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Sho
k dynami
s in granular 
hains: numeri
alsimulations and 
omparison with experimentaltestsNgo
-Son Nguyen ∗, Bernard Brogliato †Theme : Modeling, Optimization, and Control of Dynami
 SystemsÉquipes-Projets BipopRapport de re
her
he n° 7636 � May 2011 � 62 pagesAbstra
t: The aim of this work is to simulate sho
k dynami
s in granular
hains of balls using the LZB multiple impa
t model and 
ompare the numeri
alresults to the experimental results available in the literature. The LZB modelhas been introdu
ed to solve the multiple impa
t problem that arises in the rigidbody systems when multiple 
onta
ts 
ollide at the same time. The Darboux-Keller dynami
s is 
onsidered in this model to 
hange the time s
ale to theimpulse s
ale. The intera
tion at the 
onta
t points is modeled by 
omplian
e
onta
t laws. The energy dissipation at the 
onta
t points during the impa
tpro
ess, resulting from 
omplex phenomena su
h as the plasti
ity, the vis
osity,the noise, the vibration, et
., is taken into a

ount by using Stronge's energeti

oe�
ient of restitution. The 
oupling between various 
onta
t points, due tothe wave e�e
ts, is des
ribed by a distributing law that relates the impulse
hange at one 
onta
t to that at another 
onta
t depending on their relativesti�ness and their relative potential energy. The LZB model is then 
oupled tothe event-driven s
heme in order to simulate the motion of the nonsmooth me-
hani
al systems. Di�erent kinds of granular 
hains are investigated: monodis-perse 
hains, i.e. 
hains of identi
al balls; tapered 
hains, i.e. 
hains 
omposedof balls with de
reasing size; stepped 
hains, i.e. 
hains 
omposed of a largemonodisperse se
tion followed by a small monodisperse se
tion. Parti
ular at-tention is paid to the dispersion e�e
t and the wave propagation in the tapered
hains, to the intera
tion of two solitary waves in the monodisperse 
hains, andto the formation of a solitary wave train (a set of single solitary waves withde
reasing amplitudes) in the stepped 
hains. Comparison with the experimen-tal results shows that the numeri
al simulations with the LZB multiple impa
tmodel reprodu
e very well the experimental observations.
∗ INRIA, Bipop Team-Proje
t, ZIRST Montbonnot, 655 Avenue de l'Europe, 38334 SaintIsmier, Fran
e; ngo
-son.nguyen�inrialpes.fr
† INRIA, Bipop Team-Proje
t, ZIRST Montbonnot, 655 Avenue de l'Europe, 38334 SaintIsmier, Fran
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Dynamique de 
ho
 dans des 
haînes granulaires:simulations numériques et 
omparaison ave
 destests expérimentauxRésumé : L'obje
tif de 
e travail est de simuler la dynamique de 
ho
 dansdes 
haînes granulaires en 
onsidérant le modèle LZB puis de 
omparer les ré-sultats numériques ave
 les résultats expérimentaux existant dans la littérature.Le modèle LZB a été introduit pour résoudre le problème d'impa
ts multiplesren
ontré pour les systèmes multi
orps rigides lorsque les 
ho
s se produisentsimultanément à plusieurs 
onta
ts. Pour 
e modèle, la dynamique de Darboux-Keller est utilisée pour 
hanger l'é
helle du temps en l'é
helle de l'impulsion.L'intera
tion aux points de 
onta
t est modélisée par des lois de 
onta
t detype 
omplian
e. La dissipation de l'énergie aux points de 
onta
t, due à desphénomènes physiques 
omplexes 
omme la plasti
ité, la vis
osité, le bruit, lavibration, et
., est prise en 
ompte par un 
oe�
ient de restitution énergé-tique. Le 
ouplage entre plusieurs points de 
onta
t, dû aux e�ets d'onde,est dé
rit par une loi de distribution qui relie le 
hangement de l'impulsion àun 
onta
t à 
elui à un autre 
onta
t en fon
tion de leur rigidité relative etde leur énergie potentielle relative. Le modèle LZB est ensuite 
ouplé à uneméthode numérique �event-driven� pour simuler le mouvement des systèmesmé
aniques non-réguliers. Di�erents types de 
haîne granulaire sont étudiés:
haînes monodisperses, i.e. 
haînes 
omposées de billes identiques; 
haînes "ta-pered", i.e. 
haînes 
omposées de billes de taille dé
roissante; 
haînes "stepped",i.e. 
haînes 
omposées d'une se
tion monodisperse à grand rayon puis d'unese
tion monodisperse à petit rayon. On s'intéresse parti
ulièrement à l'e�et dedispersion et la propagation de l'onde dans les 
haînes "tapered", à l'intera
tionde deux ondes solitaires dans les 
haînes monodisperses, à la formation d'untrain d'ondes solitaires (un ensemble d'ondes solitaires individuelles ave
 am-plitudes dé
roissantes) dans les 
haînes "stepped". La 
omparaison ave
 lesrésultats expérimentaux montre que les simulations numériques ave
 le modèleLZB reproduisent de façon très statisfaisante les observations expérimentales.Mots-
lés : Impa
ts Multiples, Modèle LZB, Méthode Event-Driven, ChaîneGranulaire
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Sho
k dynami
s in granular 
hains 51 Introdu
tionThe dynami
s of 
hains of balls subje
ted to 
ollisions has been the obje
t ofmany studies sin
e a long time, the most well-known example being the so-
alled Newton's 
radle (see e.g. [1, �6.5.6℄ for referen
es). Chains of balls areof interest for resear
hers in Solid Me
hani
s be
ause it is a ni
e example ofa system with multiple impa
ts (the system is subje
t to several simultaneousimpa
ts), and for resear
hers in Physi
s be
ause it is the simplest example ofa granular material. Multiple impa
ts are known to be a 
hallenging issue inthe impa
t modeling, even for fri
tionless impa
ts (like in 
hains of alignedballs) [13, 22℄. Despite their apparent simpli
ity 
hains of balls possess a quite
omplex 
ollision dynami
s that involves two main physi
al e�e
ts: dissipationand dispersion of energy. The dissipation is mainly due to the lo
al deformationat the 
onta
t/impa
t areas and may have many sour
es: vis
osity, plasti
ity,sound, hystereti
 e�e
ts, et
. The dispersion rather quanti�es the way theinitial energy of the 
hain (before the impa
t) is spread within the 
hain afterthe impa
t has o

urred. The waves e�ets are responsible for the dispersion,whi
h o

urs even if the dissipation is almost zero (
onservative system). Forthis reason waves phenomena have been analyzed a lot [20, 23℄. The dissipationmay have, on the other hand, an in�uen
e on the dispersion.Obtaining good models of multiple impa
ts with good numeri
al methodsis an important issue in the �eld of granular matter in general, and for 
hainsof balls as a parti
ular 
ase. Models based on kinemati
 restitution 
oe�
ients(Newton's like) or on kineti
 restitution 
oe�
ients (Poisson's like) are knownnot to be ri
h enough to 
orre
tly represent the dispersion e�e
ts. Moreover theypresent serious de�
ien
ies like non-uniqueness of the restitution 
oe�
ients fora given energeti
 behaviour, or the ne
essity to estimate the restitution matrixfor ea
h 
hain and ea
h initial data. Other models based on Routh's impa
tdynami
s [1, �4.2.13℄ and an impulse 
orrelation ratio (ICR) have been proposed[5, 12℄. However it seems that the assumption that the ICR 
an be estimatedfrom experiments between triplets of balls may fail [22, �6.4℄. Let us mentionthat kinemati
 laws and binary 
ollisions (the 
onta
t gaps are assumed to be allopen) are sometimes used [40, 42, 44, 43℄. This is also prone to some fundamentalissues like the fa
t that it is not guaranteed, in general, that letting the gaps tendto zero (hen
e re
overing the real system where the balls tou
h ea
h other) yielda unique limit, be
ause the traje
tories may be dis
ontinuous with respe
t to theinitial data [21℄. In order to take into a

ount the lo
al dissipation at 
onta
tpoints during the impa
t pro
ess, several works introdu
ed vis
ous dissipationwith linear or nonlinear vis
osity 
oupled to Hert's 
onta
t law [37, 38, 14℄. Thisvis
ous dissipation model might be valid for the vis
ous elasti
 material but it
annot take into a

ount some important e�e
ts like plasti
ity, dissipation due tothe noise, light, vibration, et
. In [39, 48℄, the lo
al dissipation at 
onta
t pointsis modeled by a 
oe�
ient of restitution de�ned as the ratio of the unloadingfor
e (during the expansion phase) to the loading for
e (during the 
ompressionphase). This restitution law is quite simple, however most materials do not showsu
h a restitution law. It happens that dissipation at 
onta
t points is a 
omplexphenomenon, that 
an be hardly be en
apsulated by the models mentionedabove. One 
ontribution of this paper and former ones [15, 16, 17, 25, 24℄ is tointrodu
e an energeti
 
oe�
ient of restitution, instead.RR n° 7636



Sho
k dynami
s in granular 
hains 6Granular 
hains has attra
ted mu
h attention of s
ientists in investigatingthe energy propagation in su
h dis
rete media in order to �nd out sho
k prote
-tion devi
es that are able to attenuate e�
iently the energy indu
ed in a sho
kpro
ess. Various kinds of granular 
hains have been investigated:� monodisperse 
hains, i.e. 
hains of identi
al balls [11, 23, 2, 14, 32, 37℄;� monodisperse 
hains with defe
ts [9, 49℄;� tapered 
hains, i.e. 
hains with de
reasing size of the balls [45, 46, 48, 42,40, 47℄;� stepped 
hains, i.e. 
hains 
omposed of a large monodisperse se
tion fol-lowed by a small monodisperse se
tion [30, 33, 28℄;� de
orated 
hains with small masses pla
ed regularly or randomly amonglarger masses [44, 43, 12℄;� 
omposite 
hains, i.e. 
hains 
omposed of beads made of di�erent mate-rials periodi
ally or randomly distributed [7, 8, 6, 29, 38℄;� disordered 
hains with beads of masses randomly distributed [41, 39℄.The subje
t of this paper is the study of the dispersion e�e
t and the wave prop-agation in the tapered 
hains, of the formation of the solitary wave trains in thestepped 
hains and of the intera
tion of two solitary waves in the monodisperse
hains. More spe
i�
ally the multiple impa
t model introdu
ed in [15, 16, 17℄(and 
alled in the sequel the LZB-
omplementarity multiple impa
t model) isused and the numeri
al results are 
arefully 
ompared to experimental dataavailable in [19, 18, 30, 32℄. Comparisons between numeri
al results obtainedwith the LZB multiple impa
t model 
oupled to a 
omplementarity model out-side the impa
ts in an event-driven method, and experimental data have beenpresented in [16℄ for 
olumn of beads (experiments of [11℄), in [25℄ for the boun
-ing dimer (experiments of [10℄), Newton's 
radle in [17℄ (experiments of [5℄), andmore re
ently some results on the ro
king blo
k system used in the EarthquakeEngineering literature [24℄.This paper is organized as follows: in se
tion 2, we will present brie�y theLZB multiple impa
t model 
oupled to the event-driven numeri
al s
heme. Inse
tion 3, granular 
hains and their dynami
s will be des
ribed. Se
tion 4 and 5will be dedi
ated to investigate the dispersion e�e
t and the wave propagationin the tapered 
hains and 
ompare the numeri
al results to the experimentalresults presented in [19℄ and [18℄. The formation of solitary wave trains in thestepped 
hains will be the subje
t of se
tion 6, and the numeri
al results will be
ompared to the experimental ones shown in [30℄. In se
tion 7, the numeri
alsimulations 
on
erning the intera
tion of two solitary waves in the monodisperse
hains will be presented and 
ompared to the experimental data available in[32℄. Finally, some 
on
lusions about the numeri
al simulations with the LZBmultiple impa
t model will be drawn.
RR n° 7636



Sho
k dynami
s in granular 
hains 72 Event-driven s
heme and LZB-
omplementaritymodelIn this se
tion we summarize the event-driven s
heme used to solve the dynami
sof a multiple rigid body system with the LZB-
omlementarity multiple impa
tmodel. This means that the whole motion of the system is solved with the event-driven s
heme during whi
h some singular points happen (impa
t between rigidbodies), and the LZB-
omplementarity model is applied to solve these singularpoints. For the sake of simpli
ity, we limit ourselves to the 
ase without fri
tion.For this 
ase, the event-driven s
heme and the LZB-
omplementarity impa
tmodel, that will be des
ribed below, have been implemented in the Si
onosplatform and are available at http://si
onos.gforge.inria.fr.Let us 
onsider a multiple rigid body system with s possible fri
tionless
onta
t points. The maximum number of degrees of freedom (obtained whennone of 
onta
ts is 
losed) is n. The state of the system may be des
ribedby a set of generalized 
oordinates q ∈ IRn. The dynami
s of this nonsmoothsystem 
an be des
ribed by the equation of motion and a set of 
omplementarity
onditions as follows:
{

M(q(t))q̈(t) + F int(t, q(t), q̇(t)) = F ext(t) + W (q(t))λ(t)
0 ≤ λ(t) ⊥ δ(q(t)) ≥ 0,

(1)where:� M(q(t)) ∈ IRn×n is the inertia matrix;� δ(q(t)) = [δ1(q(t)) δ2(q(t))...δs(q(t))]T and λ(t) = [λ1(t) λ2(t)...λs(t)]
Twith δj(q(t)) and λj(t) being the gap and the for
e at 
onta
t point j,respe
tively;� F int(t, q(t), q̇(t)) 
olle
ts the nonlinear terms resulting from the nonlinearinertial terms, the nonlinear intera
tions between bodies, and F ext(t) isthe external loading;� W (q(t)) ∈ IRn×s is the Ja
obian matrix:

W (q(t))T =
∂δ(q(t))

∂q(t)
. (2)In order to establish the algorithm for the event-driven s
heme and for theLZB-
omplementarity multiple impa
t model, three index sets have been intro-du
ed in [35℄ for the 
ase without fri
tion at the 
onta
ts as follows:� The index set I is the set of all possible 
onta
t points in the system:

