)
be the bidegree of,f Then

HSin(t1,t2) = (1 t792)HS,,, + 152G, 1t to).
Proof. We have the following exact sequence:
0—anmky, () & R/m 1 2 R/lm 1 & R/l — 0.

whereg; and¢s are the canonical inclusion and projection, gnads the multiplication byfm.
From this exact sequence of ideals, we can deduce an exact sequence of vector spaces:

0= @y, (Mas & (2) (%) % (E) o
" ’ Im-1/ap Im-1/ atdy.B+dp Im/ asdy,B+dy

Thus the alternate sum of the dimensions of vector spaces of an exact sequence is O:

dim((anmky,, , (f))a,p) —dim (('le)aB> *

dim ((,mﬂ)ml&dz) —dim ((,F;)Mlm%) ~0.

By multiplying this relation byf’tg and by summing ovefa, 3), we obtain the claimed recur-
rence:

HS,,(t,t2) = (1-tH2)HS, , +t{12G,, , (t ).
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Lemma1l. Let f;,..., f, € R be a bi-regular bilinear sequence, withamy +-ny. Then, for all
2<i<m, _ .
Gi it =g V) +y Y (t),

where
(i-1) Oifi <ny+1 o |
S P (iors)
Ty — 21<isny+1 gy T2
(i-1) Oifi <nyk+1 o |
SO 1o Gheen
(1-t)y+1 Y1<j<nerl (my Tz

Proof. Saying thav € anrg;,_, (fi) is equivalent to saying that the row with signatucé/(v), f;)
is not detected by the classidg criterion. According to Theorem 4, if the system is bi-regular,
the reductions to zero corresponding to non-trivial syzygies are exactly:

U {(t,fj):te Monomialsiyfnxfz(nx+1)} U {(t,fi):te Monomialsix,ny,z(ny+ 1)}.
i=nx+2 i=ny+2
By Proposition 4, we know that iP € K[xo,..., X0 J N (li-1 : fi) (resp. K[yo,...,Y¥n,J N (li-1:
fi)), thenVj,y;P € li_1 (resp.x;P € li_1). ThusG,,_, 1 (t1,t2) is the generating bi-series of the
monomials irk[Xo, . . ., Xn,| Which are a multiple of a monomial of degmag+ 1 inxo, ... s Xi—ny—2
and of the monomials ik(yo, .., Yn | Which are a multiple of a monomial of degrag+ 1 in

Yo, - -+, Yi—n2. Denote byg&F1> (t) (resp. ggfl) (t)) the generating series of the monomials in

K[Xo, .-, Xn,] (resp. Kyo, ..., ¥n,]) which are a multiple of a monomial of degreg+ 1 (resp.
nNk+1) inXo, ... s Xi—ny—2 (resp.yo,---,Yi—n—2). Then we have

Gi_y1(tnto) = ol V) +gi Y (ko).

Next we use combinatorial techniques to give an explicit forrgfb?l) (1) andgs(,ifl) (t). Letc(t)
denote the generating series of the monomialg®n.n,—1,. .., X, J:

e e S R AN 1
C(t)_;)< i >t T Ay

Let Bj denote the number of monomialskix, . .. ,xi,ny,z] of degreej. Then

1 -
gz = SO+ Brot 4 By o)t + V).

SinceB; = (‘"™ **J), we can conclude:

(-1 Oifi<ny+1 P
o ()= 1 . (nyrt™
(I—t)x+I - 21§J§ny+1 (17t)nx+ny—i+2
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Proof of Theorem 5Since the polynomials are bilinear, by Lemma 10, we have
HS; (t1,t2) = (1 -tato)HS;, | +11taoGy, 1, (te,12).
Lemma 11 gives the value @ _, 1, (t1,t2). To initiate the recurrence, we need

1
(1—tg)nt(1—tp)v+1"

HSio(t1,t2) = HSyg) (t1,t2) =

Then we can obtain the claimed form of the bi-series by solving the recurrence:

Ni(t1,t2)

