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Abstract: The aim of this work is to simulate shock dynamics in granular
chains of balls using the LZB multiple impact model and compare the numerical
results to the experimental results available in the literature. The LZB model
has been introduced to solve the multiple impact problem that arises in the rigid
body systems when multiple contacts collide at the same time. The Darboux-
Keller dynamics is considered in this model to change the time scale to the
impulse scale. The interaction at the contact points is modeled by compliance
contact laws. The energy dissipation at the contact points during the impact
process, resulting from complex phenomena such as the plasticity, the viscosity,
the noise, the vibration, etc., is taken into account by using Stronge’s energetic
coefficient of restitution. The coupling between various contact points, due to
the wave effects, is described by a distributing law that relates the impulse
change at one contact to that at another contact depending on their relative
stiffness and their relative potential energy. The LZB model is then coupled to
the event-driven scheme in order to simulate the motion of the nonsmooth me-
chanical systems. Different kinds of granular chains are investigated: monodis-
perse chains, i.e. chains of identical balls; tapered chains, i.e. chains composed
of balls with decreasing size; stepped chains, i.e. chains composed of a large
monodisperse section followed by a small monodisperse section. Particular at-
tention is paid to the dispersion effect and the wave propagation in the tapered
chains, to the interaction of two solitary waves in the monodisperse chains, and
to the formation of a solitary wave train (a set of single solitary waves with
decreasing amplitudes) in the stepped chains. Comparison with the experimen-
tal results shows that the numerical simulations with the LZB multiple impact
model reproduce very well the experimental observations.
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Dynamique de choc dans des chaines granulaires:
simulations numériques et comparaison avec des
tests expérimentaux

Résumé : L’objectif de ce travail est de simuler la dynamique de choc dans
des chaines granulaires en considérant le modéle LZB puis de comparer les ré-
sultats numériques avec les résultats expérimentaux existant dans la littérature.
Le modéle LZB a été introduit pour résoudre le probléme d’impacts multiples
rencontré pour les systémes multicorps rigides lorsque les chocs se produisent
simultanément & plusieurs contacts. Pour ce modéle, la dynamique de Darboux-
Keller est utilisée pour changer 1’échelle du temps en 1’échelle de "impulsion.
L’interaction aux points de contact est modélisée par des lois de contact de
type compliance. La dissipation de ’énergie aux points de contact, due & des
phénomeénes physiques complexes comme la plasticité, la viscosité, le bruit, la
vibration, etc., est prise en compte par un coefficient de restitution énergé-
tique. Le couplage entre plusieurs points de contact, di aux effets d’onde,
est décrit par une loi de distribution qui relie le changement de 'impulsion &
un contact a celui & un autre contact en fonction de leur rigidité relative et
de leur énergie potentielle relative. Le modéle LZB est ensuite couplé & une
méthode numeérique “event-driven pour simuler le mouvement des systémes
mécaniques non-réguliers. Differents types de chaine granulaire sont étudiés:
chaines monodisperses, i.e. chaines composées de billes identiques; chaines "ta-
pered", i.e. chaines composées de billes de taille décroissante; chaines "stepped",
i.e. chaines composées d’une section monodisperse & grand rayon puis d’une
section monodisperse a petit rayon. On s’intéresse particuliérement a l'effet de
dispersion et la propagation de l’onde dans les chaines "tapered", a I’interaction
de deux ondes solitaires dans les chaines monodisperses, & la formation d’un
train d’ondes solitaires (un ensemble d’ondes solitaires individuelles avec am-
plitudes décroissantes) dans les chaines "stepped". La comparaison avec les
résultats expérimentaux montre que les simulations numériques avec le modéle
LZB reproduisent de facon trés statisfaisante les observations expérimentales.

Mots-clés : Impacts Multiples, Modéle LZB, Méthode Event-Driven, Chaine
Granulaire
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Shock dynamics in granular chains )

1 Introduction

The dynamics of chains of balls subjected to collisions has been the object of
many studies since a long time, the most well-known example being the so-
called Newton’s cradle (see e.g. [, §6.5.6] for references). Chains of balls are
of interest for researchers in Solid Mechanics because it is a nice example of
a system with multiple impacts (the system is subject to several simultaneous
impacts), and for researchers in Physics because it is the simplest example of
a granular material. Multiple impacts are known to be a challenging issue in
the impact modeling, even for frictionless impacts (like in chains of aligned
balls) [I3, 22]. Despite their apparent simplicity chains of balls possess a quite
complex collision dynamics that involves two main physical effects: dissipation
and dispersion of energy. The dissipation is mainly due to the local deformation
at the contact/impact areas and may have many sources: viscosity, plasticity,
sound, hysteretic effects, etc. The dispersion rather quantifies the way the
initial energy of the chain (before the impact) is spread within the chain after
the impact has occurred. The waves effets are responsible for the dispersion,
which occurs even if the dissipation is almost zero (conservative system). For
this reason waves phenomena have been analyzed a lot [20, 23]. The dissipation
may have, on the other hand, an influence on the dispersion.

Obtaining good models of multiple impacts with good numerical methods
is an important issue in the field of granular matter in general, and for chains
of balls as a particular case. Models based on kinematic restitution coefficients
(Newton’s like) or on kinetic restitution coefficients (Poisson’s like) are known
not to be rich enough to correctly represent the dispersion effects. Moreover they
present serious deficiencies like non-uniqueness of the restitution coefficients for
a given energetic behaviour, or the necessity to estimate the restitution matrix
for each chain and each initial data. Other models based on Routh’s impact
dynamics [, §4.2.13] and an impulse correlation ratio (ICR) have been proposed
[BL 12]. However it seems that the assumption that the ICR can be estimated
from experiments between triplets of balls may fail [22, §6.4]. Let us mention
that kinematic laws and binary collisions (the contact gaps are assumed to be all
open) are sometimes used [A0, @2, @4] 43]. This is also prone to some fundamental
issues like the fact that it is not guaranteed, in general, that letting the gaps tend
to zero (hence recovering the real system where the balls touch each other) yield
a unique limit, because the trajectories may be discontinuous with respect to the
initial data [21]. In order to take into account the local dissipation at contact
points during the impact process, several works introduced viscous dissipation
with linear or nonlinear viscosity coupled to Hert’s contact law [37, [38, [T4]. This
viscous dissipation model might be valid for the viscous elastic material but it
cannot take into account some important effects like plasticity, dissipation due to
the noise, light, vibration, etc. In [39, H]], the local dissipation at contact points
is modeled by a coefficient of restitution defined as the ratio of the unloading
force (during the expansion phase) to the loading force (during the compression
phase). This restitution law is quite simple, however most materials do not show
such a restitution law. It happens that dissipation at contact points is a complex
phenomenon, that can be hardly be encapsulated by the models mentioned
above. One contribution of this paper and former ones [15}, [T6l 7, 25, 24] is to
introduce an energetic coefficient of restitution, instead.
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Granular chains has attracted much attention of scientists in investigating
the energy propagation in such discrete media in order to find out shock protec-
tion devices that are able to attenuate efficiently the energy induced in a shock
process. Various kinds of granular chains have been investigated:

e monodisperse chains, i.e. chains of identical balls [TT}, 23] 2 [T4, B2 37,
e monodisperse chains with defects [9, A9];

e tapered chains, i.e. chains with decreasing size of the balls [l B6, HR| 12,
H0, B7;

e stepped chains, i.e. chains composed of a large monodisperse section fol-
lowed by a small monodisperse section [30, B3, 28];

e decorated chains with small masses placed regularly or randomly among

larger masses &4, @3], [12];

e composite chains, i.e. chains composed of beads made of different mate-
rials periodically or randomly distributed [, B, 16, 29, B8];

e disordered chains with beads of masses randomly distributed [AT], B9].

The subject of this paper is the study of the dispersion effect and the wave prop-
agation in the tapered chains, of the formation of the solitary wave trains in the
stepped chains and of the interaction of two solitary waves in the monodisperse
chains. More specifically the multiple impact model introduced in [I5, [I6, 7]
(and called in the sequel the LZB-complementarity multiple impact model) is
used and the numerical results are carefully compared to experimental data
available in 19, I8, B0, B2]. Comparisons between numerical results obtained
with the LZB multiple impact model coupled to a complementarity model out-
side the impacts in an event-driven method, and experimental data have been
presented in [16] for column of beads (experiments of [I1]), in [25] for the bounc-
ing dimer (experiments of [I0]), Newton’s cradle in [T7)] (experiments of [5]), and
more recently some results on the rocking block system used in the Earthquake
Engineering literature [24].

This paper is organized as follows: in section 2, we will present briefly the
LZB multiple impact model coupled to the event-driven numerical scheme. In
section 3, granular chains and their dynamics will be described. Section 4 and 5
will be dedicated to investigate the dispersion effect and the wave propagation
in the tapered chains and compare the numerical results to the experimental
results presented in [T9] and [IR]. The formation of solitary wave trains in the
stepped chains will be the subject of section 6, and the numerical results will be
compared to the experimental ones shown in [30]. In section 7, the numerical
simulations concerning the interaction of two solitary waves in the monodisperse
chains will be presented and compared to the experimental data available in
[B2]. Finally, some conclusions about the numerical simulations with the LZB
multiple impact model will be drawn.

RR n°® 7636



Shock dynamics in granular chains 7

2 Event-driven scheme and LZB-complementarity
model

In this section we summarize the event-driven scheme used to solve the dynamics
of a multiple rigid body system with the LZB-comlementarity multiple impact
model. This means that the whole motion of the system is solved with the event-
driven scheme during which some singular points happen (impact between rigid
bodies), and the LZB-complementarity model is applied to solve these singular
points. For the sake of simplicity, we limit ourselves to the case without friction.
For this case, the event-driven scheme and the LZB-complementarity impact
model, that will be described below, have been implemented in the SICONOS
platform and are available at http://siconos.gforge.inria.fr.

Let us consider a multiple rigid body system with s possible frictionless
contact points. The maximum number of degrees of freedom (obtained when
none of contacts is closed) is n. The state of the system may be described
by a set of generalized coordinates ¢ € R". The dynamics of this nonsmooth
system can be described by the equation of motion and a set of complementarity
conditions as follows:

{ M(q())q(t) + Fini(t, q(t), () = Fear () + W(q(t))A(2) (1)
0 < A(t) L d(q(t)) =0,

where:
e M(q(t)) € R"™" is the inertia matrix;

o d(q(t) = [01(q(t)) d2(q(t))..0s(q(®))]" and A(t) = [Ai(t) Aa(t)...As(1)]"
with 0;(q(t)) and \;(t) being the gap and the force at contact point j,
respectively;

o Fn.(t,q(t),q(t)) collects the nonlinear terms resulting from the nonlinear
inertial terms, the nonlinear interactions between bodies, and F...(t) is
the external loading;

e W(q(t)) € R"** is the Jacobian matrix:

Wia(o)" = 50 )

In order to establish the algorithm for the event-driven scheme and for the
LZB-complementarity multiple impact model, three index sets have been intro-
duced in [35] for the case without friction at the contacts as follows:

e The index set [ is the set of all possible contact points in the system:

I={1,2.,s} C\; (3)
e The index set I. is the set of all closed contacts of the system:

le={jel]dq(t) =0} CI; (4)

RR n°® 7636
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e The index set I, is the set of all persistent contacts (rolling or sliding
contacts) in the system:

I,={jel |éqt) =0} C L. (5)

First of all, we talk about how the impact problem is solved with the LZB-
complementarity impact model. Lastly, we describe the event-driven scheme
associated with the LZB-complementarity impact model.