I = {1, 2, ..., s} ⊂ IN; (3)� The index set Ic is the set of all 
losed 
onta
ts of the system:
Ic = {j ∈ I | δj(q(t)) = 0} ⊂ I; (4)RR n° 7636
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Sho
k dynami
s in granular 
hains 8� The index set Is is the set of all persistent 
onta
ts (rolling or sliding
onta
ts) in the system:
Is = {j ∈ Ic | δ̇j(q(t)) = 0} ⊂ Ic. (5)First of all, we talk about how the impa
t problem is solved with the LZB-
omplementarity impa
t model. Lastly, we des
ribe the event-driven s
hemeasso
iated with the LZB-
omplementarity impa
t model.2.1 LZB-
omplimentarity multiple impa
t modelLet us 
onsider the 
ase when the nonsmooth system des
ribed above is sub-je
ted to a multiple impa
t pro
ess. At this instant, there are m a
tive 
onta
tpoints in the system (the 
onta
ts belong to the index set Ic ⊂ I). The LZB-
omplementarity multiple impa
t model to solve the impa
t problem for this
ase is summarized below. The numeri
al s
heme for this model is des
ribed inthe appendix A.1) The 
on�guration q ∈ IRn of the system is assumed to be 
onstant duringthe impa
t pro
ess, and so are M (q) and W (q). Therefore, the Darboux-Keller's dynami
al equation [3, 4℄ is used to 
hange the time s
ale to the impulses
ale, as follows:
M(q)

dq̇

dP∗

= W c(q)
dP

dP∗

, (6)where:� The Ja
obian matrix W c(q) ∈ IRn×m is related to only the index set Ic.The 
onne
tion between the relative velo
ity at the a
tive 
onta
t points
δ̇ ∈ IRm and the generalized velo
ity q̇ ∈ IRn is given by:

δ̇(q) = W c(q)T q̇. (7)The 
onvention made for the relative velo
ity at 
onta
t point j as follows:
δ̇j > 0 for two 
olliding bodies approa
hing (
ompression phase) and δ̇j <
0 for the separation (expansion phase);� dP ∈ IRm is the 
hange of the normal impulse at the a
tive 
onta
t points;� dP∗ is an independent time-like variable de�ned at the velo
ity-impulselevel and 
alled �the prin
ipal impulse�.From (6) and (2), we have:

dδ̇

dP∗

= W c(q)T M(q)−1W c(q)
dP

dP∗

= H(q)
dP

dP∗

, (8)where Hc(q) = W c(q)T M (q)−1W c(q).2) The intera
tion at 
onta
t points is modeled by a 
ompliant 
onta
t modelthat may be a mono-sti�ness or a bi-sti�ness model as des
ribed below:� the mono-sti�ness 
ompliant model expresses the same for
e λj/identation
δj mapping at 
onta
t point j for the 
ompression phase and the expansionphase:

λj = Kj(δj)
η, (9)RR n° 7636



Sho
k dynami
s in granular 
hains 9whereKj is the sti�ness at 
onta
t point j and η is the elasti
ity 
oe�
ient(η = 3
2 for the Hertz 
onta
t model and η = 1 for the linear elasti
 model).� the bi-sti�ness 
ompliant model makes the for
e/identation mapping forthe 
ompression phase di�erent from the one for the expansion phase asshown in �gure 1. The for
e/identation mapping for this model is:

λc,j = Kj(δj)
η for 
ompression phase,

λe,j = λM,j

( δj − δr,j
δM,j − δr,j

)η for expansion phase, (10)where δr,j is the plasti
 deformation, and λM,j and δM,j are the maximaof the normal 
onta
t for
e and normal deformation at the end of the
ompression phase (when δ̇j = 0).

Figure 1: Bi-sti�ness 
onta
t 
ompliant model.3) A distributing law relating the 
hange of the impulse (dPj) at 
onta
t jto the 
hange of the impulse (dP∗) at the so-
alled primary 
onta
t, whi
h isde�ned as the 
onta
t where the potential energy is maximum, 
an be derivedfrom the 
ompliant 
onta
t models presented above. The distributing rule hasthe following form:
dPj

dP∗

= γ
1

1+η

j,∗ (Ej,∗(Pj , P∗))
η

η+1 , (11)where γj,∗ =
Kj

K∗

and Ej,∗(Pj , P∗) =
Ej(Pj)

E∗(P∗)
are respe
tively the ratios of thesti�ness and the potential energy at 
onta
t j to those at the primary 
onta
t.Some singularities arise during an impa
t pro
ess, for whi
h the distributing ruleshown in (11) be
omes invalid. One singularity is en
ountered at the beginningof the impa
t pro
ess when the potential energy is zero at any 
onta
t. In this

RR n° 7636



Sho
k dynami
s in granular 
hains 10
ase, a distributing rule should be derived in terms of relative velo
ity at 
onta
tpoints and has the following form
dPj

dP∗

= γj,∗

( δ̇j

δ̇∗

)η

. (12)The primary 
onta
t in this 
ase is de�ned as the 
onta
t where the relativevelo
ity is maximum. During the impa
t pro
ess it is possible that a 
onta
tdoes not parti
ipate into the impa
t at an instant P and then parti
ipatesagain into the impa
t at the following instants, due to the 
onstraints betweenthe neighboring parti
les. In su
h a 
ase, an approximated distributing rule 
anbe derived as follows:
dPj

dP∗

= γj,∗

( δ̇jdP∗

E∗

)η

. (13)4) The lo
al dissipation due to the inelasti
 intera
tions at 
onta
t points istaken into a

ount by using the energeti
 
onstraint introdu
ed in [26℄
e2s,j = −

We,j

Wc,j
=

∫ P f
j

P c
j
δ̇j(Pj)dPj

∫ P c
j

0 δ̇j(Pj)dPj

, (14)where Wc,j and We,j are respe
tively the works done by the 
onta
t for
e at
onta
t j during the 
ompression phase and the expansion phase. The instant
P c

j is determined when δ̇j(P c
j ) = 0 and P f

j 
orresponds to the instant when theexpansion phase is terminated. The enegeti
 
onstraint introdu
es a parameternamed the energeti
 restitution 
oe�
ient es.It is worth noting that the lo
al dissipation is not in
luded in the mono-sti�ness model. So in order to satisfy the energeti
 
onstraint, when 
ondition(14) is a
hieved, the residual potential energy will be dis
arded (the residual po-tential energy is set to zero when 
ondition (14) is a
hieved). Physi
ally speak-ing, the me
hanism used to dissipate the energy in the mono-sti�ness model isnot 
lear. In 
ontrast, the lo
al dissipation for the elasto-plasti
 materials is
onsistently in
luded in the bi-sti�ness model and the dissipative parametersin this model are related to the energeti
 restitution 
oe�
ient by the relation
δr,j = δM,j(1 − e2s,j).5) The potential energy at a 
onta
t is 
omputed as follows:� For the mono-sti�ness model:

Ej(Pj) =

∫ Pj

0

δ̇j(Pj)dPj , (15)for the 
ompression and expansion phases. In a

ordan
e with the ener-geti
al 
onstraint (14) when the potential energy Ej(Pj) satis�es Ej(Pj) =
Wc,j(1− e2s,j), the residual potential energy will be 
ompletely dissipated.This means that when Ej(Pj) = Wc,j(1−e2s,j), the potential energyEj(Pj)must be set to zero.
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Sho
k dynami
s in granular 
hains 11� For the bi-sti�ness model:
Ej(Pj) =

∫ Pj

0

δ̇j(Pj)dPj for 
ompression phase,
Ej(Pj) =

∫ P c
j

0

δ̇j(Pj)dPj +
1

e2s,j

∫ Pj

P c
j

δ̇j(Pj)dPj for expansion phase.(16)6) The for
e at 
onta
t point j is 
omputed from the potential energy asfollows:
λj = (1 + η)

η
η+1K

1
1+η

j (Ej(Pj(t)))
η

η+1 , (17)and the time s
ale t is related to the prin
ipal impulse s
ale P∗ (impulse at theprimary 
onta
t point) by the following relation:
dt =

dP∗

F∗

, (18)where F∗ is the for
e 
omputed at the primary 
onta
t point using (17).7) The impa
t at a 
onta
t is 
onsidered to be terminated if the residualpotential energy at the 
onta
t is 
ompletely released during the expansionphase. This means that the following 
ondition must be satis�ed
Ej = 0 and δ̇j ≤ 0. (19)The multiple impa
t pro
ess is 
onsidered to be terminated if the impa
t at allthe 
onta
ts of the system is terminated.2.2 Event-driven s
hemeDuring the motion of the system des
ribed in (1), some nonsmooth events mighthappen when some of 
onta
ts are a
tivated (rigid bodies at the a
tive 
onta
ts
ollide ea
h other). Between the nonsmooth events, the motion of the system issmooth. The event-driven s
heme to solve the system (1) 
onsists in integrat-ing the smooth motion between two nonsmooth events and in pro
essing thenonsmooth motion when a nonsmooth event is en
ountered. The 
rutial pointin this numeri
al s
heme is that the nonsmooth events have to be e�
ientlylo
alized.When the set of a
tive 
onta
ts Ic = ∅, no 
onta
t is a
tivated in the system.So there is no for
e at any 
onta
t and system (1) be
omes:

{

M(q(t))q̈(t) + F int(t, q(t), q̇(t)) = F ext(t)
δj(q(t)) > 0 ∀j ∈ I.

(20)Equation (20) is an Ordinary Di�erential Equation (ODE) subje
ted to a set ofunilateral 
ontraints δj(q(t)) > 0 ∀j ∈ I and 
an be e�
iently solved by variousnumeri
al s
hemes proposed in the litterature. One of them is the DLSODARsolver [34℄. Furthermore, this solver allows to dete
t e�
iently the instants whensome unilateral 
onstraints are violated. Therefore, the nonsmooth events whensome 
onta
t points are a
tivated (when δj = 0) 
an be e�
iently lo
alized.When Ic 6= ∅ and Ic\Is 6= ∅, some 
onta
ts in the system 
ome into 
ollision.A nonsmooth event is en
ountered and needs to be pro
essed by a nonsmoothRR n° 7636



Sho
k dynami
s in granular 
hains 12law. Here we use LZB-
omplementarity multiple impa
t model to pro
ess thenonsmooth event en
ountered. Su
h a nonsmooth event pro
essing has beendes
ribed in se
tion 2.1.When Ic 6= ∅ and Ic \ Is = ∅, all the a
tive 
onta
ts in the system arepersistent 
onta
ts (sliding or rolling 
onta
ts). The motion of the sytem in this
ase is smooth. This motion 
an be solved by reformulating the 
omplementarity
onditions in (1) at the a

eleration level. System (1) 
an be rewritten as follows:






M(q(t))q̈(t) + F int(t, q(t), q̇(t)) = F ext(t) + W (q(t))λ(t)
λj(t) = 0 ∀j ∈ I \ Is
0 ≤ λj(t) ⊥ δ̈j(q(t)) ≥ 0 ∀j ∈ Is.

(21)We have:
δ̈(q(t)) = W T (q(t))q̈(t) + Ẇ

T
(q(t))q̇(t)

= [W T (q(t))M−1(q(t))W (q(t))]λ(t) + W T (q(t))M−1(q(t))[

F ext(t) − F int(t, q(t), q̇(t))] + Ẇ
T
(q(t))q̇(t)

= H(q(t))λ(t) + β(t, q(t), q̇(t)), (22)where:
H(q(t)) = W T (q(t))M−1(q(t))W (q(t)), (23)
β(t, q(t), q̇(t)) = W T (q(t))M−1q(t))[F ext(t) − F int(t, q(t), q̇(t))]

+ Ẇ
T
(q(t))q̇(t). (24)Combining (21) and (22) and, we obtain:

M (q(t))q̈(t) + F int(t, q(t), q̇(t)) = F ext(t) + W (q(t))λ(t), (25)






δ̈(q(t)) = H(q(t))λ(t) + β(t, q(t), q̇(t))
λj(t) = 0 ∀j ∈ I \ Is
0 ≤ λj(t) ⊥ δ̈j(q(t)) ≥ 0 ∀j ∈ Is.

(26)It 
an be seen that system (26) is a linear 
omplementarity problem (LCP) with
onta
t for
e λ(t) as its unknown. This LCP 
an be solved by various numeri
alalgorithms (for example, Lemke's algorithm des
ribed in [35℄). The ODE (25)
an be solved with an ODE solver, for example the DLSODAR solver. Systems(25) and (26) are solved by �rst solving the LCP (26) to determine the unknown
λ(t), then updating and solving the ODE (25). During the integration of theODE (25), the set of 
onstraints δj(q(t)) > 0 ∀j ∈ I \ Is and λj(t) > 0 ∀j ∈ Isis 
he
ked and the nonsmooth events when some 
onta
t points are a
tivatedor desa
tivated (a 
onta
t point j is a
tivated if δj(q(t)) = 0 and desa
tivatedif λj(t) = 0) 
an be e�
iently lo
alized.The algorithm for the event-driven s
heme des
ribed above has been pre-sented in [35℄ and is summarized in se
tion B.3 Numeri
al simulation of granular 
hainsIn this se
tion, we present the numeri
al simulation of the dynami
s of granular
hains by using the event-drivent s
heme 
ombined with the LZB-
omplementarityRR n° 7636



Sho
k dynami
s in granular 
hains 13multiple impa
t model presented in se
tion 2.1. Figure 2 illustrates a granu-lar 
hain. As illustrated in this �gure, a granular 
hain is 
omposed of beadswhose 
enter is aligned on a horizontal axis. This alignement aims at ensuring
o-linear 
ollisions between beads. Last bead in the 
hain may move freely ormay be 
onstraint by a rigid wall pla
ed at the end of the 
hain. The beads inthe 
hain are numbered as in
reasing integers from 1 for �rst bead to N for lastbead (N is the number of beads in the 
hain). For a bead i, the position of its
enter is de�ned by xi, and its radius is Ri. The 
hain is impa
ted by a bead(striker) numbered as 0 with an impa
t velo
ity Vs. In the 
ase when there is norotation of the beads, the state of the system (striker + 
hain) is des
ribed bythe following generalized 
oordinate q = [x0, x1, ..., xN ]T . Let us assume thatat the beginning of the impa
t pro
ess all the 
onta
ts in the 
hain are 
losed.
Ri

xi

bead ibead 0

wall(Possibly)
bead N

Figure 2: Con�guration of a granular 
hain with possibly a rigid wall at the endimpa
ted by a striker (bead 0).The mass matrix for this 
hain is:
M =











m0 0 · · · 0
0 m2 · · · 0... ... . . . ...
0 0 · · · mN











(N+1)×(N+1)

. (27)Conta
t between bead i and bead i + 1 is numbered as i and the 
onta
tbetween last bead and the wall is numbered as N . The gaps at the 
onta
ts are:
δi = xi+1 − xi − (Ri +Ri+1) ∀i 6= N
δN = xwall − xN −RN .