HS; (tz,t2) = (1_t1)nx+1(1_t2)ny+1

m—-1

N; (tl,tz) = (17t1t2)i + %tltz(lftltz)jG|j7fj+1(t1,t2).
=

O

Example 1 (continued). The Hilbert bi-series of the ideal generated by the five polynomials of
Example 1 is
HS(tte) = oy (% — 4%t 4 60 — 4t + %t — 64 %%+
— —2
15 t24 — 1(113t23 + 8t12t25 — 1512t24 + 1Q12t22 — 3t;|_t25 + 5t1t24 —5tytr + l)

and is in accordance with the formula given in Theorem 5. Also, notice that the intermediate
series g(t) and g,(t) match the theoretical values. For instance:

6. Towards complexity results

6.1. A multihomogeneous Rlgorithm

We now describe how it is possible to use the multihomogeneous structure of the matrices
arising in the Matrixis Algorithm to speed-up the computation of adBner basis. In order to
have simple notations, the description is made in the context of bihomogeneous systems, but it
can be easily transposed in the context of multihomogeneous systems.

Let f1,..., f; be a sequence of bihomogeneous polynomials. Consider the maikices
degreed appearing during the Matriks Algorithm. One can remark that each row represents
a bihomogeneous polynomial. Lé&d;,dy) be the bidegree of one row of this matrix. Then the
only non-zero coefficients on this row are in columns which represent a monomial of bidegree
(d1,d). Therefore a possible strategy to use the bihomogeneous structure is the following:

e For each coupléds,dy) such thaid; +d, = d, construct the matriiyg, 4,. The rows of
this matrix represent the polynomialsidf of bidegree(d;, d;) and the columns represent
the monomials oRy, d,.

e Compute the row echelon form of the matriddg 4,. This gives bases 0§, d,.

e The union of the bases gives a basidqaincelq = Dy, 4,—d ld;.d,-
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Multihomogeneous Homogeneous
[ [ ny [ m [ bidgree] D | time [ memory time | memory | speed-up]
3|14 |7 (1,1) 6 | 16.9s 30MB 265.7s 280MB 16
3 4 7 (1,1) 7 105s 92MB 2018s 1317MB 19
4 4 8 (1,2) 7 582s 275MB 13670s 4210MB 23
5 4 9 (1,1) 7 3343s 957MB 66371s| 12008MB 20
5| 5 | 10 (1,1) 6 645s 435MB 10735s| 4330MB 17
2 2 4 (1,2) 10 | 11.4s 19MB 397s 299MB 35
2 2 4 (1,2) 8 1.7s 10MB 16s 52MB 9
3|3 6 (1,2) 8 67s 80MB 1146s 983MB 17
4 4 8 (1,2) 8 2222s| 1031MB 40830s| 12319MB 63
2 2 4 (2,2) 11 29s 27MB 899s 553MB 31
3 3 6 (2,2) 8 27s 47MB 277s 452MB 10
3 3 6 (2,2) 9 152s 154MB 2380s 1939MB 16
3|14 |7 (2,2) 9 | 1034s| 505MB 18540s| 7658MB 18
4|1 4| 8 (2,2) 8 690s 385MB 7260s 4811MB 11
4 4 8 (2,2) 9 6355s | 2216MB — >20000MB —

Table 1: Execution time and memory usage of the multihomogeneous varignt of

This way, instead of computing the row echelon form of a big matrix, we can decompose the
problem and compute independently the row echelon form of smaller matrices. This strategy can
be extended to multihomogeneous systems.

In Table 1, the execution time and the memory usage of this multihomogeneous variant of
Fs are compared to the classical homogeneous M&griklgorithm for computing @-Grobner
basis for random bihomogeneous systems (for the grevlex ordering). Both implementations are
made inMagma2.15-7. The experimental results have been obtained with a Xeon processor
2.50GHz cores and 20 GB of RAM. We are aware that we should compare efficient implemen-
tations of these two algorithms to have a more precise evaluation of the speed-up we can expect
for practical applications. However, these experiments give a first estimation of that speed-up.
Furthermore, we can also expect to save a lot of memory by decomposing the Macaulay matrix
into smaller matrices. This is crucial for practical applications, since untractability is often due
to the lack of memory.