2.1 LZB-complimentarity multiple impact model

Let us consider the case when the nonsmooth system described above is sub-
jected to a multiple impact process. At this instant, there are m active contact
points in the system (the contacts belong to the index set I. C I). The LZB-
complementarity multiple impact model to solve the impact problem for this
case is summarized below. The numerical scheme for this model is described in
the appendix [Al

1) The configuration g € R"™ of the system is assumed to be constant during
the impact process, and so are M(q) and W (q). Therefore, the Darboux-
Keller’s dynamical equation |3 H] is used to change the time scale to the impulse
scale, as follows:

dg dP
Q) = Wela) 5 (6)

where:

e The Jacobian matrix W.(q) € R™*™ is related to only the index set I..
The connection between the relative velocity at the active contact points
6 € R™ and the generalized velocity g € R" is given by:

5(g) = We.(q)'q. (7)

The convention made for the relative velocity at contact point j as follows:
d; > 0 for two colliding bodies approaching (compression phase) and J; <
0 for the separation (expansion phase);

e dP € R™ is the change of the normal impulse at the active contact points;

e dP. is an independent time-like variable defined at the velocity-impulse
level and called “the principal impulse®.

From (@) and @), we have:

dd
dP,
where H.(q) = W.(q)" M(q)~'W(q).
2) The interaction at contact points is modeled by a compliant contact model
that may be a mono-stiffness or a bi-stiffness model as described below:

- dP dpP
=W.(q)"M(q)"'W.(q H

( >d—R = (q)d—P*’ (8)

¢ the mono-stiffness compliant model expresses the same force \; /identation
0; mapping at contact point j for the compression phase and the expansion

phase:
Aj = K;(65)", (9)

RR n°® 7636
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where Kj is the stiffness at contact point j and 7 is the elasticity coefficient
(n = 2 for the Hertz contact model and i = 1 for the linear elastic model).

e the bi-stiffness compliant model makes the force/identation mapping for
the compression phase different from the one for the expansion phase as
shown in figure[ll The force/identation mapping for this model is:

Ae,j = K;(6;)" for compression phase,

0j —drj \"
)\e,j — )\M,]( J 5J

) for expansion phase, (10)

On,j — Orj
where 4, ; is the plastic deformation, and Ajz,; and d7,; are the maxima

of the normal contact for(;e and normal deformation at the end of the
compression phase (when 0; = 0).

0 b, On

Figure 1: Bi-stiffness contact compliant model.

3) A distributing law relating the change of the impulse (dP;) at contact j
to the change of the impulse (dP;) at the so-called primary contact, which is
defined as the contact where the potential energy is maximum, can be derived
from the compliant contact models presented above. The distributing rule has
the following form:

dP; L
B = By (P P, (1)

K E:(P;
where 7, . = fj and Ej.(P;, P.) = EJ EPJ)) are respectively the ratios of the

stiffness and the potential energy at contact j to those at the primary contact.
Some singularities arise during an impact process, for which the distributing rule
shown in ([Il) becomes invalid. One singularity is encountered at the beginning
of the impact process when the potential energy is zero at any contact. In this

RR n°® 7636
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case, a distributing rule should be derived in terms of relative velocity at contact
points and has the following form

% = ((.S—J)n. (12)
* (S*

The primary contact in this case is defined as the contact where the relative
velocity is maximum. During the impact process it is possible that a contact
does not participate into the impact at an instant P and then participates
again into the impact at the following instants, due to the constraints between
the neighboring particles. In such a case, an approximated distributing rule can
be derived as follows:

dP; d;dP.\"
S = () (13)
dP, E,

4) The local dissipation due to the inelastic interactions at contact points is
taken into account by using the energetic constraint introduced in [26]

rf.
N A
657]' - Wcj - ijc 5-(P-)dP- ’ (14)
’ 0o Y\ J
where W, ; and W, ; are respectively the works done by the contact force at
contact j during the compression phase and the expansion phase. The instant
Py is determined when 5j (Pf) =0 and ij corresponds to the instant when the
expansion phase is terminated. The enegetic constraint introduces a parameter
named the energetic restitution coefficient es.

It is worth noting that the local dissipation is not included in the mono-
stiffness model. So in order to satisfy the energetic constraint, when condition
(@) is achieved, the residual potential energy will be discarded (the residual po-
tential energy is set to zero when condition ([[d) is achieved). Physically speak-
ing, the mechanism used to dissipate the energy in the mono-stiffness model is
not clear. In contrast, the local dissipation for the elasto-plastic materials is
consistently included in the bi-stiffness model and the dissipative parameters
in this model are related to the energetic restitution coefficient by the relation
I )

5) The potential energy at a contact is computed as follows:

e For the mono-stiffness model:
P
Ej(Pj):/O 6;(P;)dP; (15)

for the compression and expansion phases. In accordance with the ener-
getical constraint () when the potential energy E;(P;) satisfies E;(P;) =
We;(1— eg, ;), the residual potential energy will be completely dissipated.
This means that when E;(P;) = W, j(1—e2 ), the potential energy E;(P;)
must be set to zero.

RR n°® 7636
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e For the bi-stiffness model:

Py
E;(P;) = 0;(Pj)dP; for compression phase,
ch . 1 P; .
E;(P;) /0 0;(P;)dP; + P /Pc 0;(P;j)dP; for expansion phase.
8,7 i

(16)

6) The force at contact point j is computed from the potential energy as
follows:

N = (1 )7 K5 (B, (P () 77, (17)

and the time scale ¢ is related to the principal impulse scale P, (impulse at the
primary contact point) by the following relation:

dP,
=Z
where F, is the force computed at the primary contact point using (7).
7) The impact at a contact is considered to be terminated if the residual
potential energy at the contact is completely released during the expansion
phase. This means that the following condition must be satisfied

dt

(18)

Ej=0and §; <0. (19)

The multiple impact process is considered to be terminated if the impact at all
the contacts of the system is terminated.

2.2 Event-driven scheme

During the motion of the system described in (l), some nonsmooth events might
happen when some of contacts are activated (rigid bodies at the active contacts
collide each other). Between the nonsmooth events, the motion of the system is
smooth. The event-driven scheme to solve the system (dl) consists in integrat-
ing the smooth motion between two nonsmooth events and in processing the
nonsmooth motion when a nonsmooth event is encountered. The crutial point
in this numerical scheme is that the nonsmooth events have to be efficiently
localized.

When the set of active contacts I. = (), no contact is activated in the system.
So there is no force at any contact and system () becomes:

{ M(q()§(t) + Fini(t,q(t),4(t)) = Fear(t) (20)
0;(g(t)) >0Vjel.

Equation (Z0) is an Ordinary Differential Equation (ODE) subjected to a set of
unilateral contraints §;(g(t)) > 0 Vj € I and can be efficiently solved by various
numerical schemes proposed in the litterature. One of them is the DLSODAR
solver [34]. Furthermore, this solver allows to detect efficiently the instants when
some unilateral constraints are violated. Therefore, the nonsmooth events when
some contact points are activated (when d; = 0) can be efficiently localized.
When I.. # () and I.\ I; # (), some contacts in the system come into collision.
A nonsmooth event is encountered and needs to be processed by a nonsmooth

RR n°® 7636
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law. Here we use LZB-complementarity multiple impact model to process the
nonsmooth event encountered. Such a nonsmooth event processing has been
described in section 211

When I. # @ and I. \ Iy = 0, all the active contacts in the system are
persistent contacts (sliding or rolling contacts). The motion of the sytem in this
case is smooth. This motion can be solved by reformulating the complementarity
conditions in (l) at the acceleration level. System (Il can be rewritten as follows:

(22)
where
H(q(t)) = W (q(t)M " (a() W (a(1)), (23)
B(t,a(t),q(t)) = W (q(t) M~ q(t)[Feat(t) — Fine(t,q(t), 4(t))]
+ W (q(t)a(t). (24)
Combining ZI) and 22) and, we obtain:
M(Q(t) q( ) mt(t q(t) q(t)) = emt(t) + W(q(t)))‘(t)’ (25)
d(q(t)) = H(q(O)A(t) + B(t. q(t), 4(t))
Ai(H) =0 jEI\I (26)
0<\(t) Ld;j(q(t)) >0 Vje .

It can be seen that system (Z8) is a linear complementarity problem (LCP) with
contact force A(t) as its unknown. This LCP can be solved by various numerical
algorithms (for example, Lemke’s algorithm described in [35]). The ODE (23
can be solved with an ODE solver, for example the DLSODAR solver. Systems
E3) and @8) are solved by first solving the LCP (28) to determine the unknown
A(t), then updating and solving the ODE (ZH). During the integration of the
ODE (Z3), the set of constraints 6;(q(t)) >0 Vj € I'\ I, and \;(t) >0 Vj e I,
is checked and the nonsmooth events when some contact points are activated
or desactivated (a contact point j is activated if d;(q(¢)) = 0 and desactivated
it X;(t) = 0) can be efficiently localized.

The algorithm for the event-driven scheme described above has been pre-
sented in [35] and is summarized in section

3 Numerical simulation of granular chains

In this section, we present the numerical simulation of the dynamics of granular
chains by using the event-drivent scheme combined with the LZB-complementarity

RR n°® 7636



Shock dynamics in granular chains 13

multiple impact model presented in section Il Figure B illustrates a granu-
lar chain. As illustrated in this figure, a granular chain is composed of beads
whose center is aligned on a horizontal axis. This alignement aims at ensuring
co-linear collisions between beads. Last bead in the chain may move freely or
may be constraint by a rigid wall placed at the end of the chain. The beads in
the chain are numbered as increasing integers from 1 for first bead to N for last
bead (N is the number of beads in the chain). For a bead 7, the position of its
center is defined by x;, and its radius is R;. The chain is impacted by a bead
(striker) numbered as 0 with an impact velocity V5. In the case when there is no
rotation of the beads, the state of the system (striker + chain) is described by
the following generalized coordinate ¢ = [x¢, 1, ...,xnx]|7. Let us assume that
at the beginning of the impact process all the contacts in the chain are closed.

A

" bead 0 bead i bead N
G OOom00d)-
Li wall

1 ‘ (Possibly)

Figure 2: Configuration of a granular chain with possibly a rigid wall at the end
impacted by a striker (bead 0).

The mass matrix for this chain is:

mog 0 --- 0
0 my --- 0

M=|. i - (27)
0 0

MN 1 (N+1)x(N+1)

Contact between bead i and bead i + 1 is numbered as ¢ and the contact
between last bead and the wall is numbered as N. The gaps at the contacts are:

51’ = Tij4+1 — T — (Rl + RiJrl) VZ 7& N

ON = Twait — TN — Rn. (28)
. 9617 . .
The matrix W, (W, = {8_} ) for the case without wall is:
q
(-1 0 0 -+ 0]
1 -1 0 - 0
w._|0 1 (29)
0
0 0 0 1 -1
o 0 0 o0 1

L 4 (N+1)xN

RR n°® 7636
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When the wall is present, the matrix W becomes:

-1 0 0 0 0]
1 -1 0 0 0
W.— 0 1 -1 0 (30)
: T T T 0 :
0 0 0 1 -1 0
1 0 0 0 0 1 -1

4 (N1 (N+1)
It is worth mentioning that both M and W, are constant during the motion of
the system so the Darboux-Keller basic assumption mentioned in section 2Tl is
automatically satisfied for such chains of balls.