(28)The matrix W c (W c =
[∂δ

∂q

]T ) for the 
ase without wall is:
W c =





















−1 0 0 · · · 0
1 −1 0 · · · 0

0 1 −1
...... . . . . . . 0

0 0 0 1 −1
0 0 0 0 1





















(N+1)×N

. (29)
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Sho
k dynami
s in granular 
hains 14When the wall is present, the matrix W be
omes:
W c =





















−1 0 0 · · · 0 0
1 −1 0 · · · 0 0

0 1 −1
. . . ... 0... . . . . . . . . . 0

...
0 0 0 1 −1 0
0 0 0 0 1 −1





















(N+1)×(N+1)

. (30)It is worth mentioning that both M and W c are 
onstant during the motion ofthe system so the Darboux-Keller basi
 assumption mentioned in se
tion 2.1 isautomati
ally satis�ed for su
h 
hains of balls.The dynami
s of the 
hain is des
ribed by the following system:
{

Mq̈(t) = W cλ(t)
0 ≤ δ(t) ⊥ λ(t) ≥ 0,

(31)and the Darboux-Keller's equation when the impa
t o

urs in the 
hain is:
Mdq̇ = W cdP . (32)The intera
tion between adja
ent beads when they are in 
onta
t is mod-eled by either the mono-sti�ness model (9) or the bi-sti�ness model (10) andsubje
ted to the energeti
al 
onstraint (14). The sti�ness at 
onta
t point i is
omputed a

ording to the Hertz's theory:
Ki =

4

3

√

R∗

iE
∗

i , (33)where R∗

i and E∗

i
1

R∗

i

=
1

Ri
+

1

Ri+1

1

E∗

i

=
1 − ν2

i

Ei
+

1 − ν2
i−1

Ei+1
,

(34)Here Ei and νi are the Young modulus and the Poisson 
oe�
ient of bead i. Ifthe wall is at the end of the 
hain, R∗

N and E∗

N for the 
onta
t N between lastbead and the wall is 
omputed as follows:
R∗

N = RN

1

E∗

N

=
1 − ν2

N

EN
+

1 − ν2
w

Ew
,

(35)with Ew and νw are the Young modulus and the Poisson 
oe�
ient of the wall.The motion of the 
hain is simulated with the event-driven s
heme des
ribedin se
tion 2.2 and the impa
t pro
ess is solved with LZB-
omplementarity mul-tiple impa
t model des
ribed in se
tion 2.1. The 
hoi
e of the step size ∆P tosolve LZB-
omplementarity impa
t model for di�erent granular 
hains is dis-
ussed in se
tion A.2.
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Sho
k dynami
s in granular 
hains 154 Simulations of the experimental test in [19℄4.1 Des
ription of the experimental testNakagawa et al. [19℄ have 
ondu
ted a series of experimental tests on a tapered
hain of balls in order to investigate the dispersion e�e
t in this kind of granular
hain. The 
on�guration of these experimental tests is illustrated in �gure 3.The tapered 
hain is 
omposed of 19 balls (numbered from 1 for the largestball to 19 for the smallest ball) whose diameter Φi is progressively de
reaseda

ording to the following law: Φi = (1 − q)Φi−1 with Φ1 = 9.5 mm and thetapering fa
tor q = 5%. Initially, the balls in the tapered 
hain barely tou
hone another. The tapered 
hain is then impa
ted by an impa
tor (numbered0) of diameter Φ0 = 10 mm and made of the same material as the balls inthe tapered 
hain. The ball properties 
orrespond to the steel properties asfollows: mass density ρ = 7833kg/m3, Young modulus E = 203 GPa, Poissonratio ν = 0.3. In order to estimate the restitution 
oe�
ient of the balls, theauthors have perfomed binary 
ollision experiments with pairs of balls of thesame size. Three values are found for the restitution 
oe�
ient: 0.947, 0.965and 0.955 
orresponding to the values of the ball velo
ity averaged over 5 ms,15 ms and 20 ms, respe
tively. The velo
ity of the balls at the end of the impa
t(de�ned at the moment when the smallest ball leaves the 
hain) is measured bya high-speed digital image analysis.
Impa
tor Tapered 
hainFigure 3: Con�guration of the test of Nakagawa et al. [19℄.4.2 Comparison between numeri
al and experimental re-sultsWe perform numeri
al simulations of the experimental tests presented abovewith the LZB-
omplementarity multiple impa
t model. The parameters for theball properties used in the simulations are the same than those presented inse
tion 4.1. The bi-sti�ness 
omplian
e model is 
onsidered with an elasti
ity
oe�
ient η = 3/2. Sin
e there is not a unique value presented in [19℄ for therestitution 
oe�
ient, we 
hoose to use the three values of 0.947, 0.965, 0.955 inthe simulations and 
ompare the numeri
al results obtained with these values.The simulations are performed with a step size ∆P = 10−6 N.s.In order to obtain the experimental data shown in a �gure of a paper, we usethe following data extra
ting te
hnique. First the 
onsidered �gure is extra
tedfrom an ele
troni
 version of the paper. Then we open the extra
ted �gure byan image pro
essing software to make the resolution of the �gure high enough.The position of the interested point on the �gure with respe
t to an origin point(with an arbitrary unit) is dertermined by measuring on the �gure. KnowingRR n° 7636
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k dynami
s in granular 
hains 16the value 
orresponding to the origin point and the s
ale of the �gure allows to�nd the value that 
orresponds to the interested point by an interpolation or anextrapolation. In the 
ase when the experimental data is shown with error bars,only the data 
on
erning the 
entral points whi
h are obtained from statisti
altreatements are extra
ted. Figure 4 illustrates the result of the data extra
tingte
hnique des
ribed above.

(a)

(b)Figure 4: Illustration of the data extra
ting te
hnique: (a) the original �gure 6shown in [19℄ and (b) �gure shows the 
orresponding data extra
ted.Figure 5 shows the post-impa
t velo
ity of the balls in the 
hain obtainedfrom the numeri
al simulations with three values of the restitution 
oe�
ient(0.947, 0.965, 0.955), 
ompared to the experimental results presented in [19℄. Itis shown that the numeri
al simulations give results that are 
lose to the exper-imental results. The multiple impa
t law underestimates (resp. overestimates)slightly the post-impa
t velo
ity of the balls at the right end (resp. the left end)of the 
hain. Moreover, the numeri
al results obtained with the value of 0.965for the restitution 
oe�
ient mat
h the best the experimental ones. We willsee in se
tion 5.2 that su
h a value for the restitution 
oe�
ient is found by a�tting pro
edure to the experiments performed by Melo et al. [18℄. The ballsused in these tests are made of the same material as that of the balls used inRR n° 7636
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k dynami
s in granular 
hains 17[19℄ (the ball properties: mass density, Young modulus, Poisson 
oe�
ient arethe same).

Figure 5: Normalized post-impa
t velo
ity of the balls obtained in the experi-mental test and in the numeri
al simulations with di�erent values for the resti-tution 
oe�
ient.We present in �gure 6 the post-impa
t velo
ity, momentum and kineti
 en-ergy of the balls plotted in the semilog s
ale obtained from the experimentaltest and from the numeri
al simulation with es = 0.965 (whi
h gives the bestresult of the post-impa
t velo
ity of the balls). In this �gure, the overestimationof the post-impa
t velo
ity of the �rst balls by the model of multiple impa
t
an be 
learly observed. This overestimation leads to an overestimation of thepost-impa
t momentum and kineti
 energy of the balls. It 
an be noted that themass of the balls 
onsidered in the numeri
al simulations might not mat
h thatin the experimental test. This might be also a sour
e of dis
repan
y betweenthe numeri
al and experimental result.4.3 Con
lusionsThe numeri
al results in �gures 5 and 6 
leary show that the LZB-
omplementaritymultiple impa
t model supersedes the binary 
ollision model employed in [19℄,see �gure 6 in that paper. In �gure 6 one sees that the post-impa
t velo
itiesare not well predi
ted for the �rst 4 balls (like in �gure 6.b in [19℄), despite this
omment should be mitigated in view of �gure 5 whi
h shows that the deviationis large only for the �rst ball. However for all the other balls the predi
tion isvery good (for the last two balls the experimental and numeri
al results are too
lose to be distinguishable).5 Simulations of the experimental tests in [18℄5.1 Des
ription of the experimental testsThe 
on�guration of the experimental tests performed by Melo et al. [18℄ isillustrated in �gure 7. A monodisperse 
hain 
omposed of 16 beads of diameter
Φo = 26 mm is pla
ed in front of a tapered 
hain. Two tapered 
hains areRR n° 7636
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Figure 6: Normalized post-impa
t velo
ity, momentum and kineti
 energy ofthe balls obtained in the experimental test and in the numeri
al simulationswith di�erent values for the restitution 
oe�
ient in the semilog s
ale.
onsidered: the �rst 
hain is 
omposed of 14 beads with the tapering fa
tor
q1 = 5.6% and the se
ond one is 
omposed of 12 beads with q2 = 8.27%. Beadsare high 
arbon hardened steel whose properties are as follows: mass density
ρ = 7780kg/m3, Young modulus E = 203 GPa, Poisson ratio ν = 0.3. Theimpa
tor is a smaller bead of diameter Φs = 8 mm.

Impa
tor Monodisperse 
hain Tapered 
hainFigure 7: Con�guration of the experimental test performed by Melo et al. [18℄.During the experimental tests, the for
e at a given 
onta
t in the monodis-perse 
hain is dire
tly mesured by a sensor that is inserted in one of two adja
entbeads at the 
onta
t. The for
e at a given 
onta
t in a tapered 
hain, for ex-ample the right 
onta
t of kth bead in the tapered 
hain, is indire
tly measuredas follows. First, the for
e at the end of a tapered sub-
hain 
omposed of 1, ...,
k tapered beads, pre
eded by the monodisperse 
hain, is measured by a sensormade of the same material as the beads and pla
ed at the end of the taperedsub-
hain. The measured for
e 
an be represented as:

Fwall = Fwall
m ψwall

( t− Twall

τwall

)

, (36)where Fwall
m is the maximum for
e, ψwall is a fun
tion satisfying 0 ≤ ψwall ≤ 1,

Twall is the time of �ight and τwall is the pulse duration. Similarly, the for
e atRR n° 7636
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k dynami
s in granular 
hains 19the right 
onta
t of the kth bead in the whole tapered 
hain 
an be representedas:
F chain = F chain

m ψchain
( t− T chain

τchain

)

. (37)From numeri
al simulations performed on a monodisperse 
hain 
omposed ofperfe
tly elasti
 beads followed by a rigid wall made of the same material as thebeads (this wall is 
onsidered as the sensor wall used in the experimental tests),Job et al. [14℄ have found the following relations:
Fwall

m ≈ 1.94 × F chain
m , τwall ≈ 1.09 × τchain. (38)Consequently, the for
e at the right 
onta
t of the kth bead in the whole ta-pered 
hain is obtained by s
aling the for
e pulse measured at the end of the
orresponding tapered sub-
hain as follows:

F chain =
Fwall

m

1.94
ψwall

(1.09(t− T chain)

τwall

)

. (39)It is impli
itly assumed in the s
aling relation (39) that the shape of the for
epulse at the right 
onta
t of the kth bead in the whole tapered 
hain is identi
alto that of the for
e pulse measured at the end of the 
orreponding tapered sub-
hain. The only di�eren
e between the for
e pulse at a 
onta
t in the wholetapered 
hain and at the end of the 
orresponding tapered sub-
hain is themaximum for
e and the duration.In order to 
he
k the a

ura
y of the s
aling relation shown in (38), �rst weperform a numeri
al simulation on a monodisperse 
hain 
omposed of 20 beadswithout 
onta
t with a rigid wall and 
ompute dire
tly the for
e pulse at theright 
onta
t of the 10th bead. Then we perform another numeri
al simulationon the monodisperse sub-
hain that 
orresponds to the right 
onta
t of the 10thbead (this sub-
hain is 
omposed of 10 beads) followed a rigid wall made of thesame material as the beads, and 
ompute the for
e pulse at the rigid wall. Asho
k is indu
ed at one end of ea
h 
hain by a smaller bead. Two values ofthe restitution 
oe�
ient es are used: es = 1.0 for perfe
tly elasti
 
ollisionsand es = 0.965 for non perfe
tly elasti
 
ollions (es = 0.965 is the value ofthe restitution 
oe�
ient obtained for the beads used in the experimental testspresented above by a �tting pro
edure that will be des
ribed in se
tion 5.2).We are interested in the relation between the for
e pulses 
omputed dire
tly atthe right 
onta
t of the 10th bead (
onta
t between the 10th bead- the 11thbead) in the �rst simulation and at the end of the sub-
hain (
onta
t betweenthe 10th bead and the wall) in the se
ond simulation. The results obtained fromthe numeri
al simulations are as follows:� for es = 1.0 we have Fwall
m ≈ 1.94 × F chain

m , τwall ≈ 1.09 × τchain, and
Twall ≈ 1.02 × T chain;� for es = 0.965 we have Fwall

m ≈ 1.93 × F chain
m , τwall ≈ 1.09 × τchain, and

Twall ≈ 1.02 × T chain.Furthermore, the shape of the for
e pulse at the 
onta
t in the 
hain is quiteidenti
al to that at the 
onta
t bead-wall for the two values of the restitution
oe�
ient, see �gure 8. Thus, the s
aling relation presented in (39) seemsto be good for a monodisperse 
hain 
omposed of perfe
tly elasti
 beads orRR n° 7636
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k dynami
s in granular 
hains 20inelasti
 beads with a small dissipation. However, in the 
ase of a tapered 
hain
omposed of possibly non perfe
tly elasti
 beads, su
h a s
aling relation mightlead to erroneous results be
ause the pulse tail is perturbed with os
illations bythe rigid wall. This point will be analyzed later in this paper.