6.2. A theoretical complexity analysis in the bilinear case

In this section, we provide a theoretical explanation of the speed-up observed when using
the bihomogeneous structure of bilinear systems. To estimate the complexity of the Matrix
Algorithm, we consider that the cost is dominated by the cost of the reductions of the matrices
with the highest degree. By using the new criterion described in Section 3.4, all the matrices
appearing during the computations have full rank for generic inputs (these ranks are the dimen-
sions of thek-vector spacegy, 4,). We consider that the complexity of reducing & ¢ matrix
with Gauss elimination i©(r?c). Thus the complexity of computing@:Grobner basis with the
usual MatrixFs Algorithm and the extended criterion for a bilinear systenmoquations over

k[xo,...,xnx,yo,...,yny} is

— <<(D+nxgny+ 1) - [tD]HS(t,t))Z <D+nx;rny+ 1)) .
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[0 [ [ m [ D[ e[ Fnun,mD) |
3147 ]|6 16 29
314 | 7|7 19 34
4 |1 4| 8|7 23 34
514| 9|7 20 32
5|1 5]10| 6 17 27

Table 2: Decomposing the matrices: experimental speed-up

When using the multihomogeneous structure, the complexity becomes:

2
Toutnon=Cz (3 (dm(Reey) ~ IEIHS(. 1)) dim(Rec) |
di1+d=D
1<dq,do<D-1
where din{Ry, 4,) = (dld+1 ™) (dzd*; ). Thus the theoretical speed-up that we expect is:
speedufp = Cz3F (ny,ny,m,D)

whereCz = % is a constant and

((rmg™h) - [tD]HS(Lt))Z (°TPEM

2
; (dim(Rdl,dz)— [tfltSZ]HS(tl,tz)) dim(Ryy ;)
di1+d=D

1<dy,dpy<D-1

F(ny,ny,m,D) =

Now let us compare this theoretical speed-up with the one observed in practice. We can see in
Table 2 that experimental results match the theoretical complexity:

speedups 0.6F (ny, ny,m,D).

6.3. Number of reductions to zero removed by the extengledtErion

Table 3 shows the number of reductions to zero during the execution of the Buchlbgrger,
andFs algorithm. The input systems are random bilinear systems, afn, equations over
GF (655210, - - - , Xns Y0, - - - ,yny]. Experimentally, there is no reduction to zero when using the
extended criterion (Algorithm 4). Notice that the number of reductions to zero which are not de-
tected by the classic#&} criterion matches the theorical value for a bi-regular system (Definition

8):
nx+ny1< i > Nx+ny—1 i
25 ()
i:gﬂ ny+1 i:%l ny+1
Although the number of reductions to zero removed by the extended criterion is not small com-
pared to the number of useful reductions, they arise in low degkee I andny + 1). Hence, it

is not clear what speed-up could be expected with an efficient implementation.
28



(Ney) Nb. useful red. Nbred. to O Nbred. to 0
Y (Buch.Fy) (Buch.Fy) (Fs)
(5,5 752 5772 240
(5,6) 1484 13063 495
(6,6) 3009 29298 990
(6,7) 5866 64093 2002
(4,8) 1912 19055 990
(4,9) 2869 31737 1794
(3,10) 1212 13156 1300
(3,11 1665 19780 2016
(3,12 2123 27295 3018

Table 3: Experimental number of reductions to zero

6.4. Structure of generic affine bilinear systems

In this section, we show that genedffinebilinear systems have a particular structure: they
are regular (Definition 7). Consequently, the udugatriterion removes all reductions to zero.

Proposition 5. Let S be the set of affine bilinear systems over,k. ., Xq,,y1, ..., Yn,] With m<
Ny + ny equations. Then the subset

{(f1,...,fm) €S : (f1,..., fm) is @ regular sequenge
contains a Zariski nonempty open subset of S.