The dynamics of the chain is described by the following system:

{ Mq(t) = WeA(t)

0<8(t) L A(t) >0, (31)

and the Darboux-Keller’s equation when the impact occurs in the chain is:

Mdg = W .dP. (32)

The interaction between adjacent beads when they are in contact is mod-
eled by either the mono-stiffness model @) or the bi-stiffness model (M) and
subjected to the energetical constraint (). The stiffness at contact point 4 is
computed according to the Hertz’s theory:

4
K= o/ RIE;, (33)
where R} and E}
11,1
R Ry R a4
1 1-v2  1-v2, (34)
Ef B Eiy1

Here E; and v; are the Young modulus and the Poisson coefficient, of bead 7. If
the wall is at the end of the chain, R} and E}, for the contact /N between last
bead and the wall is computed as follows:

Ry =Ry
1 _171/]2\,_‘_171/51 (35)
By En B, ’

with E,, and v, are the Young modulus and the Poisson coefficient of the wall.

The motion of the chain is simulated with the event-driven scheme described
in section and the impact process is solved with LZB-complementarity mul-
tiple impact model described in section Il The choice of the step size AP to
solve LZB-complementarity impact model for different granular chains is dis-
cussed in section
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4 Simulations of the experimental test in [19]

4.1 Description of the experimental test

Nakagawa et al. [T9] have conducted a series of experimental tests on a tapered
chain of balls in order to investigate the dispersion effect in this kind of granular
chain. The configuration of these experimental tests is illustrated in figure Bl
The tapered chain is composed of 19 balls (numbered from 1 for the largest
ball to 19 for the smallest ball) whose diameter ®; is progressively decreased
according to the following law: ®; = (1 — ¢)®,_; with ®; = 9.5 mm and the
tapering factor ¢ = 5%. Initially, the balls in the tapered chain barely touch
one another. The tapered chain is then impacted by an impactor (numbered
0) of diameter &y = 10 mm and made of the same material as the balls in
the tapered chain. The ball properties correspond to the steel properties as
follows: mass density p = 7833kg/m?, Young modulus E = 203 GPa, Poisson
ratio ¥ = 0.3. In order to estimate the restitution coefficient of the balls, the
authors have perfomed binary collision experiments with pairs of balls of the
same size. Three values are found for the restitution coefficient: 0.947, 0.965
and 0.955 corresponding to the values of the ball velocity averaged over 5 ms,
15 ms and 20 ms, respectively. The velocity of the balls at the end of the impact
(defined at the moment when the smallest ball leaves the chain) is measured by
a high-speed digital image analysis.

Impactor ! Tapered chain

Figure 3: Configuration of the test of Nakagawa et al. [19].

4.2 Comparison between numerical and experimental re-
sults

We perform numerical simulations of the experimental tests presented above
with the LZB-complementarity multiple impact model. The parameters for the
ball properties used in the simulations are the same than those presented in
section The bi-stiffness compliance model is considered with an elasticity
coefficient 7 = 3/2. Since there is not a unique value presented in [19] for the
restitution coefficient, we choose to use the three values of 0.947, 0.965, 0.955 in
the simulations and compare the numerical results obtained with these values.
The simulations are performed with a step size AP = 1076 N.s.

In order to obtain the experimental data shown in a figure of a paper, we use
the following data extracting technique. First the considered figure is extracted
from an electronic version of the paper. Then we open the extracted figure by
an image processing software to make the resolution of the figure high enough.
The position of the interested point on the figure with respect to an origin point
(with an arbitrary unit) is dertermined by measuring on the figure. Knowing
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the value corresponding to the origin point and the scale of the figure allows to
find the value that corresponds to the interested point by an interpolation or an
extrapolation. In the case when the experimental data is shown with error bars,
only the data concerning the central points which are obtained from statistical
treatements are extracted. Figure H illustrates the result of the data extracting
technique described above.

35 , :
9. & Theonatical [}
2 5 | m Expermental
2
1.5 4
1 (]
0.5
0

"
Illl"lE"
1] 5 10 15 20
Particle number
(a)

53-5 T T T
BB L
o)
o 2.5- i
4
2.4 *
§15_ .................................. 4
£ "
5 0.5 m®
Zo O_....llll.!....f

0 5 10 15 20

Particle number
(b)

Figure 4: Tllustration of the data extracting technique: (a) the original figure 6
shown in [T9] and (b) figure shows the corresponding data extracted.

Figure B shows the post-impact velocity of the balls in the chain obtained
from the numerical simulations with three values of the restitution coefficient
(0.947, 0.965, 0.955), compared to the experimental results presented in [T9]. Tt
is shown that the numerical simulations give results that are close to the exper-
imental results. The multiple impact law underestimates (resp. overestimates)
slightly the post-impact velocity of the balls at the right end (resp. the left end)
of the chain. Moreover, the numerical results obtained with the value of 0.965
for the restitution coefficient match the best the experimental ones. We will
see in section B2 that such a value for the restitution coefficient is found by a
fitting procedure to the experiments performed by Melo et al. [I8]. The balls
used in these tests are made of the same material as that of the balls used in
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[[9] (the ball properties: mass density, Young modulus, Poisson coefficient are
the same).

3.5 T T T
m eXD.

> al 1
Z 9 o mm, e = 0965 g
% 2.5r | @ num., e* = 0.955 1
i ol | o num., e* =0.947 1
=
]
=15} ]
g
- 1 '
Z 0.5/ - : ¢ 1

O,..gggnllnq-ll!§=

0 5 10 15 20

Particle number

Figure 5: Normalized post-impact velocity of the balls obtained in the experi-
mental test and in the numerical simulations with different values for the resti-
tution coefficient.

We present in figure Bl the post-impact velocity, momentum and kinetic en-
ergy of the balls plotted in the semilog scale obtained from the experimental
test and from the numerical simulation with e, = 0.965 (which gives the best
result of the post-impact velocity of the balls). In this figure, the overestimation
of the post-impact velocity of the first balls by the model of multiple impact
can be clearly observed. This overestimation leads to an overestimation of the
post-impact momentum and kinetic energy of the balls. It can be noted that the
mass of the balls considered in the numerical simulations might not match that
in the experimental test. This might be also a source of discrepancy between
the numerical and experimental result.

4.3 Conclusions

The numerical results in figures B and Bl cleary show that the LZB-complementarity
multiple impact model supersedes the binary collision model employed in [19],
see figure 6 in that paper. In figure [l one sees that the post-impact velocities
are not well predicted for the first 4 balls (like in figure 6.b in [19]), despite this
comment, should be mitigated in view of figure Bl which shows that the deviation
is large only for the first ball. However for all the other balls the prediction is
very good (for the last two balls the experimental and numerical results are too
close to be distinguishable).

5 Simulations of the experimental tests in [18]

5.1 Description of the experimental tests

The configuration of the experimental tests performed by Melo et al. [I8] is
illustrated in figure[d A monodisperse chain composed of 16 beads of diameter
®, = 26 mm is placed in front of a tapered chain. Two tapered chains are
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Figure 6: Normalized post-impact velocity, momentum and kinetic energy of
the balls obtained in the experimental test and in the numerical simulations
with different values for the restitution coefficient in the semilog scale.

considered: the first chain is composed of 14 beads with the tapering factor

= 5.6% and the second one is composed of 12 beads with g2 = 8.27%. Beads
are high carbon hardened steel whose properties are as follows: mass density
p = 7780kg/m?, Young modulus £ = 203 GPa, Poisson ratio v = 0.3. The
impactor is a smaller bead of diameter ®, = 8 mm.

© ““33993%““ ,,,,,

Impactor 3 Monodisperse chain Tapered chain

Figure 7: Configuration of the experimental test performed by Melo et al. [15].

During the experimental tests, the force at a given contact in the monodis-
perse chain is directly mesured by a sensor that is inserted in one of two adjacent
beads at the contact. The force at a given contact in a tapered chain, for ex-
ample the right contact of kth bead in the tapered chain, is indirectly measured
as follows. First, the force at the end of a tapered sub-chain composed of 1, ...,
k tapered beads, preceded by the monodisperse chain, is measured by a sensor
made of the same material as the beads and placed at the end of the tapered
sub-chain. The measured force can be represented as:

t— Twall
) (36)

7—wall

il ) 1)
Fwe :F;nua ,L/}'wa (

where F*% is the maximum force, 1) is a function satisfying 0 < ¢wel <1,
Twell is the time of flight and 7% is the pulse duration. Similarly, the force at

RR n°® 7636



Shock dynamics in granular chains 19

the right contact of the kth bead in the whole tapered chain can be represented
as:
chain chain,chain t — ehein
F = Fm 1/} ( rchain ) (37)
From numerical simulations performed on a monodisperse chain composed of
perfectly elastic beads followed by a rigid wall made of the same material as the
beads (this wall is considered as the sensor wall used in the experimental tests),

Job et al. [T4] have found the following relations:
FP x5 1.94 x Fglom 7voll 1,09 x 7ehorm, (38)

Consequently, the force at the right contact of the kth bead in the whole ta-
pered chain is obtained by scaling the force pulse measured at the end of the
corresponding tapered sub-chain as follows:

. Fwall 109(t o Tchain)
Fchazn _m wall( )
101 rwall (39)

It is implicitly assumed in the scaling relation [B3) that the shape of the force
pulse at the right contact of the kth bead in the whole tapered chain is identical
to that of the force pulse measured at the end of the correponding tapered sub-
chain. The only difference between the force pulse at a contact in the whole
tapered chain and at the end of the corresponding tapered sub-chain is the
maximum force and the duration.

In order to check the accuracy of the scaling relation shown in ([B), first we
perform a numerical simulation on a monodisperse chain composed of 20 beads
without contact with a rigid wall and compute directly the force pulse at the
right contact of the 10th bead. Then we perform another numerical simulation
on the monodisperse sub-chain that corresponds to the right contact of the 10th
bead (this sub-chain is composed of 10 beads) followed a rigid wall made of the
same material as the beads, and compute the force pulse at the rigid wall. A
shock is induced at one end of each chain by a smaller bead. Two values of
the restitution coefficient e, are used: e; = 1.0 for perfectly elastic collisions
and es = 0.965 for non perfectly elastic collions (e; = 0.965 is the value of
the restitution coefficient obtained for the beads used in the experimental tests
presented above by a fitting procedure that will be described in section BEZ).
We are interested in the relation between the force pulses computed directly at
the right contact of the 10th bead (contact between the 10th bead- the 11th
bead) in the first simulation and at the end of the sub-chain (contact between
the 10th bead and the wall) in the second simulation. The results obtained from
the numerical simulations are as follows:

o for e; = 1.0 we have FWel ~ 1.94 x Fechain qwall ~ 1,09 x r¢hain and
I~ hain.
Twall 1,02 x Tehain,

e for e; = 0.965 we have Fwoll ~ 1.93 x Fchain ywall o 1,09 x rehein and
Twall ~ 1.02 x Tchain‘

Furthermore, the shape of the force pulse at the contact in the chain is quite
identical to that at the contact bead-wall for the two values of the restitution
coefficient, see figure B Thus, the scaling relation presented in [BJ) seems
to be good for a monodisperse chain composed of perfectly elastic beads or
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inelastic beads with a small dissipation. However, in the case of a tapered chain
composed of possibly non perfectly elastic beads, such a scaling relation might
lead to erroneous results because the pulse tail is perturbed with oscillations by
the rigid wall. This point will be analyzed later in this paper.