(a) es = 1.0

(b) es = 0.965Figure 8: Normalized for
es pulse 
omputed at the right 
onta
t of 10th beadin a monodisperse 
hain of 20 beads and at the end of a monodisperse 
hain of10 beads in 
onta
t with a rigid wall made of the same material than the beads:(a) for the restitution 
oe�
ient es = 1.0 and (b) for es = 0.965.5.2 Fitting of parameters needed in numeri
al simulationsIn order to perform numeri
al simulations of the experimental tests des
ribedabove, in addition to the parameters given above, two other important param-eters are ne
essary: 
oe�
ient of restitution and impa
t velo
ity of the theimpa
tor, whi
h are not given in [18℄. It is thus ne
essary to determine thesetwo parameters by a �tting pro
edure. The experimental data used for the�tting pro
edure is the maximum 
onta
t for
e along the monodisperse 
hain,whi
h is extra
ted from �gure 5 in [18℄. It is worth noting that this experimentaldata is obtained by a dire
t measurement at the 
onta
ts in the monodisperseRR n° 7636
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hain without any extrapolation (the for
e at a given 
onta
t in the monodis-perse 
hain is re
orded by a sensor inserted in the left bead at the 
onsidered
onta
t). We 
arry out numeri
al tests with di�erent values of the 
oe�
ientof restitution, es, and of the impa
t velo
ity, Vin, on the monodisperse 
hainfollowed by the �rst tapered 
hain (14 beads with q1 = 5.6%). The �ttingpro
edure illustrated in �gure 9 
onsists in:� �rst varying the value of the restitution 
oe�
ient, es, from 1 to 0 so thatthe de
reasing tenden
y of the maximum for
e with the distan
e of the
onta
ts 
an be the best mat
hed;� then varying the value of the impa
t velo
ity Vin so that the experimetaldata 
an be quantitatively the best mat
hed.

Figure 9: Fitting of the 
oe�
ient of restitution es and of the impa
t velo
ity
Vin from the experimental data of the variation of the maximum for
e with thedistan
e of the 
onta
ts in the monodisperse 
hain.As shown in �gure 9, with es = 0.965 and Vin = 0.62 m/s the numeri
alresult �ts well to the experimental data. Hereafter, we 
arry out numeri
alsimulations on the 
onsidered tapered 
hains with these values.5.3 Numeri
al testsTwo granular 
on�gurations are 
onsidered in the numeri
al simulations. The�rst one is 
omposed of a monodisperse 
hain of 16 beads of diameter Φo =
26 mm, followed by a tapered 
hain of 14 beads with a tapering fa
tor q1 = 5.6%.For the se
ond one, we repla
e the tapered 
hain in the �rst one by a tapered
hain of 12 beads with q2 = 8.27%. In order to investigate the for
e pulses atthe 
onta
t points in these tapered 
hains, we perform two types of numeri
altests:RR n° 7636
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al tests of this type are performed on the wholemonodisperse 
hain, followed by tapered sub-
hains with the number ofbeads varying from n1 = 0 to n1 = 14 for q1 = 5.6%, and from n2 = 0 to
n2 = 12 for q2 = 8.27%. A rigid wall made of the same material as thebeads is pla
ed in 
onta
t with last beads in the tapered sub-
hains. Thistype of tests is illustrated in �gure 10.� Type 2: The numeri
al tests of this type are performed on the wholemonodisperse 
hain, followed by either the whole �rst tapered 
hain (14beads with q1 = 5.6%) or the whole se
ond tapered 
hain (12 beads with
q2 = 8.27%). For this type of tests, there is no rigid wall at the end of thetapered 
hains. Figure 7 illustrates this type of tests.With type 1 of numeri
al tests, we reprodu
e exa
tly what has been performedin the experimental pro
ess. The for
e pulse at a 
onta
t in the monodisperse
hain is dire
tly 
omputed, whereas the for
e pulse at a 
onta
t in the tapered
hain is extrapolated using the s
aling relation (39). This kind of tests allowsa dire
t 
omparison between the numeri
al and the experimental results. Inthe following, this method is referred to as "extrapolation method". Type 2of numeri
al tests is 
omplementary to type 1, for whi
h the for
e pulse at a
onta
t in the tapered 
hain is dire
tly 
omputed. In the following, this methodis referred to as "dire
t 
omputation method". Thanks to this type of numeri
altests, we 
an evaluate the a

ura
y of the te
hnique of measuring the for
e pulseat the 
onta
ts in a tapered 
hain 
arried out in [18℄.

Impa
tor Tapered sub-
hain
Wall

Monodisperse 
hain
n0 = 16 beads n1 beadsFigure 10: Numeri
al impa
t test on the monodisperse 
hain 
omposed of 16beads followed by a tapered sub-
hain 
omposed of n1 beads pla
ed in 
onta
twith a rigid wall.We perform numeri
al simulations by using the LZB-
omplementarity multi-ple impa
t model. The intera
tion at 
onta
ts between two beads is modeled bythe 
ompliant bi-sti�ness 
onta
t model with the elasti
ity 
oe�
ient η = 3/2.Parameters used in the numeri
al simulations are those given in [18℄ and by the�tting pro
edure: mass density ρ = 7780kg/m3, Young modulus E = 203 GPa,Poisson ratio ν = 0.3, 
oe�
ient of restitution es = 0.965, impa
t velo
ity

Vin = 0.62 m/s. The step size ∆P = 5 × 10−7 N.s is used to perform thenumeri
al simulations.
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hains 235.4 Comparison between numeri
al and experimental re-sults5.4.1 For
e pulses felt at the rigid wallIn �gure 11 (�gure 12, respe
tively) we 
ompare the for
e pulses 
omputed atthe rigid wall in the numeri
al tests of type 1 for di�erent tapered sub-
hainsof n1 beads with q1 = 5.6% (n2 beads with q2 = 8.27%, respe
tively) to thefor
e pulses re
orded at the rigid wall in the 
orresponding experimental tests.Figure 13 shows an overlap of all the for
e pulses shown in �gures 11 and 12 bynormalizing ea
h for
e pulse by its peak and 
onsidering the time s
ale (t−T )/τwhere T is the time of �ight and τ is the pulse duration.Some 
omments arise from �gures 11, 12 and 13:� The behaviour is well predi
ted qualitatively and quantitatively: the for
epulse peak de
reases when the length of the tapered sub-
hains (n1 or n2)in
reases. The peak magnitude of the numeri
al for
e pulses is quite 
loseto that of the experimental pulses.� The tail of the for
e pulses in
reases and os
illates more when the lengthof the tapered sub-
hains in
reases and when the tapering fa
tor in
reases.� In �gure 12 one sees that the tail os
illations for n2 ≥ 8 are very wellpredi
ted.� The pulse shape is too sharp (it has a too narrow base) in the simulations,i.e. the beginning of the tail is not perfe
tly reprodu
ed numeri
ally. Thisis visible also in �gure 13.� It is noteworthy that the front of the pulse remains almost un
hanged when
n1 or n2 is in
reased. This suggests that in 
ase of the tapered 
hain, thepulse 
onsists of the monodisperse pulse (a soliton) with a perturbationat the tail. This might be due to the presen
e of the rigid wall at the endof the tapered sub-
hains, that leads to a re�e
tion of the wave when itrea
hs this rigid wall.5.4.2 Maximum for
es at 
onta
tsAs presented in se
tion 5.1, in the experimental tests the for
e pulses at the
onta
ts in the 
onsidered tapered 
hains are not dire
tly re
orded. They areobtained by the extrapolation method with the s
aling relation (39). The max-imum for
e at a given 
onta
t in the tapered 
hains (F chain

m ) presented in �gure5 of [18℄ is thus the maximum for
e at the rigid wall measured in the testwith the 
orresponding tapered sub-
hain (Fwall
m ) divided by a redu
tion fa
torequal to 1.94. For instan
e, the maximum for
e at the right 
onta
t of the n1thbead in an entire tapered 
hain (tapering fa
tor q) (F chain

m (n1)) is 
omputedas F chain
m (n1) = Fwall

m (n1)/1.94 with Fwall
m (n1) being the maximum for
e mea-sured at the rigid wall in the test with the 
orresponding tapered sub-
hain of

n1 beads with the same tapering fa
tor q.In the numeri
al tests the maximum for
e at a given 
onta
t in the tapered
hain 
an be either 
omputed indire
tly by the same extrapolation method asin the experimental tests with the s
aling relation (39), or 
omputed dire
tly atRR n° 7636
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Figure 11: For
e pulses 
omputed at the rigid wall during the numeri
al testsof type 1 for di�erent tapered sub-
hains with n1 = 0, 2, 4, 6, 8, 10, 12 (left
olumn) 
ompared to for
e pulses measured dire
tly at the rigid wall in theexperimental tests [18℄ (right 
olumn) for q1 = 5.6%.RR n° 7636
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Figure 12: For
e pulses at the rigid wall during the numeri
al tests of type 1for di�erent tapered sub-
hains with n1 = 0, 2, 4, 6, 8, 10, 12 (left 
olumn)and for
e pulses measured dire
tly at the rigid wall in the experimental test [18℄(right 
olumn) for q2 = 8.27%.RR n° 7636
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(a) Numeri
al

(b) ExperimentalFigure 13: Collapse of the pulses presented in �gures 11 and 12 when the for
eis normalized to the maximum for
e, Fm, and the time s
ale is (t− T )/τ where
T and τ are the measured time of �ight and pulse duration, respe
tively. (a)for the numeri
al data and (b) for the experimental data.the 
onsidered 
onta
t in the numeri
al test of type 2. The numeri
al results
orresponding to the two types of tests are 
ompared to the experimental resultsas shown in �gure 14 for the two 
onsidered tapered 
hains with q1 = 5.6%(sub�gure 14a) and q2 = 8.27% (sub�gure 14b).As shown in �gure 14, the maximum for
es at the 
onta
ts in the tapered
hains obtained from the numeri
al simulations are quite 
lose to the experi-mental results for both extrapolation method and dire
t 
omputation method.However, it 
an be observed that the extrapolation method leads to a slightoverestimation of the maximum for
es 
omputed dire
tly at the 
onta
ts in thetapered 
hains. This dis
repan
y 
an be attributed to the redu
tion fa
tor of1.94 used in the s
aling relation (39). In fa
t, as analysed in se
tion 5.1, thisvalue is determined through numeri
al simulations performed on non-dissipativemonodisperse 
hains. Considering the same value for tapered 
hains is not rel-evant be
ause dynami
s of tapered 
hains is very di�erent from dynami
s ofmonodisperse 
hains. We might use the same redu
tion fa
tor for all the 
on-ta
ts in a monodisperse 
hain be
ause the 
ouple of beads in 
onta
t is thesame for all the 
onta
ts. However, for a tapered 
hain for whi
h the size of theRR n° 7636



Sho
k dynami
s in granular 
hains 27

(a) q1 = 5.6%

(b) q2 = 8.27%Figure 14: Maximum for
e versus the 
onta
t position obtained from the nu-meri
al simulations of the two types of tests, 
ompared to the experimentalresults. (a) for q1 = 5.6% and (b) for q2 = 8.27%. The symbols ⋄ and �represent respe
tively the maximum for
e at the 
onta
ts in the tapered 
hainsobtained with the extrapolation method with the s
aling relation (38) from themaximun for
e at the rigid wall 
omputed in the numeri
al tests of type 1, andwith the dire
t 
omputation at these 
onta
s in the numeri
al tests of type 2.The symbol • represents the experimental results.beads is in
reased, the 
ouple of beads in 
onta
t is di�erent from one 
onta
tto another. As a result, the redu
tion fa
tor might not be the same for all the
onta
ts in the tapered 
hain and might depend on the tapering fa
tor q.
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hains 285.4.3 Duration of the for
e pulse at 
onta
tsThe pulse duration τ is determined by �tting the Nesterenko solution
F (t) = Fmcos

6
( t− T

τ

)

, (40)to the experimental data for the pulse front. This method is used in [18℄.Similarly to the maximum 
onta
t for
e, the duration of the for
e pulse at agiven 
onta
t in a tapered 
hain is experimentally extrapolated from that ofthe for
e pulse measured at the rigid wall sensor, a

ording the s
aling relation
τchain(n1) = τwall(n1)/1.09. Here τwall(n1) is the duration of the for
e pulsemeasured at the rigid wall sensor in the test with a tapered sub-
hain 
omposedof n1 beads with the same tapering fa
tor q.In the numeri
al tests the duration of the for
e pulse at a given 
onta
t ina tapered 
hain 
an be either 
omputed indire
tly by the same extrapolationmethod as in the experimental tests, or 
omputed dire
tly at the 
onsidered
onta
t in the numeri
al test of type 2. The numeri
al results 
orrespondingto the two types of tests are 
ompared to the experimental results as shown in�gure 15 for the two 
onsidered tapered 
hains with q1 = 5.6% (sub�gure 15a)and q2 = 8.27% (sub�gure 15b).As shown in 15, the numeri
al results obtained with both extrapolationmethod and dire
t 
omputation method mat
h well the experimental results.The numeri
al simulations overestimate slightly the pulse durations obtainedin the experimental tests. We 
an note a slight dis
repan
y between the pulseduration obtained with the extrapolation method and that obtained from thedire
t 
omputation method. This dis
repan
y might be due to the same reasonsas those analyzed in se
tion 5.4.2. However, the dis
repan
y between these twomethods in terms of pulse duration is less signi�
ant than in terms of maximumfor
e.5.4.4 Wave speedThe speed of the wave when it passes through a given bead i is 
omputed as:

vi =
Φi

Ti − Ti−1
, (41)where Ti−1 and Ti are, respe
tively, the time of �ight at the left and right
onta
t of bead i whose diameter is Φi. Experimentally, the time of �ight at a
onta
t in the monodisperse 
hain is dire
tly measured by the sensor insertedin the left bead at the 
onsidered 
onta
t and the time of �ight at a 
onta
t ina tapered 
hain is measured by the sensor at the rigid wall in the test with the
orresponding tapered sub-
hain. Numeri
ally, the time of �ight of the for
epulse at a given 
onta
t in a tapered 
hain 
an be either 
omputed at the rigidwall in the 
orresponding test of type 1 or 
omputed dire
tly at the 
onsidered
onta
t in the the test of type 2. The numeri
al results 
orresponding to thetwo types of tests are 
ompared to the experimental results as shown in �gure16 for the two 
onsidered tapered 
hains with q1 = 5.6% (sub�gure 16a) and

q2 = 8.27% (sub�gure 16b).We 
an see in �gure 16 the wave speed obtained numeri
ally with the time of�ight 
omputed at the rigid wall in the numeri
al tests of type 1 (extrapolationRR n° 7636
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(a) q1 = 5.6%