Proof. Let(fy,..., fm) be a generic affine bilinear system. Assume that it is not regular. Then for
somei, there existy € Rsuch thag ¢ li_; andgf; € li_1. Denote byg" the bi-homogenization
ofg. Theng" e (fP,.... f1 )« f1. (fD,... 1) is a generic bilinear system, hence it is bi-regular
(Theorem 4). Thug" € k[xo, ..., Xn] 0r g" € K[yo, ... Yn,]. Let us suppose thaf' € kxo, ..., Xn,]

(the proof is similar ifg" € klyo, ..., yn ). Thereforey, g" € (fI',..., f1 ;) when the system is
bi-regular (Proposition 4). By putting, = 1 andy,, = 1, we see that in this casg.c li1,
which yields a contradiction. This shows that generic affine bilinear systems are reguldr]

6.5. Degree of regularity of affine bilinear systems

In this part,m, n, andny are three integers such that= ny+ny. We consider a system of
bilinear polynomialg= = (fy,..., fm) €K[Xo, ..., Xn; Yo, ---,¥n,|™ & denotes the dehomogeniza-
tion morphism:

k[XOa"'aan7y07' .. 7yny] — k[XOV"vanflvyOv' . '7ynyfl]
f(X()w"vxnxvyOv“':yny) | — f(x()w'~7an71711y07"'7yny7171) .

Also, | stands for the idedfs,..., fm) andd (1) denotes the idedd (f1),...,3 (fm)). In the
following, we suppose without loss of generality that< ny. We also assume in this part of the
paper that the characteristic lofs 0 (although the results remain true when the characteristic is
large enough).

The goal of this section is to give an upper bound on the so-cdigdee of regularityof
an ideall generated by a generic affine bilinear system witequations andn variables. The
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degree of regularity is a crucial indicator of the complexity obter basis algorithms: for
0-dimensional ideals, it is the lowest integhkgg such that all monomials of degrekg are in

LM(I) (see Bardet et al. (2005)). As a consequence, the degrees of all polynomials occurring in
the Fs algorithm are lower thadqeg+ 1. In the following,=< still denotes the grevlex ordering.

Lemma 12. If the system F is generic, then there exists polynomigals g gn, -1 €K[yo, - -, Yn 1]
such that

Vi€ {0,...,nx—1},%Xj —gj(Yo,---,¥Yn,—1) € F(I).
Proof. We consider then x ny matrix A = jac, (3 (F)) and the vector

B= (19(f1)(0,...,O,y(),...7yny_1) 19(fm)(0,...,O,yo,...,yny_l)) .
X0 9 (f1)
ThusA.- +B=
anfl 19(fm)

We denote by{Al)} all theny, x ny sub-matrices oA.
Let(qo,...,an,-1) € Var((MaxMinors(d (jacy(F))))) be an element of the variety. LAt (resp.
Bq) denote the matridA (resp. B) wherey; has been substituted tmy for all i. Sinced(l) is
0-dimensional, the affine linear system

Xo
Xny—1

has a unique solution. Therefore, the mathix is of full rank. Consequently, there exists an
invertible ny x ny sub-matrix ofA,.

Sincek is infinite, we can suppose without loss of generality that, if the system is generic,
then for alla in the variety, the matri»ﬂ\é,l> obtained by considering ths first rows of Ay

is invertible (if A5]1> is not invertible, just replace the original bilinear system by an equivalent
system where each new equation is a generic linear combination of the original equations). Thus
det AL #£0.