1.2 T T T

—in the chain
1r ---end of the chain|

0.8 1

g
= 06t ]
o
0.4 .

0.2r J

L 2 0 2 4

(a) es =1.0

——in the chain |
-=--end of the chain

0.8r

F/

0.2

L L R\ 1

0
(1) /7
(b) es = 0.965

Figure 8: Normalized forces pulse computed at the right contact of 10th bead
in a monodisperse chain of 20 beads and at the end of a monodisperse chain of
10 beads in contact with a rigid wall made of the same material than the beads:
(a) for the restitution coefficient e = 1.0 and (b) for e; = 0.965.

5.2 Fitting of parameters needed in numerical simulations

In order to perform numerical simulations of the experimental tests described
above, in addition to the parameters given above, two other important param-
eters are necessary: coefficient of restitution and impact velocity of the the
impactor, which are not given in [I8]. Tt is thus necessary to determine these
two parameters by a fitting procedure. The experimental data used for the
fitting procedure is the maximum contact force along the monodisperse chain,
which is extracted from figure 5 in [I8]. It is worth noting that this experimental
data is obtained by a direct measurement at the contacts in the monodisperse
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chain without any extrapolation (the force at a given contact in the monodis-
perse chain is recorded by a sensor inserted in the left bead at the considered
contact). We carry out numerical tests with different values of the coefficient
of restitution, ez, and of the impact velocity, V;,, on the monodisperse chain
followed by the first tapered chain (14 beads with ¢ = 5.6%). The fitting
procedure illustrated in figure [@ consists in:

e first varying the value of the restitution coefficient, e, from 1 to 0 so that
the decreasing tendency of the maximum force with the distance of the
contacts can be the best matched;

e then varying the value of the impact velocity V;, so that the experimetal
data can be quantitatively the best matched.

B experimental

o numerical with V},, = Im/s, e* = 0.965

¢ numerical with V;, = 0.62 m/s, e* = 0.965
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Figure 9: Fitting of the coefficient of restitution e, and of the impact velocity
Vin from the experimental data of the variation of the maximum force with the
distance of the contacts in the monodisperse chain.

As shown in figure @ with e, = 0.965 and V;,, = 0.62 m/s the numerical
result fits well to the experimental data. Hereafter, we carry out numerical
simulations on the considered tapered chains with these values.

5.3 Numerical tests

Two granular configurations are considered in the numerical simulations. The
first one is composed of a monodisperse chain of 16 beads of diameter &, =
26 mm, followed by a tapered chain of 14 beads with a tapering factor ¢g; = 5.6%.
For the second one, we replace the tapered chain in the first one by a tapered
chain of 12 beads with ¢o = 8.27%. In order to investigate the force pulses at
the contact points in these tapered chains, we perform two types of numerical
tests:
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e Type 1: The numerical tests of this type are performed on the whole
monodisperse chain, followed by tapered sub-chains with the number of
beads varying from n; = 0 to n; = 14 for ¢; = 5.6%, and from ny = 0 to
ny = 12 for ¢ = 8.27%. A rigid wall made of the same material as the
beads is placed in contact with last beads in the tapered sub-chains. This
type of tests is illustrated in figure [0

e Type 2: The numerical tests of this type are performed on the whole
monodisperse chain, followed by either the whole first tapered chain (14
beads with ¢; = 5.6%) or the whole second tapered chain (12 beads with
g2 = 8.27%). For this type of tests, there is no rigid wall at the end of the
tapered chains. Figure [ illustrates this type of tests.

With type 1 of numerical tests, we reproduce exactly what has been performed
in the experimental process. The force pulse at a contact in the monodisperse
chain is directly computed, whereas the force pulse at a contact in the tapered
chain is extrapolated using the scaling relation 8J). This kind of tests allows
a direct comparison between the numerical and the experimental results. In
the following, this method is referred to as "extrapolation method". Type 2
of numerical tests is complementary to type 1, for which the force pulse at a
contact in the tapered chain is directly computed. In the following, this method
is referred to as "direct computation method". Thanks to this type of numerical
tests, we can evaluate the accuracy of the technique of measuring the force pulse
at the contacts in a tapered chain carried out in [I§].

Wall
Iﬂll’di‘[Or ‘ Monodisperse chain Taporod sub- ollalll

ny = 16 beads ny beads

Figure 10: Numerical impact test on the monodisperse chain composed of 16
beads followed by a tapered sub-chain composed of n; beads placed in contact
with a rigid wall.

We perform numerical simulations by using the LZB-complementarity multi-
ple impact model. The interaction at contacts between two beads is modeled by
the compliant bi-stiffness contact model with the elasticity coefficient n = 3/2.
Parameters used in the numerical simulations are those given in [I8] and by the
fitting procedure: mass density p = 7780kg/m?, Young modulus £ = 203 GPa,
Poisson ratio v = 0.3, coefficient of restitution e, = 0.965, impact velocity
Vin = 0.62 m/s. The step size AP = 5 x 107 N.s is used to perform the
numerical simulations.

RR n°® 7636



Shock dynamics in granular chains 23

5.4 Comparison between numerical and experimental re-
sults

5.4.1 Force pulses felt at the rigid wall

In figure [ (figure & respectively) we compare the force pulses computed at
the rigid wall in the numerical tests of type 1 for different tapered sub-chains
of n; beads with ¢; = 5.6% (n2 beads with g2 = 8.27%, respectively) to the
force pulses recorded at the rigid wall in the corresponding experimental tests.
Figure [[3 shows an overlap of all the force pulses shown in figures [ and A by
normalizing each force pulse by its peak and considering the time scale (t—T")/7
where T is the time of flight and 7 is the pulse duration.
Some comments arise from figures [l [ and 3

e The behaviour is well predicted qualitatively and quantitatively: the force
pulse peak decreases when the length of the tapered sub-chains (nq or ns)
increases. The peak magnitude of the numerical force pulses is quite close
to that of the experimental pulses.

e The tail of the force pulses increases and oscillates more when the length
of the tapered sub-chains increases and when the tapering factor increases.

e In figure one sees that the tail oscillations for no > 8 are very well
predicted.

e The pulse shape is too sharp (it has a too narrow base) in the simulations,
i.e. the beginning of the tail is not perfectly reproduced numerically. This
is visible also in figure [3

e It is noteworthy that the front of the pulse remains almost unchanged when
ny or ng is increased. This suggests that in case of the tapered chain, the
pulse consists of the monodisperse pulse (a soliton) with a perturbation
at the tail. This might be due to the presence of the rigid wall at the end
of the tapered sub-chains, that leads to a reflection of the wave when it
reachs this rigid wall.

5.4.2 Maximum forces at contacts

As presented in section B in the experimental tests the force pulses at the
contacts in the considered tapered chains are not directly recorded. They are
obtained by the extrapolation method with the scaling relation (Bd). The max-
imum force at a given contact in the tapered chains (F"@™") presented in figure
5 of [I8] is thus the maximum force at the rigid wall measured in the test
with the corresponding tapered sub-chain (F2%) divided by a reduction factor
equal to 1.94. For instance, the maximum force at the right contact of the nith
bead in an entire tapered chain (tapering factor q) (F"@™"(n;)) is computed
as Fehain(p) = Fwall(n;)/1.94 with F2%(n;) being the maximum force mea-
sured at the rigid wall in the test with the corresponding tapered sub-chain of
ny beads with the same tapering factor q.

In the numerical tests the maximum force at a given contact in the tapered
chain can be either computed indirectly by the same extrapolation method as
in the experimental tests with the scaling relation (B3, or computed directly at
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Figure 11: Force pulses computed at the rigid wall during the numerical tests
of type 1 for different tapered sub-chains with ny = 0, 2, 4, 6, 8, 10, 12 (left
gelumng.gompared to force pulses measured directly at the rigid wall in the
experimental tests [I8] (right column) for ¢; = 5.6%.
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Figure 12: Force pulses at the rigid wall during the numerical tests of type 1
for different tapered sub-chains with ny = 0, 2, 4, 6, 8, 10, 12 (left column)
and force pulses measured directly at the rigid wall in the experimental test [I8]
(right column) for g2 = 8.27%.
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Figure 13: Collapse of the pulses presented in figures [[1l and [ when the force
is normalized to the maximum force, F,,,, and the time scale is (¢ —T') /7 where
T and 7 are the measured time of flight and pulse duration, respectively. (a)
for the numerical data and (b) for the experimental data.

the considered contact in the numerical test of type 2. The numerical results
corresponding to the two types of tests are compared to the experimental results
as shown in figure for the two considered tapered chains with ¢; = 5.6%
(subfigure [[4a) and ¢ = 8.27% (subfigure [40).

As shown in figure [[4 the maximum forces at the contacts in the tapered
chains obtained from the numerical simulations are quite close to the experi-
mental results for both extrapolation method and direct computation method.
However, it can be observed that the extrapolation method leads to a slight
overestimation of the maximum forces computed directly at the contacts in the
tapered chains. This discrepancy can be attributed to the reduction factor of
1.94 used in the scaling relation ([Bd). In fact, as analysed in section Bl this
value is determined through numerical simulations performed on non-dissipative
monodisperse chains. Considering the same value for tapered chains is not rel-
evant because dynamics of tapered chains is very different from dynamics of
monodisperse chains. We might use the same reduction factor for all the con-
tacts in a monodisperse chain because the couple of beads in contact is the
same for all the contacts. However, for a tapered chain for which the size of the
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Figure 14: Maximum force versus the contact position obtained from the nu-
merical simulations of the two types of tests, compared to the experimental
results. (a) for ¢ = 5.6% and (b) for g2 = 8.27%. The symbols ¢ and O
represent respectively the maximum force at the contacts in the tapered chains
obtained with the extrapolation method with the scaling relation (BY) from the
maximun force at the rigid wall computed in the numerical tests of type 1, and
with the direct computation at these contacs in the numerical tests of type 2.
The symbol e represents the experimental results.

beads is increased, the couple of beads in contact is different from one contact
to another. As a result, the reduction factor might not be the same for all the
contacts in the tapered chain and might depend on the tapering factor g.
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5.4.3 Duration of the force pulse at contacts

The pulse duration 7 is determined by fitting the Nesterenko solution

F(t) = chos6(t — T),

(40)
-

to the experimental data for the pulse front. This method is used in [I8].
Similarly to the maximum contact force, the duration of the force pulse at a
given contact in a tapered chain is experimentally extrapolated from that of
the force pulse measured at the rigid wall sensor, according the scaling relation
rehain(n) = rwall(n;)/1.09. Here 7% (n;) is the duration of the force pulse
measured at the rigid wall sensor in the test with a tapered sub-chain composed
of n; beads with the same tapering factor q.