(b) q2 = 8.27%Figure 15: Duration of the for
e pulse versus the 
onta
t position obtained fromthe numeri
al simulations of the two types of test, 
ompared to the experimentalresults. (a) for q1 = 5.6% and (b) for q2 = 8.27%. The symbols ⋄ and �represent, respe
tively, the duration 
omputed indire
tly by the s
aling relation(38) from the duration 
omputed at the rigid wall in the numeri
al tests oftype 1, and the duration 
omputed dire
tly at the 
onta
t in the 
hains in thenumeri
al tests of type 2. The symbol • represents the experimental results.method) is very 
lose to that obtained with the time of �ight 
omputed dire
tlyat the 
onta
ts in the tapered 
hains in the numeri
al tests of type 2. This is notsurprising sin
e the time of �ight T chain for a pulse to rea
h a given 
onta
t in atapered 
hain is very 
lose to the time of �ight Twall for the same pulse to rea
hthe rigid wall that is pla
ed at the end of the 
orresponding tapered sub-
hain.As shown in se
tion 5.1, for monodisperse 
hains Twall ≈ 1.02×T chain. Indeed,to rea
h a given 
onta
t in the tapered 
hains, the waves in both types of nu-RR n° 7636
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(a) q1 = 5.6%

(b) q2 = 8.27%Figure 16: Wave speed versus the 
onta
t position obtained from the numeri
alsimulations of the two types of tests, 
ompared to the experimental results.(a) for q1 = 5.6% and (b) for q2 = 8.27%. The symbols ⋄ and � represent,respe
tively, the wave speed 
omputed from the time of �ight of the for
e pulseat the rigid wall for the numeri
al tests of type 1, and from the time of �ightat the 
onta
t in the 
hains for the numeri
al tests of type 2. The symbol •represents the experimental results.meri
al tests have to travel on the same monodisperse 
hain and than on thesame tapered sub-
hain 
orresponding to the 
onsidered 
onta
t. It 
an be ob-served that the numeri
al simulations 
an predi
t qualitatively the a

elerationof the wave when travelling in the tapered 
hains. Nevertheless, the dis
repan
ybetween the wave speed obtained from the numeri
al simulations and the wavespeed measured in the experimental tests is signi�
ant for the tapered 
hainwith q2 = 8.27%. It is worth noting that the experimental data on the waveRR n° 7636
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(a) q1 = 5.6%

(b) q2 = 8.27%Figure 17: Experimental data on the wave speed presented in [18℄. (a) for
q1 = 5.6% and (b) for q2 = 8.27%.speed presented in [18℄ is not reliable, due to a very large relative errors whenestimating the wave speed from the time of �ight di�eren
e, as shown in �gure17. In order to 
apture the 
entral tenden
y from the experimental data, theauthors in [18℄ use a smoothing pro
edure. The smoothing pro
edure 
onsistsin �tting the relation vi = Qvi−1 with Q being a 
onstant to the experimentaldata. The relation vi = Qvi−1 results from the so-
alled quasi-solitary waveapproximation 
ombined with binary 
ollision model. The a

ura
y of su
h arelation is questionable. The experimental data that we show in �gure 16 isthe result of this smoothing pro
edure so the results should be 
onsidered at aqualitative level rather than a quantitative level 
on
erning the wave speeds.
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hains 325.4.5 Impulses for the front and for the tail of the pulseImpulses for the front (PF ) and for the tail (PT ) of a for
e pulse are de�ned asfollows:
PF =

∫ T+τ

−∞

F (t)dt, (42)
PT =

∫ +∞

T+τ

F (t)dt. (43)In the 
ase that the for
e pulse at a 
onta
t in the tapered 
hains is extrapolatedwith the s
aling relation (39), the impulses PF and PT for the 
onsidered 
onta
tare 
omputed as follows:
P chain

F =

∫ T chain+τchain

−∞

F chain(t)dt =
1

1.09 × 1.94

∫ T wall+τwall

−∞

Fwall(t)dt

=
1

1.09 × 1.94
Pwall

F , (44)
P chain

T =

∫

∞

T chain+τchain

F chain(t)dt =
1

1.09 × 1.94

∫

∞

T wall+τwall

Fwall(t)dt

=
1

1.09 × 1.94
Pwall

T . (45)Let us �rst 
ompare the front impulse PF and the tail impulse PT obtainedby the extrapolation method des
ribed above in the numeri
al tests of type 1and in the experimental tests. From a qualitative point of view, the numeri
alsimulations predi
t rather well the evolution of the front and tail impulses atthe 
onta
ts in the monodisperse and tapered 
hains, as shown in �gure 18.However, there is a dis
repan
y between the numeri
al and experimental results:the numeri
al simulations underestimate the front impulse PF and overestimatethe tail impulse PT . This dis
repan
y 
an be also observed for the 
onta
ts inthe monodisperse 
hain for whi
h the maximum 
onta
t for
e and the durationof the for
e pulse �t rather well to the experimental ones (see �gures 14 and 15),whi
h is likely due to the di�eren
e between the numeri
al pulse shape and theexperimental one. This dis
repan
y be
omes more signi�
ant at the 
onta
ts inthe tapered 
hains (
onta
t positions ≥ 0.45 m), whi
h is essentially due to thedis
repan
ies in terms of maximum for
e and pulse duration obtained with theextrapolation method in the numeri
al tests of type 1 and in the experimentaltests. Pra
ti
ally, the for
e pulse is re
orded in the experimental tests using ahigh frequen
y measurement with a �xed set of points. This te
hnique allowsthe pulse front to be fully re
orded (high pre
ision) but not the pulse tail (thevery end of pulse tail is not re
orded). Consequently, it is di�
ult to 
omparethe tail impulse PT for the experimental pulses that are not fully re
orded tothe tail impulse PT for the numeri
al pulses that are fully 
omputed in thenumeri
al tests of type 1.Now we 
ompare the front impulse PF and the tail impulse PT at the 
onta
tsin the tapered 
hains obtained with the extrapolation method in the numeri
altests of type 1 to those obtained with the dire
t 
omputation method in theRR n° 7636
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al tests of type 2. We re
all that for the dire
t 
omputation method,�rst we 
ompute dire
tly the for
e pulses at the 
onta
ts in the tapered 
hainsduring the numeri
al tests of type 2, and then we integrate these for
e pulsesto obtain the front and tail impulses, as shown in equations (42) and (43). As
an be seen in �gure 18, the front impulses PF obtained with both methods arequite 
lose whereas the tail impulses PT are very di�erent. The tail impulse
PT obtained with the dire
t 
omputation method is very small with respe
tthat obtained with the extrapolation method. This result shows that the tailof the pulse at a 
onta
t in a tapered 
hain obtained by extrapolating thepulse 
omputed at the rigid wall in the numeri
al tests of type 1 is mu
h morepronoun
ed than that obtained by 
omputing dire
tly at the 
onsidered 
onta
tin the numeri
al tests of type 2. We will analyze this point in the next se
tion.5.4.6 For
e pulses obtained from the dire
t 
omputationWe analyze numeri
ally whether or not the experimental measurement te
h-nique des
ribed in se
tion 5.1 allows to 
apture the for
e pulse propagating in atapered 
hain. We re
all that the for
e pulse at a 
onta
t in a tapered 
hain isexperimentally measured by extrapolating using the s
aling relation (39). Forthis obje
tive we will 
ompare the for
e pulses at the 
onta
ts in the 
onsid-ered tapered 
hains obtained by the extrapolation method and by the dire
t
omputation method. As shown in �gure 14, the extrapolation method leadsto a slight overestimation of the maximum for
e 
omputed dire
tly at the 
on-ta
ts. In terms of duration and of speed of the pulse, the extrapolation givesresults that are 
lose to those 
omputed dire
tly at the 
onta
ts in the tapered
hains, as shown in �gures 15 and 16. In �gure 19, we 
ompare the shape ofthe for
e pulses obtained by the extrapolation method in the numeri
al testsof type 1 (a rigid wall is pla
ed at the end of tapered sub-
hains ) and by thedire
t 
omputation method in the numeri
al tests of type 2 (the whole tapered
hains are 
onsidered without rigid wall at the their end). As 
an be seen in this�gure, the fronts of the for
e pulses obtained by the extrapolation method aresimilar to those obtained from the dire
t 
omputation method. However, thetail of the for
e pulses obtained by the extrapolation method is mu
h more pro-noun
ed than that obtained by the dire
t 
omputation method. It 
an be alsonoted that for the for
e pulses obtained from the dire
t 
omputation method,their tail is very small 
ompared to their front. This is the reason why whenthe for
e pulses 
omputed dire
tly at the 
onta
ts in the tapered 
hains, thetail impulse PT is negligeable with respe
t to the front impulse PF as shownin �gure 18. In fa
t, in the numeri
al tests of type 2 for whi
h no rigid wall ispla
ed at the end of the tapered 
hains, a pulse initiated at the largest end of thetapered 
hains propagates down the 
hains and 
omes out of the 
hains with-out re�e
tion. Consequently, the for
e pulse at a given 
onta
t in the tapered
hains 
orresponds to a 
oming-in and a 
oming-out of the wave when it passesthrough the 
onsidered 
onta
t (a 
ompression phase followed by an expansionphase). In the numeri
al tests of type 1 for whi
h a rigid wall is pla
ed aftertapered sub-
hains, the pulse will hit the rigid wall and then will re�e
t. Thepulse after re�e
tion propagates in the dire
tion of an in
reasing bead diameter(we 
an 
onsider this 
ase as a pulse propagating in an anti-tapered 
hain).For su
h a 
on�guration, part of pulse propagates toward the largest end andpart is re�e
ted on
e again toward the rigid wall. Consequently, the for
e pulseRR n° 7636
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(a) q1 = 5.6%

(b) q2 = 8.27%Figure 18: Impulses for the front (PF ) and for the tail (PT ) of the pulse versusthe 
onta
t position obtained from the numeri
al simulations of the two typesof test, 
ompared to the experimental result. (a) for q1 = 5.6% and (b) for
q2 = 8.27%. The symbols ⋄ and � represent, respe
tively, the wave speed
omputed from the time of �ight of the for
e pulse at the rigid wall for thenumeri
al tests of type 1, and from the time of �ight at the 
onta
t in the 
hainsfor the numeri
al tests of type 2. The symbol ◦ represents the experimentalresults. (a) for q1 = 5.6% and (b) for q2 = 8.27%.
omputed at the end of the rigid wall 
orresponds to various 
oming-in and re-�e
tion travels (multiple 
ompression and expansion phases whi
h 
an be takeninto a

ount with the LZB-
omplementarity multiple impa
t model). The wellRR n° 7636
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(a) q1 = 5.6% (b) q2 = 8.27%Figure 19: Overlap of for
e pulses 
omputed dire
tly at 
onta
ts in tapered
hains in the numeri
al tests of type 2 and extrapolated from for
e pulses atthe end of the rigid wall in the numeri
al tests of type 1. For
e is normalizedby the maximum for
e and the time s
ale is (t−T )/τ (a) for q1 = 5.6% and (b)for q2 = 8.27%.pronoun
ed tails of the for
e pulses in this 
ase are 
ertaintly due to this 
om-plex phenomenon. Therefore the for
e pulses 
omputed dire
tly at the 
onta
tsin the 
onsidered tapered 
hains in the numeri
al tests of type 2 and those ex-trapolated from the for
e pulses 
omputed at the rigid wall in the numeri
altests of type 1 do not result from the same physi
al phenomenon, in parti
ularfor the tails. These numeri
al results show that the well pronoun
ed tails ofthe for
e pulses obtained in the experimental tests shown in [18℄, in parti
ularthe os
illations at the tails result, on one hand, from the me
hani
al e�e
ts oftapered 
hains and, on the other hand, from the presen
e of a rigid wall pla
edat the end of tapered sub-
hains.5.4.7 Con
lusionsIn se
tions 5.4.2, 5.4.3, 5.4.4, 5.4.5, 5.4.6, we 
ompare the features of the for
epulses propagating in two tapered 
hains with tapering ratio q1 = 5.6 and
q2 = 8.27% su
h as the pulse shape, the amplitude, the pulse duration, theRR n° 7636
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hains 36propagation speed, the front and tail impulses obtained from the experimen-tal tests presented in [18℄ and from the numeri
al simulations with the LZB-
omplementarity model. In the experimental tests, the for
e pulse at a 
onta
tin a given tapered 
hain is obtained by extrapolating the for
e pulse measured ata rigid wall that is pla
ed at the end of the tapered sub-
hain 
orresponding tothe 
onsidered 
onta
t (extrapolation method). In the numeri
al simulations,we 
arried out the same tests as the experimental ones. We also 
arried outnumeri
al tests on the whole 
onsidered tapered 
hain for whi
h the for
e pulseat a 
onta
t in the tapered 
hain 
an be 
omputed dire
tly (dire
t 
omputationmethod). In fa
t, the impa
t velo
ity and the resitution 
oe�
ient are not avail-able in [18℄, so we determined these parameters by the �tting pro
edure. The�tting pro
edure is performed in order to mat
h the experimental data availablefor the monodisperse 
hain presented in [18℄. The obtained values for the impa
tvelo
ity and the restitution 
o�
ient are then used to simulate the 
onsideredtapered 
hains. Comparing the numeri
al results to the experimental ones andthe numeri
al results obtained by the extrapolation method to those obtainedby the dire
t 
omputation method, the following 
on
lusions 
an be drawn:� The numeri
al simulations 
an reprodu
e rather well the features of for
epulses (front, amptitude, duration, the tail, the os
illations at the tail,et
.) observed in the experimental tests. More pre
isely, the amptitudeand the duration of for
e pulses are quantitatively well predi
ted.� The wave speed measured experimentally is qualitatively well predi
tedby the numeri
al simulations. However, it is not suitable to 
omparequantitatively the wave speed obtained from the experimental tests tothose obtained from the numeri
al simulations be
ause the experimentalte
hnique of measuring the wave speed gives large errors.� The front and tail impulses are qualitatively well predi
ted by the numer-i
al simulations. Quantitatively the numeri
al simulations underestimatethe front impulse and overestimate the tail impulse obtained from the ex-perimental tests. The overestimation of the tail impulse by the numeri
alsimulations might result from the fa
t that the tail of the for
e pulses isnot fully re
orded in the experimental tests whereas it is fully 
omputedin the numeri
al simulations.� The tail of the for
e pulses obtained numeri
ally from the dire
t 
ompu-tation method is very small 
ompared to that obtained from the extrapo-lation method. The well pronoun
ed tail of the for
e pulses obtained fromthe extrapolation method in the numeri
al simulations and in the exper-imental tests might due to partly the presen
e of the rigid wall pla
ed atthe end of the tapered sub-
hains. Therefore, it is likely that the measure-ment te
hnique des
ribed in [18℄ is not suitable to investigate the for
epulses that a
tually are exerted at the 
onta
ts in a free tapered 
hain.6 Simulation of impa
t dynami
s within stepped
hainsIn this se
tion, we turn our attention to impa
t dynami
s within stepped 
hains,whi
h are 
omposed of a monodisperse se
tion of large beads followed by aRR n° 7636
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hains 37monodisperse se
tion of small beads. A typi
al feature of these granular 
hainsis that a solitary wave (SW) propagating in the large se
tion turns into a soli-tary wave train (SWT), 
ontaining many signle solitary waves with de
reasingamplitudes when it passes though the small se
tion. Su
h a SWT has been �rstobserved in the experimental tests presented in [27, 28℄ when a large enoughstriker impa
ts a small monodisperse 
hain. The formation of the SWT hasbeen numeri
ally 
on�rmed in [31℄. Job et al. have been 
arried a series ofexperimental tests on stepped 
hains and have put in eviden
e the formation ofthe SWTs within su
h granular 
hains. In the following, we present the numeri-
al results obtained from the simulations of the tests in [31℄ performed with theLZB-
omplementarity multiple impa
t model.6.1 Test 
on�gurationThe 
onsidered granular 
hains is 
omposed of two se
tions: the �rst se
tion
ontains 7 large beads of radius R1 = 13 mm and the se
ond se
tion 
ontainsup to 50 small beads of radius R2 = 6.5 mm. The beads in the 
hain areinitially stationary and barely tou
h ea
h other. The 
hains are then impa
tedat one end by a striker of radius Rs = 6.5 mm. The beads in the 
hains andthe striker are made of high 
arbon 
hrome hardened steel with the followingproperties: Young modulus E = 203 GPa, Poisson 
oe�
ient ν = 0.3 and themass density ρ = 7780 kg/m3. The wall is assumed to be made of the samematerial as the beads in the 
hains. Aside from the parameters given in [30℄,we need to know the restitution 
oe�
ient and the impa
t velo
ity in order toperform the numeri
al simulations. These parameters will be determined by a�tting pro
edure. Two ways are 
onsidered:� in the �rst way, we assume that the 
onstitutive material of the beadsis purely elasti
. This means that there is no energy dissipation during
ollisions (es = 1.0). In this 
ase, we 
hange the impa
t velo
ity in su
ha way that the maximum for
e of the in
ident wave (wave before theinterfa
e) obtained from the numeri
al simulations �ts to the experimentalresults shown in �gure 2.a in [30℄. We obtain an impa
t velo
ity Vin =
0.31 m/s.� in the se
ond way, we 
hange both the restitution 
oe�
ient and the im-pa
t velo
ity su
h that the �rst peak of the solitary wave trains shown in�gures 2.b and 2.
 in [30℄ 
an be reprodu
ed from the numeri
al simula-tion. In this 
ase, we obtain es = 0.98 and Vin = 0.40m/s. The value ofthe restitution 
oe�
ient obtained here is in a