According to Lemma 6 and 1{MaxMinors(3 (jacy(F)))) = (8 (f1),..., 3 (fm)) NK[Yo, - -, Yn,1]-
Thus de¢A<1>) (i.e. the matrix of then, first rows ofA) does not vanish on any element of the vari-
ety of 9 (1). Therefore, the Nullstellensatz says tha{ €Y ) is invertible ink[yo, . . . s Yny—1]/(8(1)N
K[Yo,---,¥Yn,~1]). Lethdenote its inverse. We know from Cramer’s rule that there exists polyno-
mialsg; € K[y, .., Yn,—1] such that

x; detAY) =g (yo, -, Yn,-1) € 9(1).
Multiplying this relation byh, we obtain:
Xj —hgj(Yo,---,Yn,—1) € F(1).
O
Theorem 6. If the system F is generic, then the degree of regularit§ @} is upper bounded by

Oreg < min(ny+1,ny+1).
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Proof. We su_pposed tha, < ny, sowe v_vant to prove thalteg < ny+1. Lett = H?X:_Ol x?j |'|Ey:z)1 yfk
be a monomial of degre® + 1. According to Lemma 12,

n—1 -1
t— LLg,-<yo,...7yny_1>aJ kELyfkeﬁ(I).

Now consider the normal form with respect to the id&al (MaxMinors(3 (jacy(F)))). Then

ny—1 ny—1
t—NFa~ ([ 9i¥os-- - ¥n,1)% [ YE) e 8 (1).
) ,EL , oy kEL £

Since all monomials of degre® + 1 are inLM({MaxMinors(3 (jacy(F))))) (Lemma 3),
ny—1

rLyEk)) <ng+1

nx—1
deg NF; - ( I_L 9 (Yo, -+ Y1)
= k=

This implies that
nx—1 ny—lyﬁ
LM(t —NFy< (] 9i (Yo, -, Yn—1)" “) =t.
=< JI:L i ny !:L k
Therefore, for each monomialof degreen, 41, t € LM(&(1)). This means thatleg < ny +
1 O

Example 1 (continued). The degree of regularity of the affine syste?{f;),...,3(fs)) is3in
accordance with Theorem 6 and the classicatFterion removes all reductions to zero during
the computation of a Gibner basis for the grevlex ordering.

The following corollary is a consequence of Theorem 6.

Corollary 3. The arithmetic complexity of computing a @ner basis of a generic bilinear
system f,..., fnoin, € K[X0, - - - s Xne—1, Y0, - - - 7yny,1] with the k5 Algorithm is upper bounded by

o Nk -+ Ny -+ min(ng+1,ny + 1)\ ¢
min(ny+1,ny + 1) ’
where2 < w < 3is the linear algebra constant.

Proof. According to Bardet et al. (2005), the complexity of the computation of tlid@er basis
of a 0-dimensional ideal is upper bounded by

o(("a") )
dreg
wheren is the number of variables arly denotes the degree of regularity. In the case of a

generic affine bilinear system kixo, ..., Xn1,Yo0,- - ,yny,ﬂ, N = ny+ ny anddreg < Min(ny +
1,ny+1) (TheoremG). O
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[ nx | ny | nb.eq.] dreg | nb. reductions t@
23] 5 3 0
21 4 6 3 0
3|10 13 4 0
5| 8 13 6 0
6| 6 12 7 0

Table 4: Experimental results: degree of regularity and reductions to zero for random affine bilinear systems

Remark 5. This bound on the degree of regularity should be compared with the degree of reg-
ularity of a generic quadratic system with n equations and n variables. The Macaulay bound
(see Lazard (1983)) says that the degree of regularity of such systemslis fine complexity of
computing a Gdobner basis of a generic quadratic system of n equation&in k. , xn] is upper

bounded by C((ni“l) w) , which is larger than C((”ﬁzg’;g:ﬂfyigﬂ)) ) when n= ne+-ny. No-

tice also that ifmin(ny, ny) is constant, then the complexity of computing &Bter basis of &-
dimensional generic affine bilinear system is polynomial in the number of unknowng-a ny.
Moreover, the inequality gy < min(ny+ 1,ny+ 1) is experimentally sharp, it is an equality for
random bilinear systems (see Table 4).

7. Perspectives and conclusion

In this paper, we analyzed the structure of ideals generated by generic bilinear equations. We
proposed an explicit description of their syzygy module. With this analysis, we were able to
propose an extension of tlg criterion dedicated to bilinear systems. Furthermore, an explicit
formula for the Hilbert bi-series is deduced from the combinatorics of the syzygy module. With
this tool, we made a complexity analysis of a multihomogeneous variant & tAkgorithm.