In the numerical tests the duration of the force pulse at a given contact in
a tapered chain can be either computed indirectly by the same extrapolation
method as in the experimental tests, or computed directly at the considered
contact in the numerical test of type 2. The numerical results corresponding
to the two types of tests are compared to the experimental results as shown in
figure [[3 for the two considered tapered chains with ¢; = 5.6% (subfigure [[3al)
and g2 = 8.27% (subfigure [EH).

As shown in [[3, the numerical results obtained with both extrapolation
method and direct computation method match well the experimental results.
The numerical simulations overestimate slightly the pulse durations obtained
in the experimental tests. We can note a slight discrepancy between the pulse
duration obtained with the extrapolation method and that obtained from the
direct computation method. This discrepancy might be due to the same reasons
as those analyzed in section However, the discrepancy between these two
methods in terms of pulse duration is less significant than in terms of maximum
force.

5.4.4 'Wave speed
The speed of the wave when it passes through a given bead i is computed as:

T —Tiy’

where T;_1 and T; are, respectively, the time of flight at the left and right
contact of bead ¢ whose diameter is ®;. Experimentally, the time of flight at a
contact in the monodisperse chain is directly measured by the sensor inserted
in the left bead at the considered contact and the time of flight at a contact in
a tapered chain is measured by the sensor at the rigid wall in the test with the
corresponding tapered sub-chain. Numerically, the time of flight of the force
pulse at a given contact in a tapered chain can be either computed at the rigid
wall in the corresponding test of type 1 or computed directly at the considered
contact in the the test of type 2. The numerical results corresponding to the
two types of tests are compared to the experimental results as shown in figure
[ for the two considered tapered chains with ¢; = 5.6% (subfigure [[Ga) and
qo = 8.27% (subfigure [[6H).

We can see in figure[[Hl the wave speed obtained numerically with the time of
flight computed at the rigid wall in the numerical tests of type 1 (extrapolation

(41)

Vi
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Figure 15: Duration of the force pulse versus the contact position obtained from
the numerical simulations of the two types of test, compared to the experimental
results. (a) for ¢ = 5.6% and (b) for g2 = 8.27%. The symbols ¢ and O
represent, respectively, the duration computed indirectly by the scaling relation
BY) from the duration computed at the rigid wall in the numerical tests of
type 1, and the duration computed directly at the contact in the chains in the
numerical tests of type 2. The symbol e represents the experimental results.

method) is very close to that obtained with the time of flight computed directly
at the contacts in the tapered chains in the numerical tests of type 2. This is not
surprising since the time of flight 7<"*™ for a pulse to reach a given contact in a
tapered chain is very close to the time of flight 7% for the same pulse to reach
the rigid wall that is placed at the end of the corresponding tapered sub-chain.
As shown in section [l for monodisperse chains 7% ~ 1.02 x 7" Indeed,
to reach a given contact in the tapered chains, the waves in both types of nu-
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Figure 16: Wave speed versus the contact position obtained from the numerical
simulations of the two types of tests, compared to the experimental results.
(a) for ¢ = 5.6% and (b) for go = 8.27%. The symbols ¢ and O represent,
respectively, the wave speed computed from the time of flight of the force pulse
at the rigid wall for the numerical tests of type 1, and from the time of flight
at the contact in the chains for the numerical tests of type 2. The symbol e
represents the experimental results.

merical tests have to travel on the same monodisperse chain and than on the
same tapered sub-chain corresponding to the considered contact. It can be ob-
served that the numerical simulations can predict qualitatively the acceleration
of the wave when travelling in the tapered chains. Nevertheless, the discrepancy
between the wave speed obtained from the numerical simulations and the wave
speed measured in the experimental tests is significant for the tapered chain
with g2 = 8.27%. It is worth noting that the experimental data on the wave
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Figure 17: Experimental data on the wave speed presented in [I8]. (a) for
¢1 = 5.6% and (b) for ¢ = 8.27%.

speed presented in [I8] is not reliable, due to a very large relative errors when
estimating the wave speed from the time of flight difference, as shown in figure
@ In order to capture the central tendency from the experimental data, the
authors in [I8] use a smoothing procedure. The smoothing procedure consists
in fitting the relation v; = Qu;_1 with @ being a constant to the experimental
data. The relation v; = Qu;_1 results from the so-called quasi-solitary wave
approximation combined with binary collision model. The accuracy of such a
relation is questionable. The experimental data that we show in figure [ is
the result of this smoothing procedure so the results should be considered at a
qualitative level rather than a quantitative level concerning the wave speeds.
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5.4.5 Impulses for the front and for the tail of the pulse

Impulses for the front (Pr) and for the tail (Pr) of a force pulse are defined as
follows:

Pp = / o F(t)dt, (42)
Pr= / - F(t)dt. (43)
T+T1

In the case that the force pulse at a contact in the tapered chains is extrapolated
with the scaling relation (BY), the impulses Pr and Pr for the considered contact
are computed as follows:

pghein = / . T —— / e Feelt(t)dt
o 1.09x 1.94 J_
_ mP}g}all’ (44)
P = /Tchm,whm peemde = 1.09 >1< 1.94 /TWMW Freldt
= mW‘I”. (45)

Let us first compare the front impulse Pr and the tail impulse Pr obtained
by the extrapolation method described above in the numerical tests of type 1
and in the experimental tests. From a qualitative point of view, the numerical
simulations predict rather well the evolution of the front and tail impulses at
the contacts in the monodisperse and tapered chains, as shown in figure
However, there is a discrepancy between the numerical and experimental results:
the numerical simulations underestimate the front impulse Pr and overestimate
the tail impulse Pp. This discrepancy can be also observed for the contacts in
the monodisperse chain for which the maximum contact force and the duration
of the force pulse fit rather well to the experimental ones (see figures[[dl and [[H),
which is likely due to the difference between the numerical pulse shape and the
experimental one. This discrepancy becomes more significant at the contacts in
the tapered chains (contact positions > 0.45 m), which is essentially due to the
discrepancies in terms of maximum force and pulse duration obtained with the
extrapolation method in the numerical tests of type 1 and in the experimental
tests. Practically, the force pulse is recorded in the experimental tests using a
high frequency measurement with a fixed set of points. This technique allows
the pulse front to be fully recorded (high precision) but not the pulse tail (the
very end of pulse tail is not recorded). Consequently, it is difficult to compare
the tail impulse Pr for the experimental pulses that are not fully recorded to
the tail impulse Pr for the numerical pulses that are fully computed in the
numerical tests of type 1.

Now we compare the front impulse Pr and the tail impulse Pr at the contacts
in the tapered chains obtained with the extrapolation method in the numerical
tests of type 1 to those obtained with the direct computation method in the
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numerical tests of type 2. We recall that for the direct computation method,
first we compute directly the force pulses at the contacts in the tapered chains
during the numerical tests of type 2, and then we integrate these force pulses
to obtain the front and tail impulses, as shown in equations [2) and E3)). As
can be seen in figure [[§ the front impulses Pr obtained with both methods are
quite close whereas the tail impulses Pr are very different. The tail impulse
Pr obtained with the direct computation method is very small with respect
that obtained with the extrapolation method. This result shows that the tail
of the pulse at a contact in a tapered chain obtained by extrapolating the
pulse computed at the rigid wall in the numerical tests of type 1 is much more
pronounced than that obtained by computing directly at the considered contact
in the numerical tests of type 2. We will analyze this point in the next section.

5.4.6 Force pulses obtained from the direct computation

We analyze numerically whether or not the experimental measurement tech-
nique described in section Bl allows to capture the force pulse propagating in a
tapered chain. We recall that the force pulse at a contact in a tapered chain is
experimentally measured by extrapolating using the scaling relation [Bd). For
this objective we will compare the force pulses at the contacts in the consid-
ered tapered chains obtained by the extrapolation method and by the direct
computation method. As shown in figure [[A the extrapolation method leads
to a slight overestimation of the maximum force computed directly at the con-
tacts. In terms of duration and of speed of the pulse, the extrapolation gives
results that are close to those computed directly at the contacts in the tapered
chains, as shown in figures and M@ In figure M@ we compare the shape of
the force pulses obtained by the extrapolation method in the numerical tests
of type 1 (a rigid wall is placed at the end of tapered sub-chains ) and by the
direct computation method in the numerical tests of type 2 (the whole tapered
chains are considered without rigid wall at the their end). As can be seen in this
figure, the fronts of the force pulses obtained by the extrapolation method are
similar to those obtained from the direct computation method. However, the
tail of the force pulses obtained by the extrapolation method is much more pro-
nounced than that obtained by the direct computation method. It can be also
noted that for the force pulses obtained from the direct computation method,
their tail is very small compared to their front. This is the reason why when
the force pulses computed directly at the contacts in the tapered chains, the
tail impulse Pr is negligeable with respect to the front impulse Pr as shown
in figure In fact, in the numerical tests of type 2 for which no rigid wall is
placed at the end of the tapered chains, a pulse initiated at the largest end of the
tapered chains propagates down the chains and comes out of the chains with-
out reflection. Consequently, the force pulse at a given contact in the tapered
chains corresponds to a coming-in and a coming-out of the wave when it passes
through the considered contact (a compression phase followed by an expansion
phase). In the numerical tests of type 1 for which a rigid wall is placed after
tapered sub-chains, the pulse will hit the rigid wall and then will reflect. The
pulse after reflection propagates in the direction of an increasing bead diameter
(we can consider this case as a pulse propagating in an anti-tapered chain).
For such a configuration, part of pulse propagates toward the largest end and
part is reflected once again toward the rigid wall. Consequently, the force pulse
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Figure 18: Impulses for the front (Pr) and for the tail (Pr) of the pulse versus
the contact position obtained from the numerical simulations of the two types
of test, compared to the experimental result. (a) for ¢y = 5.6% and (b) for
g2 = 8.27%. The symbols ¢ and O represent, respectively, the wave speed
computed from the time of flight of the force pulse at the rigid wall for the
numerical tests of type 1, and from the time of flight at the contact in the chains
for the numerical tests of type 2. The symbol o represents the experimental
results. (a) for g3 = 5.6% and (b) for go = 8.27%.

computed at the end of the rigid wall corresponds to various coming-in and re-
flection travels (multiple compression and expansion phases which can be taken
into account with the LZB-complementarity multiple impact model). The well
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Figure 19: Overlap of force pulses computed directly at contacts in tapered
chains in the numerical tests of type 2 and extrapolated from force pulses at
the end of the rigid wall in the numerical tests of type 1. Force is normalized
by the maximum force and the time scale is (t —T")/7 (a) for ¢g; = 5.6% and (b)
for g2 = 8.27%.

pronounced tails of the force pulses in this case are certaintly due to this com-
plex phenomenon. Therefore the force pulses computed directly at the contacts
in the considered tapered chains in the numerical tests of type 2 and those ex-
trapolated from the force pulses computed at the rigid wall in the numerical
tests of type 1 do not result from the same physical phenomenon, in particular
for the tails. These numerical results show that the well pronounced tails of
the force pulses obtained in the experimental tests shown in [I§], in particular
the oscillations at the tails result, on one hand, from the mechanical effects of
tapered chains and, on the other hand, from the presence of a rigid wall placed
at the end of tapered sub-chains.