ordan
e with the range ofthe restitution 
oe�
ient obtained experimentally for steel beads (around0.95) and 
lose to the value that we obtained from the �tting pro
edurepresented in se
tion 5 for beads made of the same material (es = 0.965).In the sequel, we will present numeri
al results obtained with two 
ouplesof parameters (es = 1.0, Vin = 0.31 m/s) and (es = 0.98, Vin = 0.40 m/s) forthe restitution 
oe�
ient and the impa
t velo
ity. The numeri
al simulationsare performed with the bisti�ness 
omplian
e 
onta
t model and the step size

∆P = 10−6 N.s.RR n° 7636
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Impa
tor Small beadsLarge beads

Wall

Figure 20: Numeri
al impa
t test on a stepped 
hain 
omposed of two se
tions:large beads are in the �rst se
tion and small beads are in the se
ond se
tion.6.2 Numeri
al result with es = 1.0 and Vin = 0.31 m/sAs 
an be seen in �gure 21, the solitary wave train is well reprodu
ed in thenumeri
al simulations for the stepped 
hains. The times of �ight for the SWand the SWTs to rea
h the wall and the times of �ight of SWs in SWTs inthe numeri
al simulations are in good a

ordan
e with the exprimental data.Moreover, the duration of ea
h SW in the SWTs is 
lose to the experimentalduration. However, the number of signi�
ant SWs in the SWTs obtained fromthe numeri
al simulations is higher than that found in the experimental tests(about 7 in the numeri
al simulations and 5 in the experimental tests). Thismight be due to the e�e
t of fri
tion between the beads and the rail that is nottaken into a

ount in the numeri
al simulations. For the �rst SWT obtainedwith 25 small beads, the for
e amplitude of SWs �ts very well to the experimentaldata (see �gure 22a) but this is less good for the se
ond SWT obtained with50 small beads (see �gure 22b). We 
an see that, in the experimental data thefor
e amplitude of SWs in the se
ond SWT is redu
ed in 
omparison with the�rst SWT. This is natural sin
e the SWT has to travel a longer distan
e beforerea
hing the wall and the SWT is attenuated by the dissipative me
hanismsat the 
onta
t points. In the present simulations, this dissipation is not takeninto a

ount, this is the reason why the se
ond SWT is quite similar to the �rstSWT. To better reprodu
e the se
ond SWT, it is ne
essary to introdu
e thedissipation into the numeri
al simulation.In �gure 23, we 
ompare the for
e pulse at the interfa
e obtained from thenumeri
al simulations to that obtained from the experimental tests. It 
anbe seen that the numeri
al simulations give a result that is quite similar tothe experimental one. The numeri
al for
e amplitude at the interfa
e is lowerthan the experimental for
e amplitude. The ratio of the for
e amplitude at theinterfa
e to the in
ident for
e amplitude is equal to 0.36 in the experimentaltest whereas a value of 0.31 is found in the numeri
al simulations.6.3 Numeri
al results with es = 0.98 and Vin = 0.40 m/sAs shown in �gure 24, when the dissipation is introdu
ed into the numeri
alsimulations by using the restitution 
oe�
ient e∗ = 0.98, the SWT is attenu-ated when it travels in the 
hain (in �gure 21 the peaks of the SWT remain
onstant while in �gure 24 the peaks of the SWT de
rease signi�
antly). Fig-ures 25 
ompares the for
e at the peaks in the �rst SWT (�gure 25a) and inthe se
ond SWT (�gure 25b) obtained from the numeri
al simulations and fromthe experimental tests. We 
an see that the numeri
al simulations with thelo
al dissipation give a result that �ts well to the experimental data ex
eptRR n° 7636
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(a) numeri
al result

(b) experimental resultFigure 21: Solitary wave and solitary wave trains in stepped 
hains obtainedfrom the numeri
al simulations (a) and from the experimental tests [30℄ (b).First row 
orresponds to the for
e re
orded at the end of a monodisperse 
hain
omposed of 7 beads of radius R1 = 13mm. Se
ond (resp. last) row 
orrespondsto the for
e re
orded at the end of a stepped 
hain 
omposed of 7 beads of radius
R1 = 13 mm and 25 (resp. 50) beads of radius R2 = 6.5 mm. The numeri
alsimulations are performed with es = 1.0 and Vin = 0.31 m/s.some small peaks in the end of SWTs. However, introdu
ing the lo
al dissipa-tion (es = 0.98) overestimates the in
ident for
e re
orded before the interfa
e(shown in the �rst row of �gure 24).The in
ident for
e and the for
e at the interfa
e obtained from the numeri
alsimulations with the 
ouple of parameters (es = 0.98 and Vin = 0.40 m/s) areshown in �gure 26. The for
e amplitude at the interfa
e obtained from thenumeri
al simulations (23 N) is higher than the experimental data (20 N). InRR n° 7636
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(a) with 25 beads of R2 = 6.5 mm

(b) with 50 beads of R2 = 6.5 mmFigure 22: For
e at the peaks in the solitary wave train obtained from thenumeri
al simulations, 
ompared to the experimental data for the solitary wavetrain at the end of the stepped 
hain with 25 beads of R2 = 6.5 mm (a) and50 beads of R2 = 6.5 mm (b). The numeri
al simulations are performed with
es = 1.0 and Vin = 0.31 m/s.the other hand, the ratio of the for
e amplitude at the interfa
e to the in
identfor
e amplitude obtained from the numeri
al simulations (0.3) is lower than thatobtained from the experimental tests.6.4 Con
lusionsIn this se
tion, we simulated impa
t dynami
s of stepped 
hains. This kind ofgranular 
hains generate the solitary wave trains (SWTs) that are 
omposedof a set of solitary waves with de
reasing amplitude. The simulations are per-formed for two 
ases without or with lo
al dissipation at 
onta
t points. As awhole, the numeri
al simulations reprodu
e rather well the SWTs observed inthe experimental tests presented in [30℄. The times of �ight of the SWTs andof SWs in SWTs are in good a

ordan
e with the experimental data. In the
ase without lo
al dissipation, the peaks of �rst SWTs shown in [30℄ are wellRR n° 7636



Sho
k dynami
s in granular 
hains 41

(a) numeri
al results
(b) experimental resultsFigure 23: The in
ident for
e (at the 
onta
t before the interfa
e) and thefor
e at the interfa
e obtained from the numeri
al simulation with es = 1.0 and

Vin = 0.31 m/s (a) and the experimental test (b).mat
hed by the numeri
al results but for se
ond SWT in [30℄ the numeri
alsimulations give a signi�
ant dis
repan
y. When the lo
al dissipation is intro-du
ed in the numeri
al simulations, both two SWTs are well mat
hed by thenumeri
al results. When 
omparing the in
ident for
e pulse and the for
e pulseat the interfa
e obtained from the numeri
al simulations to the experimentalones, it is observed that the numeri
al simulations with or without lo
al dissi-pation overestimate the in
ident amplitude and underestimate the ratio of theamplitude at the interfa
e to the in
ident amplitude.7 Intera
tion of two solitary waves in monodis-perse 
hainsWe now turn our attention to the intera
tion of two solitary waves in monodis-perse 
hains. This problem has been numeri
ally investigated in [33℄ and in [16℄and experimentally investigated in [32℄. In [32℄, the authors have 
ondu
ted ex-perimental tests on two monodisperse 
hains 
omposed of 25 of 26 steel beads ofradius R = 13 mm (odd 
hain and even 
hain). Bead properties are as follows:density ρ = 7780 kg/m3, Young's modulus E = 203 GPa and Poisson ratio
ν = 0.3. Initially the beads in the 
hains barely tou
h ea
h other. Then the
hains are impa
ted simultaneously at the two ends by two identi
al strikers ofRR n° 7636
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Figure 24: Solitary wave and solitary wave trains in stepped 
hains obtainedfrom the numeri
al simulations. First row 
orresponds to the for
e re
orded atthe end of a monodisperse 
hain 
omposed of 7 beads of radius R1 = 13 mm.Se
ond (resp. last) row 
orresponds to the for
e re
orded at the end of a stepped
hain 
omposed of 7 beads of radius R1 = 13 mm and 25 (resp. 50) beads ofradius R2 = 6.5 mm. The numeri
al simulations are performed with es = 0.98and Vin = 0.40 m/s.radius Rs = 4 mm. The 
onta
t for
e indu
ed by the sho
ks is measured by thefor
e sensors inserted inside beads 9 and 17.7.1 Numeri
al simulationsWe perform here numeri
al simulations of the experimental tests des
ribedabove. The granular 
hains under 
onsideration are identi
al to those in theexperimental tests. In [32℄ the impa
t velo
ity Vin for ea
h impa
tor and the
oe�
ient of restitution es are not given. Therefore we pro
eed a �tting pro-
edure to determine these parameters. In fa
t, we have the experimental dataabout the test for whi
h only one solitary wave is generated along the same gran-ular 
hains. This solitary wave is 
onsidered as "the referen
e solitary wave"and is shown in �gure 2 in [32℄. Based on this referen
e solitary wave, we 
andetermine the impa
t velo
ity and 
oe�
ient of restitution by varying them insu
h a way that the amplitude of the referen
e solitary wave when it passesthrough beads 9 and 17 is reprodu
ed in the 
hains of 25 and 26 beads. Fromthe �tting pro
edure, we obtain a restitution 
oe�
ient es = 0.93 for both
hains and an impa
t velo
ity Vin = 0.31m/s for the 
hain of 25 beads and
Vin = 0.40m/s for the 
hain of 26 beads. Table 1 shows the for
e amplitudeat the right 
onta
t of bead 9 and at the left 
onta
t of bead 17 obtained fromthe numeri
al simulation for the two 
hains with the parameters obtained fromthe �tting pro
edure, 
ompared to the experimental data. It is worth mention-ing that the 
oe�
ient of restitution obtained here is a little lower than thatobtained in se
tion 5 (es = 0.965). This is likely due to the fri
tion betweenthe beads and the support in the experimental setup that is not taken into a
-RR n° 7636
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(a) with 25 beads of R2 = 6.5 mm

(b) with 50 beads of R2 = 6.5 mmFigure 25: For
e at the peaks in the solitary wave train obtained from thenumeri
al simulations, 
ompared to the experimental data for the solitary wavetrain at the end of the stepped 
hain with 25 beads of R2 = 6.5 mm (a) and50 beads of R2 = 6.5 mm (b). The numeri
al simulations are performed with
es = 0.98 and Vin = 0.40 m/s.
ount in the LZB-
omplementarity model without fri
tion. In fa
t, in the latter
ase the �tting pro
edure is applied over a length of about 8 beads whereas thelength in the former 
ase is about 17 beads. Thus the solitary wave travels alonger distan
e in the former 
ase than in the latter 
ase, and so the dissipationdue to fri
tion might play a more important role in the former 
ase than in thelatter 
ase. For the numeri
al simulations, the bisti�ness 
omplian
e 
onta
tmodel is 
onsidered and the step size is ∆P = 10−6 N.s.7.2 Numeri
al resultsThe two solitary waves before and after the intera
tion between them obtainedfrom the numeri
al simulations for the odd and even 
hains are shown in �gure28a, 
ompared to the experimental data shown in �gure 28b. The solitary wavethat is initiated at the left end (resp. right) of the 
hains is 
alled the left-handRR n° 7636
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Figure 26: The in
ident for
e (at the 
onta
t before the interfa
e) and the for
eat the interfa
e obtained from the numeri
al simulations with es = 0.98 and
Vin = 0.40 m/s