We also analyzed the complexity of computingd@mer bases of affine bilinear systems. We
showed that generic affine bilinear systems are regular, and we proposed an upper bound for the
degree of regularity of those systems.

Interestingly, properties of the ideals generated by the maximal minors of the jacobian matri-
ces are especially important. In particular, @wer basis (for the grevlex ordering) of such an
ideal is a linear combination of the generators. In the affine case, this ideal permits to eliminate
variables.

The next step of this work would be to generalize the results to more general multihomoge-
neous systems. For the time being, it is not clear how the results can be extended. In particular,
it would be interesting to understand the structure of the syzygy module of general multihomo-
geneous systems, and to have an explicit formula of their Hilbert series. Also, having sharp
upper bounds on the degree of regularity of multihomogeneous systems would be important for
practical applications.
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Appendix A. Bihomogeneous ideals
In this part, we use notations similar to those used in Section 4:
o B (ny,ny) thek-vector space of bilinear polynomialskiXo, . . ., Xn,, Yo, - - - ,yny};
o X (resp.Y) is the ideal(xo, ..., Xn,) (resp.(Yo,--.,Yn,));
e Anideal is callechihomogeneous it admits a set of bihomogeneous generators.
¢ J denotes the saturated idéal (X NY)*;

e Given a polynomial sequencé, ..., fn), we denote bySyzi, the module of trivial syzy-
gies, i.e. the set of all syzygiési,...,sm) suchthavl<i<m,s € (f1,..., fi_1, fiy1,..., fm);

e A primary idealP c Ris calledadmissibléf X ¢ /P andY ¢ /P,

e Let E be ak-vector space such that d{f|) < . We say that a property” is generic
if it is satisfied on a nonempty open subsetbo{for the Zariski topology), i.e.3h €
k[a]_, . adim(E)] s h 75 0, such that

2 does not hold offay, .. ., agim(e)) = h(au, - - -, &gim(e)) = 0.
Proposition 6 (Safey El Din and Tebuchet (2006))Let | be an ideal of R. The two following
assertions are equivalent:
e | is bihomogeneous
e Forall h €1, every bihomogeneous component of hisin I.

Lemma 13 (Safey El Din and Tebuchet (2006))Let fi,..., fm € R be polynomials, andyl=
MR be a minimal primary decomposition ¢f &nd let Adm be the set of the admissible ideals of
the decomposition. Them3d= NpecadnP-

Proposition 7. let f1,..., f € R be polynomials with € ny, 4-ny, and As$li_1) be the set of
prime ideals associated tp k. The following assertions are equivalent:

1. for alli such that2 <i <m, f is not a divisor o0 in R/J_;.
2. forallisuchthat2 <i <m,(fi € PP € Asgli_1)) = P is non-admissible.

Proof. Itis a straightforward consequence of Lemirga O
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Remark 6. All results in this section can be generalized to multihomogeneous systems. Since
we focus on bilinear systems in this paper, we describe them in this more restrictive context.

Lemma 14. Let P be an admissible prime ideal of R. The set of bilinear polynomial® fsuch
that f ¢ P contains a Zariski nonempty open set.

Proof. Let { be the generic bilinear polynomial
f=" ajkXjYk
%

thatx;,yk, ¢ P (this shows the non-emptiness). Letbe an admissible order. Then consider the
normal form for this order

NFp(f) = Z ht(a()?o...,unx’ny)t.

t monomial

By multiplying by the least common multiple of the denominators, we can assume without loss
of generality that for each h; is a polynomial. Thus, if a bilinear polynomial is B then its
coefficients are in the variety of the polynomial systétrhy (ago, - - -, an,.n,) = 0. O

Theorem 7. Let mny, ny € N such that m< ny +ny. Then the set of bilinear systems .f., f,
such that for all i, f does not divid® in R/J;_1 contains a Zariski nonempty open subset.

