Estimating an endpoint with high order moments

Stephane Girard 1 Armelle Guillou 2 Gilles Stupfler 2
1 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We present a new method for estimating the endpoint of a unidimensional sample when the distribution function decreases at a polynomial rate to zero in the neighborhood of the endpoint. The estimator is based on the use of high order moments of the variable of interest. It is assumed that the order of the moments goes to infinity, and we give conditions on its rate of divergence to get the asymptotic normality of the estimator. The good performance of the estimator is illustrated on some finite sample situations.
Type de document :
Article dans une revue
test, Springer, 2012, 21 (4), pp.697-729. <10.1007/s11749-011-0277-8>
Liste complète des métadonnées

https://hal.inria.fr/inria-00596979
Contributeur : Stephane Girard <>
Soumis le : lundi 30 mai 2011 - 16:55:11
Dernière modification le : vendredi 13 mai 2016 - 01:07:41
Document(s) archivé(s) le : mercredi 31 août 2011 - 02:27:57

Fichier

sv_final_article_v13.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Relations

Citation

Stephane Girard, Armelle Guillou, Gilles Stupfler. Estimating an endpoint with high order moments. test, Springer, 2012, 21 (4), pp.697-729. <10.1007/s11749-011-0277-8>. <inria-00596979>

Partager

Métriques

Consultations de
la notice

651

Téléchargements du document

125