Impa
tor Impa
torMonodisperse 
hainFigure 27: Numeri
al test of solitary waves intera
tion in a monodisperse 
hain.Two solitary waves are initiated simultaneously at both ends of the 
hain bytwo indenti
al impa
tors.Chain of Parameters Numeri
al data Experimental data25 beads Vin = 0.31 m/s Fm(n = 9) = 8.5N Fm(n = 9) = 8.2N
es = 0.93 Fm(n = 17) = 6.5N Fm(n = 17) = 6.2N26 beads Vin = 0.40 m/s Fm(n = 9) = 11.6N Fm(n = 9) = 11.1N
es = 0.93 Fm(n = 17) = 8.8N Fm(n = 17) = 9.2NTable 1: For
e amplitude at the right 
onta
t of bead n = 9 and the left 
onta
tof bead n = 17 obtained from the numeri
al simulations with monodisperse
hains of 25 and 26 beads, 
ompared to the experimental data. The parametersused for ea
h 
hain are shown in the se
ond 
olumn of this table.(resp. right-hand) side travelling wave (LSTW, resp. RSTW). It is shown thaton the whole the numeri
al simulations reprodu
e rather well what happenswhen two solitary waves 
ollide in a monodisperse 
hain. For the odd 
hain,LSTW arrives to the bead 17 with a time delay ∆ = 35.5µs with respe
t tothe referen
e solitary wave, 
lose to the value ∆ = 32.5µs obtained from theexperimental test. The amplitude of LSTW at this instant is about 7.0 N,
ompared to the experimental value of 6.2 N. SSWs with small amplitude arenot 
learly observed for this odd 
hain in the numeri
al simulations and as weelin the experimental tests (the amplitude of the SSWs is very small). In the otherhand, we 
an observe 
learly two SSWs after the 
ollision of the two solitarywaves LSTW and RSTW for the even 
hain in the numeri
al simulations andin the experimental tests. The amplitude of the SSWs (about 0.32N) is smallerRR n° 7636
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asethat two SWs 
ollide in an even 
hain is stronger than in an odd 
hain. Thisobservation has been 
on�rmed in [33℄. The time delay of LSTW with respe
t tothe referen
e SW for the even 
hain is about 33.7µs, 
lose to the experimentalvalue of 31.7µs. A dis
repan
y between the numeri
al simulations and theexperimental tests 
an be observed when 
omparing the amplitude of LSTWafter 
ollision for the even 
hain. In the numeri
al simulations the amplitude ofLSTW after 
ollision is 
lose to that of the referen
e SW but in the experimentaltests the former is signi�
antly lower than the latter. In [32℄ the authors havealso performed numeri
al simulations based on the se
ond order equation ofmotion, the Hertz 
onta
t model. The lo
al dissipation at the 
onta
ts pointsis taken into a

ount by using a nonlinear vis
oelasti
 solid model [36℄. Thenumeri
al results obtained from this simulation is shown 29. When 
omparingthe numeri
al results obtained from the numeri
al simulations performed withthe LZB-
omplementarity model whi
h takes into a

ount the lo
al dissipationby using the energeti
 restitution 
oe�
ient (shown in 28a) and the numeri
alresults in [32℄ (shown in 29), we 
an see that the �rst ones mat
h better theexperimental data than the se
ond ones. Furthermore, the SSWs are more
learly observed in the simulations with the LZB-
omplementary model than inthe simulations in [32℄.7.3 Con
lusionsWe investigate in this se
tion the intera
tion between two solitary waves (SWs)propagating in monodisperse 
hains by performing the numeri
al simulationsand 
ompare the numeri
al results obtained to the experimental data avail-able in [32℄. It is found out that the numeri
al simulations with the LZB-
omplementarity multiple impa
t model are able to well reprodu
e the e�e
tswhen two SWs 
ollide. The time delay that results from the 
ollision of two SWsand the amplitude of the SWs after 
ollision found in the experimental tests arewell mat
hed by the numeri
al results. The se
ondary solitary waves (SSWs)that are generated after 
ollision 
an be observed in the numeri
al tests for themonodisperse 
hains 
omposed of an even number of beads. However, theseSSWs are signi�
antly smaller than those observed in the experimentals tests.The numeri
al simulations with LZB-
omplementarity multiple impa
t modelgive the results that mat
h better the experimental data than the numeri
alsimulations performed in [32℄ that take into a

ount the lo
al dissipation by anonlinear vis
oelasti
 solid model.8 General 
on
lusionsIn this work, we present the numeri
al simulations of impa
t dynami
s for granu-lar 
hains performed with the LZB-
omplementarity multiple impa
t model thatis implemented with the event-driven numeri
al s
heme in the Si
onos plat-form. Di�erent kinds of granular 
hains are 
onsidered: monodisperse 
hains,tapered 
hains, stepped 
hains. We fo
us on analyzing the impa
t pro
ess inthese granular 
hains by striking them at one end or at both ends. We also
ompare the numeri
al results obtained to the experimental results presentedin [19℄, [18℄, [30℄, [32℄. In some 
ases, some parameters ne
essary to performRR n° 7636
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(a) numeri
al result

(b) experimental resultFigure 28: Intera
tion of two solitary waves in monodisperse 
hains obtainedfrom (a) the numeri
al simulations and (b) the experimental tests. Left andright 
olumns 
orrespond to the 
hain of 25 and 26 beads, respe
tively. In ea
h
olumn, the top panel shows the for
e felt at the right 
onta
t of bead 9 andthe bottom panel shows the for
e felt at the left 
onta
t of bead 17. LSTW isthe left-hand side travelling wave (initiated on the left of the 
hain) and RSTWis the right-hand side travelling wave (initiated on the right of the 
hain).
RR n° 7636
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Figure 29: Numeri
al results presented in [32℄.numeri
al simulations (impa
t velo
ity, restitution 
oe�
ient) are not expli
itlygiven in the experimental tests. Therefore, we apply the �tting pro
edure tothe experimental data available for some experimental tests to determine theseparameters. Then we use the parameters obtained for another tests. The 
om-parison between the numeri
al results and the experimental results shows thatthe numeri
al simulations with LZB-
omplementarity multiple impa
t modelare able to predi
t well what happens during the impa
t pro
ess for granular
hains and that the numeri
al results mat
h well the experimental results. Morepre
isely, the following 
on
lusions 
an be drawn:� the out
omes of the impa
t pro
ess for tapered 
hains, obtained from thenumeri
al simulations are in very good agreement with the experimentaldata shown in [19℄. Moreover, the propagating for
e pulse presented in[18℄ are well reprodu
ed by the numeri
al simulations. However, somedis
repan
ies are found between the numeri
al and experimental results,in parti
ular in terms of wave speed and tail impulses. This might bedue to partly the limitation of the measurement te
hnique used in theexperimental tests. Analyzing the numeri
al results points out that themeasurement te
hnique used in [18℄ using a wall sensor might be not suit-able to investigate the wave propagating in tapered 
hains as the wallsensor disturbs their boundary 
onditions.� the formation and propagation of a solitary wave train (SST) in stepped
hains are well reprodu
ed by the numeri
al simulations. For the simula-tions without lo
al dissipation, the SST remains 
onstant when travelling,whi
h leads to some dis
repan
ies between the numeri
al results and theexperimental results in [30℄. When the lo
al dissipation is taken into a
-
ount by using the energeti
 restitution 
oe�
ient, the SST is attenuatedwhen travelling and the experimental data is better reprodu
ed.RR n° 7636
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s in granular 
hains 48� the intera
tion e�e
ts between two solitary waves (SWs) in monodisperse
hains are put in eviden
e by the numeri
al simulations. The intera
tionbetween two SWs leads to a delay time of ea
h SW 
ompared to the
ase when only one SW propates and a formation of se
ondary solitarywaves (SSWs) with a small amplitude. In the numeri
al simulations, theSSWs are 
learly observed in a monodisperse 
hain 
omposed of an evennumber of beads. However, the amplitude of these SSWs obtained in thenumeri
al tests are signi�
atly lower than in the experimental tests. Thenumeri
al simulations with LZB-
omplementarity multiple impa
t modelmat
h better the experimental data in [32℄ than the numeri
al simulationsperformed in the same paper.The above results demonstrate that the numeri
al simulations with LZB-
omplementarity multiple impa
t model are able to simulate impa
t dynami
sof granular 
hains, stri
tly speaking and of me
hani
al systems of multiple rigidbodies, generally speaking. With the LZB-
omplementarity multiple impa
tmodel, the lo
al dissipation at 
onta
t points during the 
ollisions between 
on-ta
ting bodies 
an be 
onsistently taken into a

ount by using the energeti
al
onstraint. Introdu
ing the lo
al dissipation, the numeri
al results obtainedwith this impa
t model mat
h better experimental data.A Numeri
al s
heme for LZB-
omplementaritymodelA.1 AlgorithmThe numeri
al s
heme to solve the impa
t problem with LZB-
omplementaritymultiple impa
t model 
onsists in �rst dis
retizing the prin
ipal impulse P (thedump integration variable) into steps 0, 1, ..., N of size ∆P (a step k goes frominstant Pk to instant Pk+1 = Pk + ∆P ) and then in applying the algorithmdes
ribed in 1, 2 and 3.A.2 Convergen
e of the algorithmIn order to evaluate the 
onvergen
e of a numeri
al solution, we 
an 
ompare thesolution obtained from the simulation performed with a given step size ∆P = hto the solution obtained with a smaller step size (for example a half of the latterstep size). If the two solutions do not greatly di�er from ea
h other, we may
onsider that the solution obtained with the step size ∆P = h 
onverges to thesolution of the multiple impa
t problem that we are simulating. The di�eren
ebetween the solutions (that 
an be des
ribed in terms of velo
ity of the ballsduring the simulation) obtained with two di�erent values of the step size (h and
h/2) 
an be quanti�ed by a dis
repan
y quantity de�ned as follows:

Φh(P ) =
‖q̇h(P ) − q̇h/2(P )‖

‖q̇h/2(P )‖
, (46)where q̇h(P ) and q̇h/2(P ) are respe
tively the ve
tors of the generalized velo
ityof the 
onsidered system at instant P during the simulation (P is the dumbRR n° 7636
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hains 49integration variable 
onsidered in the simulation) obtained with two values ofthe step size h and h/2. The symbol (‖.‖) represents the maximum norm.We 
an also evaluate the 
onvergen
e of the numeri
al solution obtainedwith a step size ∆P = h by 
omputing another dis
repan
y quantity in termsof post-impa
t velo
ity as follows:
Φ+

h =
‖q̇+

h − q̇+
h/2‖

‖q̇+
h/2‖

, (47)where q̇+
h and q̇+

h/2 are respe
tively the ve
tors of the generalized post-impa
tvelo
ity of the 
onsidered system, obtained with two values of the step size hand h/2.The numeri
al solution obtained from the simulation with a step size h is
onsidered to be 
onvergent to the solution of the multiple impa
t problem ifthe following 
riteria are satis�ed:
Φh(P ) ≤ ǫ ∀P, (48)
Φ+

h ≤ ǫ+, (49)where ǫ and ǫ+ are pre
isions for the numeri
al results in terms of the evolutionof the system during the impa
t and of the out
ome of the impa
t, respe
tively.The 
hoi
e of the values for ǫ and ǫ+ depends on the problem that we want toanalyze. For example, a small value for ǫ+ (resp. ǫ ) should be used if we wantto analyze the out
ome of the impa
t (resp. if we want to analyze the evolutionof the system during impa
t).The 
hoi
e of the step size ∆P 
onstitues a 
rutial point in the numeri
alsimulation with LZB-
omplementarity multiple impa
t model for a given granu-lar 
hain. It is not an easy task sin
e the 
hoi
e of the step size ∆P depends on alot of fa
tors su
h as the geometry of the 
onsidered 
hain (size of the beads), theproperties of the beads (density, Young modulus), the lo
al dissipation (restitu-tion 
oe�
ient), the impa
t velo
ity, et
. Therefore it is important to perform a
onvergen
e test using the pre
ision 
riteria (48) and (49) to make sure that thesolution obtained from the numeri
al simulation performed is 
onvergent. Inthe following, we dis
uss the 
hoi
e of the step size for three di�erent granular
hains 
onsidered as referen
e 
hains in order to give a guideline to 
hoose asuitable step size when simulating the impa
t dynami
s of granular 
hains withLZB-
omplementarity multiple impa
t model.A.2.1 For a monodisperse 
hain of elasti
 beadsLet us now 
onsider a monodisperse 
hain 
omposed of 20 elasti
 beads of radius
R = 10 mm (es = 1.0). The ball properties are: density ρ = 7780 kg/m3,Young modulus E = 203 GPa and Poisson 
oe�
ient ν = 0.3. The 
hain isimpa
ted by a striker identi
al to the beads in the 
hain with an impa
t velo
ity
Vs = 1 m/s. In the numeri
al simulations presented here, the bi-sti�ness are
onsidered.Figure 31 presents the velo
ity of di�erent beads in the 
hain versus theprin
ipal impulse P , obtained from the numeri
al simulations with di�erentstep sizes. It 
an be observed that the result obtained with ∆P = 1.0−4 di�ersRR n° 7636
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antly from that obtained with ∆P = 1.0−5. This di�eren
e is small atthe beginning of the simulation and then in
reases during the simulation, whi
his 
ertainly due to the 
umulative error during the integration. When the stepsize ∆P = 1.0−6 is used, the result obtained 
oin
ides almost with that obtainedwith ∆P = 1.0−5. This means that the numeri
al simulation 
onverges whenthe step size is de
reased.