Proof. We prove the Theorem by recurrenceranSuppose that for ailsuch that X i <m-—1,

fi is not a divisor of 0 irR/J_1. We prove that the set of bilinear polynomidlsuch thatf is not

a divisor of 0 inR/Jy_1 contains a nonempty Zariski open subset. According to Lemma 14, for
each admissible prime ideBle Asgln-1), the setdp = {f ¢ P} contains a nonempty Zariski
open subset. Thudp Op contains a nonempty Zariski subset. Therefore, the set of bilinear
polynomialsf which are not divisor of 0 ifR/Jm_1 (this set is exactly\p Op) contains a Zariski
nonempty opessubset. O

Proposition 8. Let m< ny+ny and f,..., fm be bilinear polynomials such that for all i such
that2 <i <m, f is nota divisor o0 in R/Ji_1. Then for all i such thal <i < m, the ideal Jis
equidimensional and its codimension is i.

Proof. We prove the Proposition by recurrenceron
e J; =1 is equidimensional ancbdim(l1) = 1;

e Suppose thali_; is equidimensional of codimension- 1. ThenJ = (J_1+ fi) : (XN
Y)®. f; does not divide 0 irR/J_1 (Theorem 7), thusgl_1 + f; is equidimensional of
codimensiori. The saturation does not decrease the dimension of any primary component
of J_1 + fi. ThereforeJ; is equidimensional and its codimension.is

O
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Appendix B. Ideals generated by generic affine bilinear systems
Letk be a field of characteristic @ = nx +ny, anda be the set
a={a}:1<i<m0<j<n,0<k<n).
We consider generic polynomiafg, .. ., fmin k(a)[Xo, - - -, Xn,, Y0, - - -, ¥n J!
fi= Z a%ij(ijk

and we denote byC k(a)[Xo, - - -, Xn,, Yo, - - - , Yn,] the ideal they generate. In the sequetienotes
the dehomogenization morphism:

k[XOa---aanv)/Ow . 7yny] — k[X07~~~aan717YO7- .. 7yny*1]
f(XOw"aanayOa“'aYHy) | — f(XOM'~7an71;13y03"'ayny7171) '

Fora e km™t%+2) ¢ stands for the specialization:

¢a: k(a)[X0a~~~aan7YO7---vyny]
f(a)(xoa--anX,YOw-,Yny)

- k[X0a~--aan7YO7---ayny]
= f(@)(Xo,- -, X, Y05 -5 Yny)

Also Var(¢a(l)) C P™ x P (resp. Var(d o da(1)) C k™) denotes the variety ofa(l)
(resp.d o ga(l)).

Lemma 15. There exists a nonempty Zariski open set<Dch that ifa € O, then for all
(00, -+, 0ne; Bos - - -, Bny) € Var(¢a(l)), an, # 0andf,, # 0. This implies that the application

Var(d o ga(l)) — Var(¢a(l))
(CIQ, ey anx,l,Bo, . ,ﬁnyfl) — (ao, ooy Ong—1, 1, Bo, e Bnyfl, 1)
is a bijection.
Proof. See (Van der Waerden, 1929, patjd). O

Lemma 16. There exists a nonempty Zariski open set uch that ifa € O,, then the ideal
9 o a(l) is radical.

Proof. Denote byF the polynomial family(fi,..., fm) € Kla,X,Y]™. LetJ C k[a] be the ideal

(I + (detjacy vy (F)))) Nk[a] and_# be its associated algebraic variety. By the Jacobian Criterion
(see e.g. (Eisenbud, 1995, Theorem 16.19p dbes not belong tg7, thend o ¢4(1) is radical.
Thus, it is sufficient to prove th&"™*v+2)\ 7 is non-empty.

To do that, we prove that for aél € kK™™+t%+2) there existgey, ..., &m) such that the ideal
(3o Pa(f1)+€1,...,9 0da(fm) + &m) is radical. Denote by = 3 o ¢4(fi) for 1 <i < mand
consider the mapping

x€ k™ — (g1(X),...,gm(X)) € k™.