5.4.7 Conclusions

In sections 22 B3 B4 BEA0 BZ6 we compare the features of the force
pulses propagating in two tapered chains with tapering ratio ¢ = 5.6 and
g2 = 8.27% such as the pulse shape, the amplitude, the pulse duration, the

RR n°® 7636



Shock dynamics in granular chains 36

propagation speed, the front and tail impulses obtained from the experimen-
tal tests presented in [I8] and from the numerical simulations with the LZB-
complementarity model. In the experimental tests, the force pulse at a contact
in a given tapered chain is obtained by extrapolating the force pulse measured at
a rigid wall that is placed at the end of the tapered sub-chain corresponding to
the considered contact (extrapolation method). In the numerical simulations,
we carried out the same tests as the experimental ones. We also carried out
numerical tests on the whole considered tapered chain for which the force pulse
at a contact in the tapered chain can be computed directly (direct computation
method). In fact, the impact velocity and the resitution coefficient are not avail-
able in [I8], so we determined these parameters by the fitting procedure. The
fitting procedure is performed in order to match the experimental data available
for the monodisperse chain presented in [I8]. The obtained values for the impact
velocity and the restitution cofficient are then used to simulate the considered
tapered chains. Comparing the numerical results to the experimental ones and
the numerical results obtained by the extrapolation method to those obtained
by the direct computation method, the following conclusions can be drawn:

e The numerical simulations can reproduce rather well the features of force
pulses (front, amptitude, duration, the tail, the oscillations at the tail,
etc.) observed in the experimental tests. More precisely, the amptitude
and the duration of force pulses are quantitatively well predicted.

e The wave speed measured experimentally is qualitatively well predicted
by the numerical simulations. However, it is not suitable to compare
quantitatively the wave speed obtained from the experimental tests to
those obtained from the numerical simulations because the experimental
technique of measuring the wave speed gives large errors.

e The front and tail impulses are qualitatively well predicted by the numer-
ical simulations. Quantitatively the numerical simulations underestimate
the front impulse and overestimate the tail impulse obtained from the ex-
perimental tests. The overestimation of the tail impulse by the numerical
simulations might result from the fact that the tail of the force pulses is
not fully recorded in the experimental tests whereas it is fully computed
in the numerical simulations.

e The tail of the force pulses obtained numerically from the direct compu-
tation method is very small compared to that obtained from the extrapo-
lation method. The well pronounced tail of the force pulses obtained from
the extrapolation method in the numerical simulations and in the exper-
imental tests might due to partly the presence of the rigid wall placed at
the end of the tapered sub-chains. Therefore, it is likely that the measure-
ment technique described in [I8] is not suitable to investigate the force
pulses that actually are exerted at the contacts in a free tapered chain.

6 Simulation of impact dynamics within stepped
chains

In this section, we turn our attention to impact dynamics within stepped chains,
which are composed of a monodisperse section of large beads followed by a
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monodisperse section of small beads. A typical feature of these granular chains
is that a solitary wave (SW) propagating in the large section turns into a soli-
tary wave train (SWT), containing many signle solitary waves with decreasing
amplitudes when it passes though the small section. Such a SWT has been first
observed in the experimental tests presented in [27, 28] when a large enough
striker impacts a small monodisperse chain. The formation of the SWT has
been numerically confirmed in [3I]. Job et al. have been carried a series of
experimental tests on stepped chains and have put in evidence the formation of
the SWTs within such granular chains. In the following, we present the numeri-
cal results obtained from the simulations of the tests in [3T] performed with the
LZB-complementarity multiple impact model.

6.1 Test configuration

The considered granular chains is composed of two sections: the first section
contains 7 large beads of radius Ry = 13 mm and the second section contains
up to 50 small beads of radius Ro = 6.5 mm. The beads in the chain are
initially stationary and barely touch each other. The chains are then impacted
at one end by a striker of radius Ry = 6.5 mm. The beads in the chains and
the striker are made of high carbon chrome hardened steel with the following
properties: Young modulus £ = 203 GPa, Poisson coefficient v = 0.3 and the
mass density p = 7780 kg/m?>. The wall is assumed to be made of the same
material as the beads in the chains. Aside from the parameters given in [30],
we need to know the restitution coefficient and the impact velocity in order to
perform the numerical simulations. These parameters will be determined by a
fitting procedure. Two ways are considered:

e in the first way, we assume that the constitutive material of the beads
is purely elastic. This means that there is no energy dissipation during
collisions (es = 1.0). In this case, we change the impact velocity in such
a way that the maximum force of the incident wave (wave before the
interface) obtained from the numerical simulations fits to the experimental
results shown in figure 2.a in [30]. We obtain an impact velocity V;, =
0.31 m/s.

e in the second way, we change both the restitution coefficient and the im-
pact velocity such that the first peak of the solitary wave trains shown in
figures 2.b and 2.c in [30] can be reproduced from the numerical simula-
tion. In this case, we obtain e = 0.98 and V;, = 0.40m/s. The value of
the restitution coefficient obtained here is in accordance with the range of
the restitution coefficient obtained experimentally for steel beads (around
0.95) and close to the value that we obtained from the fitting procedure
presented in section H for beads made of the same material (e5 = 0.965).

In the sequel, we will present numerical results obtained with two couples
of parameters (e; = 1.0, Vi, = 0.31 m/s) and (e; = 0.98, V;,, = 0.40 m/s) for
the restitution coefficient and the impact velocity. The numerical simulations
are performed with the bistiffness compliance contact model and the step size
AP =10"6 N.s.
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Figure 20: Numerical impact test on a stepped chain composed of two sections:
large beads are in the first section and small beads are in the second section.

6.2 Numerical result with ¢, = 1.0 and V;, = 0.31 m/s

As can be seen in figure Il the solitary wave train is well reproduced in the
numerical simulations for the stepped chains. The times of flight for the SW
and the SWTs to reach the wall and the times of flight of SWs in SWTs in
the numerical simulations are in good accordance with the exprimental data.
Moreover, the duration of each SW in the SWTs is close to the experimental
duration. However, the number of significant SWs in the SWTs obtained from
the numerical simulations is higher than that found in the experimental tests
(about 7 in the numerical simulations and 5 in the experimental tests). This
might be due to the effect of friction between the beads and the rail that is not
taken into account in the numerical simulations. For the first SWT obtained
with 25 small beads, the force amplitude of SWs fits very well to the experimental
data (see figure EZa)) but this is less good for the second SWT obtained with
50 small beads (see figure B2H). We can see that, in the experimental data the
force amplitude of SWs in the second SWT is reduced in comparison with the
first SWT. This is natural since the SWT has to travel a longer distance before
reaching the wall and the SWT is attenuated by the dissipative mechanisms
at the contact points. In the present simulations, this dissipation is not taken
into account, this is the reason why the second SWT is quite similar to the first
SWT. To better reproduce the second SWT, it is necessary to introduce the
dissipation into the numerical simulation.

In figure B3l we compare the force pulse at the interface obtained from the
numerical simulations to that obtained from the experimental tests. It can
be seen that the numerical simulations give a result that is quite similar to
the experimental one. The numerical force amplitude at the interface is lower
than the experimental force amplitude. The ratio of the force amplitude at the
interface to the incident force amplitude is equal to 0.36 in the experimental
test whereas a value of 0.31 is found in the numerical simulations.

6.3 Numerical results with ¢, = 0.98 and V;,, = 0.40 m/s

As shown in figure B4l when the dissipation is introduced into the numerical
simulations by using the restitution coefficient e* = 0.98, the SWT is attenu-
ated when it travels in the chain (in figure Il the peaks of the SWT remain
constant while in figure 4] the peaks of the SWT decrease significantly). Fig-
ures 23 compares the force at the peaks in the first SWT (figure 25al) and in
the second SWT (figure 25H) obtained from the numerical simulations and from
the experimental tests. We can see that the numerical simulations with the
local dissipation give a result that fits well to the experimental data except
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Figure 21: Solitary wave and solitary wave trains in stepped chains obtained
from the numerical simulations (a) and from the experimental tests [30] (b).
First row corresponds to the force recorded at the end of a monodisperse chain
composed of 7 beads of radius Ry = 13 mm. Second (resp. last) row corresponds
to the force recorded at the end of a stepped chain composed of 7 beads of radius
Ry = 13 mm and 25 (resp. 50) beads of radius Ry = 6.5 mm. The numerical
simulations are performed with e, = 1.0 and V;,, = 0.31 m/s.

some small peaks in the end of SWTs. However, introducing the local dissipa-
tion (es = 0.98) overestimates the incident force recorded before the interface
(shown in the first row of figure ).

The incident force and the force at the interface obtained from the numerical
simulations with the couple of parameters (e; = 0.98 and V;,, = 0.40 m/s) are
shown in figure The force amplitude at the interface obtained from the
numerical simulations (23 N) is higher than the experimental data (20 N). In

RR n°® 7636



Shock dynamics in granular chains 40

80 T : :
O exp.
o) P
o o num.
60} 1
=
\; 401 o b
Ry
o
20f B b
8
0 1 2 3 4 5 6
Peak number
(a) with 25 beads of Ry = 6.5 mm
80 T
o exp.
o g num.
60F L—
o
z
= 40r [x] 7
R
o
20> o =] 7
o o
=]
0 1 1 L L L
0 1 2 3 4 5 6

Peak number
(b) with 50 beads of Ry = 6.5 mm

Figure 22: Force at the peaks in the solitary wave train obtained from the
numerical simulations, compared to the experimental data for the solitary wave
train at the end of the stepped chain with 25 beads of Ry = 6.5 mm (a) and
50 beads of Ry = 6.5 mm (b). The numerical simulations are performed with
es = 1.0 and V;,, = 0.31 m/s.

the other hand, the ratio of the force amplitude at the interface to the incident
force amplitude obtained from the numerical simulations (0.3) is lower than that
obtained from the experimental tests.

6.4 Conclusions

In this section, we simulated impact dynamics of stepped chains. This kind of
granular chains generate the solitary wave trains (SWTs) that are composed
of a set of solitary waves with decreasing amplitude. The simulations are per-
formed for two cases without or with local dissipation at contact points. As a
whole, the numerical simulations reproduce rather well the SWTs observed in
the experimental tests presented in [30]. The times of flight of the SWTs and
of SWs in SWTs are in good accordance with the experimental data. In the
case without local dissipation, the peaks of first SWTs shown in [30] are well
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Figure 23: The incident force (at the contact before the interface) and the
force at the interface obtained from the numerical simulation with e, = 1.0 and
Vin, = 0.31 m/s (a) and the experimental test (b).

matched by the numerical results but for second SWT in [30] the numerical
simulations give a significant discrepancy. When the local dissipation is intro-
duced in the numerical simulations, both two SWTs are well matched by the
numerical results. When comparing the incident force pulse and the force pulse
at the interface obtained from the numerical simulations to the experimental
ones, it is observed that the numerical simulations with or without local dissi-
pation overestimate the incident amplitude and underestimate the ratio of the
amplitude at the interface to the incident amplitude.