Figure 30: Velo
ity of di�erent beads in the monodisperse 
hain with es = 1.0during the numeri
al simulations with di�erents step size ∆P .In �gure 31, the dis
repan
y quantity Φh is plotted versus the prin
ipalimpulse P during the simulations performed with di�erent step sizes. For thestep size ∆P = 10−4, the dis
repan
y Φh in
reases qui
kly and rea
hes animportant value at the end of the simulation whereas it remains quite small forthe step sizes ∆P = 10−5 and ∆P = 10−6.Table 2 give some information about the numeri
al simulations with di�erentstep sizes su
h as the number of integration steps performed, 
omputation timewith a HP 
omputer with four pro
essors of 2.67 GHz, the maximum value ofthe dis
repan
y quantity Φh, the value of the dis
repan
y quantity Φ+
h , and the
onvergen
e status evaluated with pre
isions ǫ = ǫ+ = 0.01. We 
an see that forthis monodisperse 
hain without dissipation, a step size ∆P about 1.0 × 10−5allows to obtain a satisfa
tory solution.Step size Number Computa- max(Φh) Φv

h Convergen
e
∆P (N.s) of steps tion time (Yes/No)
1.0 × 10−4 4622 0.13 s 0.09 0.0046 No
1.0 × 10−5 45913 0.79 s 0.008 0.0003 Yes
1.0 × 10−6 458934 7.23 s 0.003 0.00015 YesTable 2: Information about the numeri
al simulations of the monodisperse 
hainwith es = 1.0 and with di�erent step sizes ∆P .RR n° 7636
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Figure 31: Dis
repan
y quantity Φh 
omputed during the numeri
al simulationof the monodisperse 
hain with es = 1.0 with di�erents step size ∆P .A.2.2 For a tapered 
hain of elasti
 beadsIn this se
tion we 
onsider a tapered 
hain of 20 elasti
 beads (es = 1.0). Theradii of the beads in the 
hain progressively de
rease su
h that Ri−1 = (1−q)Riwith q = 5% being the tapering fa
tor. First bead in this tapered 
hain andother parameters are identi
al to those for the monodisperse 
hain 
onsidered inse
tion A.2.1. We performed numeri
al simulations of this tapered 
hain withdi�erent step sizes ∆P . As 
an be seen in �gure 34, the step sizes ∆P of 10−5and 10−6 give 
lose solutions. However, the dis
repan
y quantity max(Φh) =
0.05 for ∆P = 10−5 (see table 3), that is above the pre
ision ǫ = 0.01. As a
onsequen
e, the step size ∆P = 10−5 that is satisfa
tory for the monodisperse
hain 
onsidered in se
tion A.2.1 does not satisfy the pre
ision 
ritera (48) and(48). For this tapered 
hain, ∆P = 10−6 gives a satisfa
tory solution both interms of the evolution of the system during the impa
t pro
ess and in terms ofthe out
ome of the impa
t pro
ess.Step size Number of Computa- max(Φh) Φ+

h Convergen
e
∆P (N.s) steps tion time (Yes/No)
1.0 × 10−5 22331 0.42 s 0.05 0.002 No
1.0 × 10−6 223001 3.76 s 0.006 0.00007 YesTable 3: Information about the numeri
al simulations performed for the tapered
hain of elasti
 balls with di�erent step sizes.A.2.3 For a monodisperse 
hain of inelasti
 beadsWe 
onsider now the same monodisperse 
hain as the one 
onsidered in se
-tion A.2.1 but the lo
al dissipation is introdu
ed by using a restitution 
oe�-
ient es = 0.6. For su
h a strongly dissipative 
hain, the velo
ity of di�erentRR n° 7636
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Figure 32: Velo
ity of di�erent beads during the numeri
al simulations per-formed for the tapered 
hain of elasti
 balls with di�erents step sizes ∆P .beads during the numeri
al simulations performed with di�erent step sizes ∆Pis shown in �gure 33. As a whole, the solutions obtained with the step sizes
∆P = 10−5, 10−6, 10−7 are quite 
lose. However, a signi�
ant dis
repan
y 
anbe observed at the end of the simulations when making a zoom on �gure 33at the end of the 
urves, as illustrated in �gure 33. In fa
t, in the presen
e ofthe dissipation at the 
onta
t points, dynami
s of the 
hain be
omes stronglyos
ilating with a high frequen
y. At the end of the impa
t pro
ess, os
ilationsbe
ome faster and have a small amptitude. Therefore it is not easy to integrateproperly this kind of os
illations even when the step size is small. Although theevolution of the system at the end of the impa
t pro
ess is not 
onvergent whenthe step size is de
reased from 10−6 to 10−7, the out
ome of the simulationsis 
onvergent. Indeed, the di�eren
e between the post-impa
t velo
ities of thebeads obtained with ∆P = 10−6 and those obtained with ∆P = 10−7 is smallerthan 1%. Table 4 shows the dis
repan
y quantities for di�erent step sizes. It
an be seen that the pre
ision 
riterion (49) is satis�ed with both step sizes
∆P = 10−6 and ∆P = 10−7 but not the pre
ision 
riterion (48). For this kindof 
hain, negle
ting the os
ilations with small ampltitude and high frequen
y atthe end of the impa
t pro
ess does not 
hange the main evolution of the systemduring impa
t pro
ess and the output of the simulation. A step size ∆P about
10−6 gives satisfa
tory solution.B Algorithm for event-driven s
hemeFor the event-driven s
heme, we �rst dis
retize the time interval [0, tf ] into stepsof size ∆t. A step k goes from instant tk to instant tk+1 = tk + ∆t. Then thefollowing algorithm is applied.
RR n° 7636
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Figure 33: Velo
ity of the beads during the numeri
al simulations performedfor the monodisperse 
hain of inelasti
 balls (es = 0.6) with di�erents step sizes
∆P .

Figure 34: Velo
ity of bead 10 in the monodisperse 
hain with es = 0.6 at theend of the simulation with di�erents step sizse ∆P .Step size Number of Computa- max(Φh) Φ+
h Convergen
e

∆P (N.s) steps tion time (Yes/No)
1.0 × 10−5 14139 0.40 s 0.13 0.07 No
1.0 × 10−6 272754 4.76 s 0.013 0.0018 No
1.0 × 10−7 1363111 23.06 s 0.03 0.002 NoTable 4: Information about the numeri
al simulations performed for themonodisperse 
hain of inelasti
 beads (es = 0.6) with q = 5% with di�erentstep sizes ∆P .RR n° 7636
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hains 54Algorithm 1 Algorithm for LZB-
omplementarity multiple impa
t model (part1)1: P∗ = 0 ⊲ Prin
ipal impulse variable2: t = 0 ⊲ Time variable3: while Termination = false do ⊲ while the multiple impa
ts not yetterminated4: // For ea
h step k, we 
ompute δk+1
j , Ek+1

j , P k+1
j , values at the end ofthe step from δk

j , Ek
j , P k

j , values at the beginning of the step5: //=========== Che
k the status of ea
h 
onta
t at the beginningof step k6: for j = 1 → m do7: if Ek
j = 0 then ⊲ no potential energy at this 
onta
t8: if δ̇k

j ≤ 0 then9: flagk
j = 0 ⊲ 
onta
t does not enter into impa
t10: else if δ̇k
j ≥ 0 then11: flagk

j = 1 ⊲ 
onta
t begins the 
ompression phase (in
ludedthe repeating impa
t)12: end if13: else if Ek
j > 0 then ⊲ potential energy is not zero at this 
onta
t14: flagk

j = 2 ⊲ 
onta
t is already in the impa
t pro
ess15: end if16: end for17: //============= Che
k the termination 
ondition for multipleimpa
ts at the beginning of step k18: Termination = true19: for j = 1 → m do20: if flagk
j 6= 0 then21: Termination = false22: end if23: end for24: //============= Sele
t the primary 
onta
t (*) at the beginningof step k25: ∗ = 126: if max(Ek

j )j=1,...,m = 0 then ⊲ in this 
ase, the primary 
onta
t issele
ted a

ording to the relative velo
ity at 
onta
t points27: PrimaContactV el = true28: for j = 1 → m do29: if δ̇k
∗
< δ̇k

j then30: ∗ = j31: end if32: end for33: else if max(Ek
j )j=1,...,m > 0 then ⊲ in this 
ase, the primary 
onta
tis sele
ted a

ording to the potential energy at 
onta
t points34: PrimaContactV el = false35: for j = 1 → m do36: if Ek

∗
< Ek

j then37: ∗ = j38: end if39: end for40: end ifRR n° 7636
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hains 55Algorithm 2 Algorithm for LZB-
omplementarity multiple impa
t model (part2)41: //==============Apply the distributing rules (12), (13) and(11) to 
ompute the 
hange of the impulse δP k
j at ea
h 
onta
t42: if PrimaContactV el = true then ⊲ if the primary 
onta
t is sele
teda

ording to the relative velo
ity at 
onta
t points43: for j = 1 → m do44: δP k

j =
Kj

K∗

( δ̇k
j

δ̇k
∗

)η

∆P45: end for46: else⊲ if the primary 
onta
t is sele
ted a

ording to the potential energyat 
onta
t points47: for j = 1 → m do48: if flagk
j = 0 then49: δP k

j = 050: else if flagk
j = 1 then51: δP k

j =
Kj

K∗

( δ̇k
j ∆P

Ek
∗

)η52: else if flagk
j = 2 then53: δP k

j =
(Kj

K∗

)
1

1+η
(Ek

j

Ek
∗

)

η
η+154: end if55: end for56: end if57: //============== Compute the relative velo
ity at the end ofstep k by applying the di�eren
e formulation to (8)58: for j = 1 → m do59: δ̇k+1

j = δ̇k
j + (Hc)jlδP

k
l60: end for61: //============== Compute the potential energy for the end ofthe step by applying the numeri
al integration to (15), (16)62: for j = 1 → m do63: if MonoSti�nessModel then ⊲ For Mono-sti�ness 
omplian
e model64: Ek+1

j = Ek
j +

δ̇k
j + δ̇k+1

j

2
δP k

j65: //Determine the work done during the 
ompression phase Wc,j66: if (δ̇k
j ≥ 0, δ̇k+1

j < 0) then ⊲ transition from the 
ompression toexpansion phase67: Wc,j = Ek
j68: end if69: //Che
k the energeti
 
onstraint70: if (δ̇k

j < 0, Ek
j ≤ (1 − e2s,j)Wc,j) then ⊲ during the expansionphase and the energeti
 
onstraint is satis�ed71: Ek

j = 0 ⊲ dis
ard the potential energy72: end ifRR n° 7636
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Algorithm 3 Algorithm for LZB-
omplementarity multiple impa
t model (part3)73: else if BiSti�nessModel then ⊲ For Bi-sti�ness 
omplian
e model74: if δ̇k
j ≥ 0 then ⊲ 
onta
t lo
ated in the 
ompression phase75: Ek+1

j = Ek
j +

δ̇k
j + δ̇k+1

j

2
δP k

j76: else if δ̇k
j < 0 then ⊲ 
onta
t lo
ated in the expansion phase77: Ek+1

j = Ek
j +

1

e2s,j

δ̇k
j + δ̇k+1

j

2
δP k

j78: end if79: end if80: end for81: //============== Compute the for
e at the 
onta
t points using(17)82: for j = 1 → m do83: if Ek
j = 0 then ⊲ the potential energy at this 
onta
t is zero84: λk
j = (1 + η)

η
η+1K

1
1+η

j (δ̇k
j δP

k
j )

η
η+185: else ⊲ the potential energy at this 
onta
t is not zero86: λk

j = (1 + η)
η

η+1K
1

1+η

j (Ek
j )

η
η+1 ,87: end if88: end for89: //============== Compute the prin
ipal impulse P ∗ and thetime t during the impa
t pro
ess90: P∗ = P∗ + δP k

∗91: t = t+
δP k

∗

λk
∗92: end while
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Algorithm 4 Algorithm for the event-driven s
hemewhile tk ≤ tf do//=============== Che
k if some 
onta
ts are a
tivated or notat instant tkif Ik

c = ∅ then
statusk = 0 ⊲ Free �ight motionelse
statusk = 1 ⊲ Some 
onta
ts are a
tivatedend if//============== Integrate up to the next instant tk+1if statusk = 0 thenIntegrate the DAE (20) up to the next instant tk+1. During this in-tegration, the ODE solver will perfom a root �nding of fun
tions δj(t) =

0 ∀j ∈ I. If a root is found at an instant t∗ ≤ tk+1, the solver throws aninteger Istate = 1 and Istate = 0 if otherwise.if Istate = 1 then ⊲ A nonsmooth even is foundAdd a new event at instant t∗Set tk+1 = t∗

ProcessNSEvent = true ⊲ the added event needs to be pro
essedend ifelse if statusk = 1 thenIntegrate the the system LCP at a

eleration level (26) + ODE (25) upto the next instant tk+1. During this integration, the ODE solver will perfoma root �nding of fun
tions δj(t) = 0 ∀j ∈ I \ Ik
s and λj(t) = 0 ∀j ∈ Ik

s . If aroot is found at an instant t∗ ≤ tk+1, the solver throws an integer Istate = 1and Istate = 0 if otherwise.if Istate = 1 thenAdd a new event at instant t∗Set tk+1 = t∗

ProcessNSEvent = true ⊲ the added event needs to be pro
essedend ifend if//=============== Update the index setsUpdate the index sets with the algorithm des
ribed in 5//=============== Pro
ess nonsmooth events if they are foundif ProcessNSEvent = true thenPro
ess the nonsmooth events added with the algorithm des
ribed in6 end ifend while
RR n° 7636
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hains 58Algorithm 5 Algorithm to update the index sets at instant tk+1for j ∈ Ik+1 do//=============== First, update the index set Ik+1
cif j ∋ Ik+1

c then ⊲ if j is not in the index set Ik+1
cif δk+1

j = 0 thenInsert j into Ik+1
cend ifelse ⊲ if j is already in the index set Ik+1

cif δk+1
j > 0 thenRemove j from Ik+1

cend ifend if//=============== Update the index set Ik+1
sif j ∈ Ik+1

c then ⊲ if j is in the index set Ik+1
cif j ∋ Ik+1

s then ⊲ if j is not in the index set Ik+1
sif δ̇k+1

j = 0 thenInsert j into Ik+1
send ifelse ⊲ if j is already in the index set Ik+1

sif δ̇k+1
j 6= 0 thenRemove j from Ik+1

send ifend ifelse ⊲ if j is not in the index set Ik+1
cRemove j from Ik+1

send ifend forAlgorithm 6 Algorithm to pro
ess the nonsmooth events//============== If impa
t o

urs at some 
onta
t pointsif Ik+1
c \ Ik+1

s 6= ∅ thenSolve the impa
t problem using the LZB-
omplementarity multiple impa
tmodel with the algorithm des
ribed in 1 and 2Update the index sets Ik+1
c and Ik+1

s with the algorithm des
ribed in 5Make sure that Ik+1
c \ Ik+1

s = ∅end if//============== If deta
hment o

urs at some 
onta
t pointsif Ik+1
s 6= ∅ thenSolve LCP at a

eleration level (26)// Update the index set Ik+1

s with values λk+1
j and δ̈k+1

j obtained from theresolution of LCP (26)for j ∈ Ik+1
s doif (δ̈k+1

j > 0, λk+1
j = 0) thenRemove j from Ik+1

send ifend forend ifRR n° 7636
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