W. Adams and P. Loustaunau, An Introduction to Gröbner Bases 2. R. Avanzi. Lightweight asymmetric cryptography and alternatives to rsa, ecrypt european network of excellence in cryptology, 2005.

M. Baldi, M. Bodrato, and G. F. Chiaraluce, A New Analysis of the McEliece Cryptosystem Based on QC-LDPC Codes, Security and Cryptography for Networks (SCN), pp.246-262, 2008.
DOI : 10.1007/978-3-540-85855-3_17

M. Baldi and G. F. Chiaraluce, Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC Codes, 2007 IEEE International Symposium on Information Theory, pp.2591-2595, 2007.
DOI : 10.1109/ISIT.2007.4557609

T. P. Berger, P. L. Cayrel, P. Gaborit, and A. Otmani, Reducing Key Length of the McEliece Cryptosystem, Progress in Cryptology -Second International Conference on Cryptology in Africa, pp.77-97, 2009.
DOI : 10.1007/BFb0019850

URL : https://hal.archives-ouvertes.fr/hal-01081727

T. P. Berger and P. Loidreau, How to Mask the Structure of Codes for a Cryptographic Use, Designs, Codes and Cryptography, vol.4, issue.3, pp.63-79, 2005.
DOI : 10.1007/s10623-003-6151-2

URL : https://hal.archives-ouvertes.fr/hal-00068424

T. P. Berger and P. Loidreau, Designing an Efficient and Secure Public-Key Cryptosystem Based on Reducible Rank Codes, INDOCRYPT, pp.218-229, 2004.
DOI : 10.1007/978-3-540-30556-9_18

D. J. Bernstein, T. Lange, and C. Peters, Attacking and Defending the McEliece Cryptosystem, PQCrypto, pp.31-46, 2008.
DOI : 10.1007/0-387-34799-2_10

D. J. Bernstein, T. Lange, C. Peters, and H. Van-tilborg, Explicit bounds for generic decoding algorithms for code-based cryptography, Pre-proceedings of WCC 2009, pp.168-180, 2009.

B. Biswas and N. Sendrier, McEliece Cryptosystem Implementation: Theory and Practice, PQCrypto, pp.47-62, 2008.
DOI : 10.1109/4234.823536

B. Buchberger, Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, 1965.

D. A. Cox, J. B. Little, and D. Shea, Ideals, Varieties, and algorithms: an Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, 2001.

J. Faugère, A new efficient algorithm for computing Gr??bner bases (F4), Journal of Pure and Applied Algebra, vol.139, issue.1-3, pp.61-88, 1999.
DOI : 10.1016/S0022-4049(99)00005-5

J. Faugère, A new efficient algorithm for computing gröbner bases without reduction to zero : F5, ISSAC'02, pp.75-83, 2002.

J. Faugère, F. Levy-dit, L. Vehel, and . Perret, Cryptanalysis of MinRank, Advances in Cryptology -CRYPTO'08, pp.280-296, 2008.
DOI : 10.1007/978-3-540-85174-5_16

J. Faugère, M. Safey-el-din, and P. Spaenlehauer, Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity, 1001.

J. Faugère, P. M. Gianni, D. Lazard, and T. Mora, Efficient Computation of Zero-dimensional Gr??bner Bases by Change of Ordering, Journal of Symbolic Computation, vol.16, issue.4, pp.329-344, 1993.
DOI : 10.1006/jsco.1993.1051

C. Faure and L. Minder, Cryptanalysis of the McEliece cryptosystem over hyperelliptic curves, Proceedings of the eleventh International Workshop on Algebraic and Combinatorial Coding Theory, pp.99-107, 2008.

M. Finiasz and N. Sendrier, Security Bounds for the Design of Code-Based Cryptosystems, LNCS, vol.5912, pp.88-105, 2009.
DOI : 10.1007/978-3-642-10366-7_6

E. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, Ideals over a non-commutative ring and their applications to cryptography, Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques, number 547 in LNCS, pp.482-489, 1991.
DOI : 10.1007/3-540-46416-6_41

P. Gaborit, Shorter keys for code based cryptography, Proceedings of the 2005 International Workshop on Coding and Cryptography (WCC 2005), pp.81-91, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078726

J. K. Gibson, Severely denting the Gabidulin version of the McEliece Public Key Cryptosystem, Designs, Codes and Cryptography, vol.6, issue.1, pp.37-45, 1995.
DOI : 10.1007/BF01390769

H. Janwa and O. Moreno, McEliece public key cryptosystems using algebraic-geometric codes. Designs Codes and Cryptography, pp.293-307, 1996.
DOI : 10.1109/isit.1995.550471

F. J. Macwilliams and N. J. Sloane, The Theory of Error-Correcting Codes, 1986.

R. J. Mceliece, A Public-Key System Based on Algebraic Coding Theory, pp.114-116, 1978.

L. Minder and A. Shokrollahi, Cryptanalysis of the Sidelnikov Cryptosystem, Eurocrypt, pp.347-360, 2007.
DOI : 10.1007/978-3-540-72540-4_20

R. Misoczki and P. S. Barreto, Compact McEliece Keys from Goppa Codes, Selected Areas in Cryptography, 2009.
DOI : 10.1007/978-3-642-05445-7_24

URL : https://hal.archives-ouvertes.fr/hal-00870932

H. Niederreiter, A Public-Key Cryptosystem Based on Shift Register Sequences, EURO- CRYPT, pp.35-39, 1985.
DOI : 10.1007/3-540-39805-8_4

A. Otmani, J. P. Tillich, and L. Dallot, Cryptanalysis of McEliece cryptosystem based on quasi-cyclic ldpc codes, Proceedings of First International Conference on Symbolic Computation and Cryptography, pp.69-81, 2008.

R. Overbeck, Structural Attacks for Public Key Cryptosystems based??on Gabidulin Codes, Journal of Cryptology, vol.42, issue.44, pp.280-301, 2008.
DOI : 10.1007/s00145-007-9003-9

V. M. Sidelnikov, A public-key cryptosytem based on Reed-Muller codes, Discrete Mathematics and Applications, vol.4, issue.3, pp.191-207, 1994.

V. M. Sidelnikov and S. O. Shestakov, On insecurity of cryptosystems based on generalized Reed-Solomon codes, Discrete Mathematics and Applications, vol.2, issue.4, pp.439-444, 1992.
DOI : 10.1515/dma.1992.2.4.439

J. Stern, A method for finding codewords of small weight, Coding Theory and Applications, pp.106-113, 1988.
DOI : 10.1007/BFb0019850

V. Gauthier-umana and G. Leander, Practical key recovery attacks on two McEliece variants, 2009.

C. Wieschebrink, Cryptanalysis of the Niederreiter Public Key Scheme Based on GRS Subcodes, 2009.
DOI : 10.1007/978-3-642-12929-2_5