7 Interaction of two solitary waves in monodis-
perse chains

We now turn our attention to the interaction of two solitary waves in monodis-
perse chains. This problem has been numerically investigated in [33] and in [16]
and experimentally investigated in [32]. In [32], the authors have conducted ex-
perimental tests on two monodisperse chains composed of 25 of 26 steel beads of
radius R = 13 mm (odd chain and even chain). Bead properties are as follows:
density p = 7780 kg/m?, Young’s modulus E = 203 GPa and Poisson ratio
v = 0.3. Initially the beads in the chains barely touch each other. Then the
chains are impacted simultaneously at the two ends by two identical strikers of
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Figure 24: Solitary wave and solitary wave trains in stepped chains obtained
from the numerical simulations. First row corresponds to the force recorded at
the end of a monodisperse chain composed of 7 beads of radius Ry = 13 mm.
Second (resp. last) row corresponds to the force recorded at the end of a stepped
chain composed of 7 beads of radius R; = 13 mm and 25 (resp. 50) beads of
radius Ry = 6.5 mm. The numerical simulations are performed with e, = 0.98
and V;, = 0.40 m/s.

radius Ry = 4 mm. The contact force induced by the shocks is measured by the
force sensors inserted inside beads 9 and 17.

7.1 Numerical simulations

We perform here numerical simulations of the experimental tests described
above. The granular chains under consideration are identical to those in the
experimental tests. In [32] the impact velocity V;, for each impactor and the
coefficient of restitution e; are not given. Therefore we proceed a fitting pro-
cedure to determine these parameters. In fact, we have the experimental data
about the test for which only one solitary wave is generated along the same gran-
ular chains. This solitary wave is considered as "the reference solitary wave"
and is shown in figure 2 in [32]. Based on this reference solitary wave, we can
determine the impact velocity and coefficient of restitution by varying them in
such a way that the amplitude of the reference solitary wave when it passes
through beads 9 and 17 is reproduced in the chains of 25 and 26 beads. From
the fitting procedure, we obtain a restitution coefficient e, = 0.93 for both
chains and an impact velocity Vi, = 0.31m/s for the chain of 25 beads and
Vin, = 0.40m/s for the chain of 26 beads. Table [l shows the force amplitude
at the right contact of bead 9 and at the left contact of bead 17 obtained from
the numerical simulation for the two chains with the parameters obtained from
the fitting procedure, compared to the experimental data. It is worth mention-
ing that the coefficient of restitution obtained here is a little lower than that
obtained in section B (es = 0.965). This is likely due to the friction between
the beads and the support in the experimental setup that is not taken into ac-
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Figure 25: Force at the peaks in the solitary wave train obtained from the
numerical simulations, compared to the experimental data for the solitary wave
train at the end of the stepped chain with 25 beads of Ry = 6.5 mm (a) and
50 beads of Ry = 6.5 mm (b). The numerical simulations are performed with
es = 0.98 and V;,, = 0.40 m/s.

count in the LZB-complementarity model without friction. In fact, in the latter
case the fitting procedure is applied over a length of about 8 beads whereas the
length in the former case is about 17 beads. Thus the solitary wave travels a
longer distance in the former case than in the latter case, and so the dissipation
due to friction might play a more important role in the former case than in the
latter case. For the numerical simulations, the bistiffness compliance contact
model is considered and the step size is AP = 1075 N.s.

7.2 Numerical results

The two solitary waves before and after the interaction between them obtained
from the numerical simulations for the odd and even chains are shown in figure
BRa, compared to the experimental data shown in figure 2RIl The solitary wave
that is initiated at the left end (resp. right) of the chains is called the left-hand
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Figure 26: The incident force (at the contact before the interface) and the force
at the interface obtained from the numerical simulations with e, = 0.98 and

Vin = 0.40 m/s
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Figure 27: Numerical test of solitary waves interaction in a monodisperse chain.
Two solitary waves are initiated simultaneously at both ends of the chain by

two indentical impactors.

Chain of Parameters Numerical data Experimental data
25 beads | Vi, =031 m/s | F(n=9)=85N | F,(n=9)=82N
es = 0.93 m(n=17)=6.5N | F,(n=17) =6.2N
(n=9)=11.1N

26 beads | Vi, = 0.40 m/s | Fp(n =9) = 11.6N | Fp,
e. =093 Fpn(n=17) =88N | Fp(n=17) = 9.2N

Table 1: Force amplitude at the right contact of bead n = 9 and the left contact
of bead n = 17 obtained from the numerical simulations with monodisperse
chains of 25 and 26 beads, compared to the experimental data. The parameters
used for each chain are shown in the second column of this table.

(resp. right-hand) side travelling wave (LSTW, resp. RSTW). It is shown that
on the whole the numerical simulations reproduce rather well what happens
when two solitary waves collide in a monodisperse chain. For the odd chain,
LSTW arrives to the bead 17 with a time delay A = 35.5us with respect to
the reference solitary wave, close to the value A = 32.5us obtained from the
experimental test. The amplitude of LSTW at this instant is about 7.0 N,
compared to the experimental value of 6.2 N. SSWs with small amplitude are
not clearly observed for this odd chain in the numerical simulations and as weel
in the experimental tests (the amplitude of the SSWs is very small). In the other
hand, we can observe clearly two SSWs after the collision of the two solitary
waves LSTW and RSTW for the even chain in the numerical simulations and
in the experimental tests. The amplitude of the SSWs (about 0.32N) is smaller
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than the experimental value (about 1N). This means that the SSWs in the case
that two SWs collide in an even chain is stronger than in an odd chain. This
observation has been confirmed in [33]. The time delay of LSTW with respect to
the reference SW for the even chain is about 33.7pus, close to the experimental
value of 31.7us. A discrepancy between the numerical simulations and the
experimental tests can be observed when comparing the amplitude of LSTW
after collision for the even chain. In the numerical simulations the amplitude of
LSTW after collision is close to that of the reference SW but in the experimental
tests the former is significantly lower than the latter. In [32] the authors have
also performed numerical simulations based on the second order equation of
motion, the Hertz contact model. The local dissipation at the contacts points
is taken into account by using a nonlinear viscoelastic solid model [36]. The
numerical results obtained from this simulation is shown When comparing
the numerical results obtained from the numerical simulations performed with
the LZB-complementarity model which takes into account the local dissipation
by using the energetic restitution coefficient (shown in PRa)) and the numerical
results in [32] (shown in EJ), we can see that the first ones match better the
experimental data than the second ones. Furthermore, the SSWs are more
clearly observed in the simulations with the LZB-complementary model than in
the simulations in [32].

7.3 Conclusions

We investigate in this section the interaction between two solitary waves (SWs)
propagating in monodisperse chains by performing the numerical simulations
and compare the numerical results obtained to the experimental data avail-
able in [32]. Tt is found out that the numerical simulations with the LZB-
complementarity multiple impact model are able to well reproduce the effects
when two SWs collide. The time delay that results from the collision of two SWs
and the amplitude of the SWs after collision found in the experimental tests are
well matched by the numerical results. The secondary solitary waves (SSWs)
that are generated after collision can be observed in the numerical tests for the
monodisperse chains composed of an even number of beads. However, these
SSWs are significantly smaller than those observed in the experimentals tests.
The numerical simulations with LZB-complementarity multiple impact model
give the results that match better the experimental data than the numerical
simulations performed in [32] that take into account the local dissipation by a
nonlinear viscoelastic solid model.

8 General conclusions

In this work, we present the numerical simulations of impact dynamics for granu-
lar chains performed with the LZB-complementarity multiple impact model that
is implemented with the event-driven numerical scheme in the SICONOS plat-
form. Different kinds of granular chains are considered: monodisperse chains,
tapered chains, stepped chains. We focus on analyzing the impact process in
these granular chains by striking them at one end or at both ends. We also
compare the numerical results obtained to the experimental results presented
in [19], [I8], 0], [32]. In some cases, some parameters necessary to perform
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Figure 28: Interaction of two solitary waves in monodisperse chains obtained
from (a) the numerical simulations and (b) the experimental tests. Left and
right columns correspond to the chain of 25 and 26 beads, respectively. In each
column, the top panel shows the force felt at the right contact of bead 9 and
the bottom panel shows the force felt at the left contact of bead 17. LSTW is
the left-hand side travelling wave (initiated on the left of the chain) and RSTW

is the right-hand side travelling wave (initiated on the right of the chain).

RR n°® 7636



Shock dynamics in granular chains 47

- |(A) (C)

< 10

- "

U) LN

g | 1SSW
5 "oy

: 3

Z 10((B) 10(D)

o A 0

\ 1 8

85| 1Y 5 it Ssw

w ' !

;: i 1
—8.5 0 0.5 1 -8.5 0 0.5 1
Time [ms] Time [ms]

Figure 29: Numerical results presented in [32].

numerical simulations (impact velocity, restitution coefficient) are not explicitly
given in the experimental tests. Therefore, we apply the fitting procedure to
the experimental data available for some experimental tests to determine these
parameters. Then we use the parameters obtained for another tests. The com-
parison between the numerical results and the experimental results shows that
the numerical simulations with LZB-complementarity multiple impact model
are able to predict well what happens during the impact process for granular
chains and that the numerical results match well the experimental results. More
precisely, the following conclusions can be drawn:

e the outcomes of the impact process for tapered chains, obtained from the
numerical simulations are in very good agreement with the experimental
data shown in [I9]. Moreover, the propagating force pulse presented in
[I8] are well reproduced by the numerical simulations. However, some
discrepancies are found between the numerical and experimental results,
in particular in terms of wave speed and tail impulses. This might be
due to partly the limitation of the measurement technique used in the
experimental tests. Analyzing the numerical results points out that the
measurement technique used in [I8] using a wall sensor might be not suit-
able to investigate the wave propagating in tapered chains as the wall
sensor disturbs their boundary conditions.

e the formation and propagation of a solitary wave train (SST) in stepped
chains are well reproduced by the numerical simulations. For the simula-
tions without local dissipation, the SST remains constant when travelling,
which leads to some discrepancies between the numerical results and the
experimental results in [30]. When the local dissipation is taken into ac-
count by using the energetic restitution coefficient, the SST is attenuated
when travelling and the experimental data is better reproduced.
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e the interaction effects between two solitary waves (SWs) in monodisperse
chains are put in evidence by the numerical simulations. The interaction
between two SWs leads to a delay time of each SW compared to the
case when only one SW propates and a formation of secondary solitary
waves (SSWs) with a small amplitude. In the numerical simulations, the
SSWs are clearly observed in a monodisperse chain composed of an even
number of beads. However, the amplitude of these SSWs obtained in the
numerical tests are significatly lower than in the experimental tests. The
numerical simulations with LZB-complementarity multiple impact model
match better the experimental data in [32] than the numerical simulations
performed in the same paper.

The above results demonstrate that the numerical simulations with LZB-
complementarity multiple impact model are able to simulate impact dynamics
of granular chains, strictly speaking and of mechanical systems of multiple rigid
bodies, generally speaking. With the LZB-complementarity multiple impact
model, the local dissipation at contact points during the collisions between con-
tacting bodies can be consistently taken into account by using the energetical
constraint. Introducing the local dissipation, the numerical results obtained
with this impact model match better experimental data.