Suppose first that' (k™) is not dense itk™. SinceW(k™) is a constructible set, it is contained in
a Zariski-closed subset &f" and there existée, ..., &n) such that the algebraic variety defined
byg;— & =+ =gm—&m= 0 is empty. Since there exist§such thayg; — § = 9 o ¢4 (f;), we
conclude that o ¢ (1) = (1). This implies thae/ ¢ 7.
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Suppose now tha¥ (k™) is dense irk™. By Sard’s theorem (Shafarevich, 1977, Chap. 2,
Section 6.2, Theorem 2), there exi$ts, ..., &n) € k™ which does not lie in the set of critical
values of¥. This implies that at any point of the algebraic variety definedypy &y = --- =
Om— &m =0, 9 o pa(det(jack v (F))) does not vanish. Remark now that there exastsuch that

i — & = 9 o py(fi). We conclude that' € k™™+™+2)\ 7 which ends th@roof. O

Lemma 17. There exists a nhonempty Zariski open sgt €dich that ifa € O3,

\/<MaxMinors(z9 o da(iacy(F)))) = (8 0 Pa(f1),. .., 9 o Pa( fm)) MK, ., X 1],

Proof. Leta be an element i (as defined in Lemma 16). Thuso ¢4(1) is radical. Now let
(Mo, - -+ Vi, —1,Wo, - - - ,Wn,—1) € Var(d o ¢a(1)) be an element of the variety. Then

Wo
(9 0 Pajacy(F))x—v) - : _

Why—1 i
1 0

0

This implies thatank (& o ¢a(jacy(F))x =y ) < ny+1, and therefore
(Vo, .-+, Vn—1) € Var({MaxMinors(J o ¢a(jacy(F ))))-

)
Conversely, le{vo, ..., Vn-1) € Var((MaxMinors(d o ¢a(jacy(F))))). Thus there exists a
non trivial vector(wo, ..., Wn,) in the right kernelKer(& o ¢a(jacy(F))x=v ). This means that
(Vo5 - -+ Vi,—1, 1, Wo, . . . ,Wn, ) is in the variety ofpa(1):

Yo
(Vo,-- -, Vi1, 1, W, ..., Wh ) € Var(da (jacy(F))- | : |)
Yny
From Lemma 15wy, # 0 if the system is generic. Hence
Wo Why—1
VO, .-, Vg1, ——,...,——) € Var(d ).
(07 » VN 17Wnya ) Wny )E ( O¢a( ))

Finally, we have

Var((MaxMinors(& o ¢a(jacy(F))))) = Var((& o ga(f1),...,3 o pa(fm)) Nkxo, ..., Xn,~1])
andd o ¢4(1) is radical (Lemma 16). The Nullstellensatz concludespitoef. O

Corollary 4. There exists a nonempty Zariski open sgt €dich that ifa € Oy,

card(Var(8 o ¢a(1))) = degd o pa(l)) = (”X: ”V)
X
Proof. According to Lemma 16 and Lemma 15ai€ O; N Oy, then degd o (1)) = card(Var(S o
9a(1)) = card(Var(¢a(l))). This value is the so-called multihomogeneowsz8ut number of
#a(l), i.e. the coefficient oﬁl‘xzzny in (z1 + )™t (see e.g. Morgan and Sommese (1987)),
namely (™). O
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Remark 7. Actually, by studying ideals spanned by maximal minors of matrices whose entries
are linear forms, it can be shown that, for a generic affine bilinear systdfaxMinors(9 o
da(jacy(F)))) is radical (see Lemma 6). Hence Lemma 17 shows that, for generic affine bilinear

systems,
(MaxMinors(J o ¢a(jacy(F)))) = (& o fa(f1),...,3 o pa(fm)) NK[Xo, - ., Xn,—1],

(MaxMinors(8 o da(jacy(F)))) = (8 o Ba(f1),..-, 8 o Ba fm)) NKYo, - Yy 1]-
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