A Numerical scheme for LZB-complementarity
model

A.1 Algorithm

The numerical scheme to solve the impact problem with LZB-complementarity
multiple impact model consists in first discretizing the principal impulse P (the
dump integration variable) into steps 0, 1, ..., N of size AP (a step k goes from
instant Py to instant Pyi1 = Pr + AP) and then in applying the algorithm
described in [ Bl and

A.2 Convergence of the algorithm

In order to evaluate the convergence of a numerical solution, we can compare the
solution obtained from the simulation performed with a given step size AP = h
to the solution obtained with a smaller step size (for example a half of the latter
step size). If the two solutions do not greatly differ from each other, we may
consider that the solution obtained with the step size AP = h converges to the
solution of the multiple impact problem that we are simulating. The difference
between the solutions (that can be described in terms of velocity of the balls
during the simulation) obtained with two different values of the step size (h and
h/2) can be quantified by a discrepancy quantity defined as follows:

au(P) — (P
) = Gl

where g, (P) and g, /»(P) are respectively the vectors of the generalized velocity
of the considered system at instant P during the simulation (P is the dumb

(46)
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integration variable considered in the simulation) obtained with two values of
the step size h and h/2. The symbol (||.||) represents the maximum norm.

We can also evaluate the convergence of the numerical solution obtained
with a step size AP = h by computing another discrepancy quantity in terms
of post-impact velocity as follows:

+ ”qh - qh/2||

PN

where q; and q;/Q are respectively the vectors of the generalized post-impact
velocity of the considered system, obtained with two values of the step size h
and h/2.

The numerical solution obtained from the simulation with a step size h is
considered to be convergent to the solution of the multiple impact problem if
the following criteria are satisfied:

®(P) <€ VP, (48)
o <€, (49)

where € and €T are precisions for the numerical results in terms of the evolution
of the system during the impact and of the outcome of the impact, respectively.
The choice of the values for € and € depends on the problem that we want to
analyze. For example, a small value for e (resp. ¢ ) should be used if we want
to analyze the outcome of the impact (resp. if we want to analyze the evolution
of the system during impact).

The choice of the step size AP constitues a crutial point in the numerical
simulation with LZB-complementarity multiple impact model for a given granu-
lar chain. It is not an easy task since the choice of the step size AP depends on a
lot of factors such as the geometry of the considered chain (size of the beads), the
properties of the beads (density, Young modulus), the local dissipation (restitu-
tion coefficient), the impact velocity, etc. Therefore it is important to perform a
convergence test using the precision criteria ([E8) and [@J) to make sure that the
solution obtained from the numerical simulation performed is convergent. In
the following, we discuss the choice of the step size for three different granular
chains considered as reference chains in order to give a guideline to choose a
suitable step size when simulating the impact dynamics of granular chains with
LZB-complementarity multiple impact model.

A.2.1 For a monodisperse chain of elastic beads

Let us now consider a monodisperse chain composed of 20 elastic beads of radius
R = 10 mm (es; = 1.0). The ball properties are: density p = 7780 kg/m?,
Young modulus £ = 203 GPa and Poisson coefficient v = 0.3. The chain is
impacted by a striker identical to the beads in the chain with an impact velocity
Vi =1 m/s. In the numerical simulations presented here, the bi-stiffness are
considered.

Figure Bl presents the velocity of different beads in the chain versus the
principal impulse P, obtained from the numerical simulations with different
step sizes. It can be observed that the result obtained with AP = 1.0~ differs
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significantly from that obtained with AP = 1.07°. This difference is small at
the beginning of the simulation and then increases during the simulation, which
is certainly due to the cumulative error during the integration. When the step
size AP = 1.0~ is used, the result obtained coincides almost with that obtained
with AP = 1.07°. This means that the numerical simulation converges when
the step size is decreased.
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Figure 30: Velocity of different beads in the monodisperse chain with e = 1.0
during the numerical simulations with differents step size AP.

In figure BIl the discrepancy quantity ®; is plotted versus the principal
impulse P during the simulations performed with different step sizes. For the
step size AP = 107, the discrepancy ®; increases quickly and reaches an
important value at the end of the simulation whereas it remains quite small for
the step sizes AP = 107> and AP = 1076,

TableB give some information about the numerical simulations with different
step sizes such as the number of integration steps performed, computation time
with a HP computer with four processors of 2.67 GHz, the maximum value of
the discrepancy quantity @y, the value of the discrepancy quantity CIDZ, and the
convergence status evaluated with precisions ¢ = ¢* = 0.01. We can see that for
this monodisperse chain without dissipation, a step size AP about 1.0 x 107°
allows to obtain a satisfactory solution.

Step size | Number | Computa- | max(®Py) o7 Convergence
AP (N.s) | of steps | tion time (Yes/No)
1.0 x 1072 4622 0.13 s 0.09 0.0046 No

1.0 x 10~° 45913 0.79 s 0.008 0.0003 Yes

1.0 x 107°% | 458934 7.23 s 0.003 0.00015 Yes

Table 2: Information about the numerical simulations of the monodisperse chain
with e; = 1.0 and with different step sizes AP.
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Figure 31: Discrepancy quantity ®; computed during the numerical simulation
of the monodisperse chain with e; = 1.0 with differents step size AP.

A.2.2 For a tapered chain of elastic beads

In this section we consider a tapered chain of 20 elastic beads (e = 1.0). The
radii of the beads in the chain progressively decrease such that R;—; = (1—¢)R;
with ¢ = 5% being the tapering factor. First bead in this tapered chain and
other parameters are identical to those for the monodisperse chain considered in
section A2l We performed numerical simulations of this tapered chain with
different step sizes AP. As can be seen in figure B4, the step sizes AP of 107°
and 1079 give close solutions. However, the discrepancy quantity max(®y) =
0.05 for AP = 10~° (see table B, that is above the precision ¢ = 0.01. As a
consequence, the step size AP = 107° that is satisfactory for the monodisperse
chain considered in section [AZ2] does not satisfy the precision critera @) and
@X). For this tapered chain, AP = 1076 gives a satisfactory solution both in
terms of the evolution of the system during the impact process and in terms of
the outcome of the impact process.

Step size | Number of | Computa- | max(®j,) @Z Convergence
AP (N.s) steps tion time (Yes/No)
1.0 x 107° 22331 042 s 0.05 0.002 No

1.0 x 1076 223001 3.76 s 0.006 0.00007 Yes

Table 3: Information about the numerical simulations performed for the tapered
chain of elastic balls with different step sizes.

A.2.3 For a monodisperse chain of inelastic beads

We consider now the same monodisperse chain as the one considered in sec-
tion [A2.0] but the local dissipation is introduced by using a restitution coeffi-
cient e, = 0.6. For such a strongly dissipative chain, the velocity of different
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Figure 32: Velocity of different beads during the numerical simulations per-
formed for the tapered chain of elastic balls with differents step sizes AP.

beads during the numerical simulations performed with different step sizes AP
is shown in figure B3l As a whole, the solutions obtained with the step sizes
AP =107°, 1075, 1077 are quite close. However, a significant discrepancy can
be observed at the end of the simulations when making a zoom on figure
at the end of the curves, as illustrated in figure In fact, in the presence of
the dissipation at the contact points, dynamics of the chain becomes strongly
oscilating with a high frequency. At the end of the impact process, oscilations
become faster and have a small amptitude. Therefore it is not easy to integrate
properly this kind of oscillations even when the step size is small. Although the
evolution of the system at the end of the impact process is not convergent when
the step size is decreased from 1076 to 107, the outcome of the simulations
is convergent. Indeed, the difference between the post-impact velocities of the
beads obtained with AP = 10~% and those obtained with AP = 1077 is smaller
than 1%. Table Bl shows the discrepancy quantities for different step sizes. It
can be seen that the precision criterion ([Ed) is satisfied with both step sizes
AP =10"% and AP = 107 but not the precision criterion ([@8). For this kind
of chain, neglecting the oscilations with small ampltitude and high frequency at
the end of the impact process does not change the main evolution of the system
during impact process and the output of the simulation. A step size AP about
10% gives satisfactory solution.

B Algorithm for event-driven scheme

For the event-driven scheme, we first discretize the time interval [0, ¢ ] into steps
of size At. A step k goes from instant ¢t* to instant t*+! = ¥ + At. Then the
following algorithm is applied.
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Figure 33: Velocity of the beads during the numerical simulations performed
for the monodisperse chain of inelastic balls (e; = 0.6) with differents step sizes
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Figure 34: Velocity of bead 10 in the monodisperse chain with e; = 0.6 at the
end of the simulation with differents step sizse AP.

Step size | Number of | Computa- | max(®p) <I>,JLr Convergence
AP (N.s) steps tion time (Yes/No)
1.0 x 107° 14139 0.40 s 0.13 0.07 No
1.0 x 1076 272754 4.76 s 0.013 0.0018 No
1.0x 1077 | 1363111 23.06 s 0.03 0.002 No
Table 4: Information about the numerical simulations performed for the

monodisperse chain of inelastic beads (es = 0.6) with ¢ = 5% with different

step sizes AP.
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Algorithm 1 Algorithm for LZB-complementarity multiple impact model (part

1)

1: P,=0 > Principal impulse variable

2:1t=0 > Time variable

3: while Termination = false do > while the multiple impacts not yet
terminated

ey

// For each step k, we compute 6;-”'1, E]]-H'l, Pf“, values at the end of
the step from 5}“, E]’-“, Pf, values at the beginning of the step

5: //=—========== Check the status of each contact at the beginning
of step k

6: for j =1 — m do

7 if E]’c =0 then > no potential energy at this contact

8: if 0¥ <0 then

9: flag;-€ =0 > contact does not enter into impact

10: else if 5;“ >0 then

11: flag;? =1 © contact begins the compression phase (included
the repeating impact)

12: end if

13: else if E]k > (0 then > potential energy is not zero at this contact

14: flag;? =2 > contact is already in the impact process

15: end if

16: end for

17: //=—==—========== Check the termination condition for multiple
impacts at the beginning of step k

18: Termination = true

19: for j =1 —m do

20: if flag;»€ # 0 then

21: Termination = false

22: end if

23: end for

24: //============= Select the primary contact (*) at the beginning
of step k

25: * =1

26: if maz(Ef)jzl 11111 m = 0 then > in this case, the primary contact is
selected according to the relative velocity at contact points

27: PrimaContactVel = true

28: for j =1— m do

29: if 6% < 0¥ then

30: * =

31: end if

32: end for

33: else if max(EJ’?)j:L___,m > 0 then © in this case, the primary contact
is selected according to the potential energy at contact points

34: PrimaContactVel = false

35: for j=1—mdo

36: if EF < EJ’c then

37: * =]

38: end if

39: end for

40: end if
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Algorithm 2 Algorithm for LZB-complementarity multiple impact model (part

2)
41: //==============Apply the distributing rules (&), (@) and
@D to compute the change of the impulse 5Pf at each contact
42: if PrimaContactVel = true then > if the primary contact is selected
according to the relative velocity at contact points
43: for j =1— m do
Sk
44; sPF = ﬁ(&)”AP
K. \§k
45: end for
46: elser> if the primary contact is selected according to the potential enerqy
at contact points
47: for j=1—mdo
48: if flag;»€ =0 then
49: 6PF =0
50: else if flag;-C =1 then
Sk
51: sPF = %(63$€P)n
52: else if flag;-C = 2 then
sp = (Bayrin (L)
J K. Ek
54: end if
55: end for
56: end if
57: //=—=—=—=—========== Compute the relative velocity at the end of
step k by applying the difference formulation to (&)
58: for j =1 — m do
59: (.S;-H_l = 5;6 + (Hc)jléPlk
60: end for
61: //=—=—=—=—======—==== Compute the potential energy for the end of

the step by applying the numerical integration to (3), (IH)
62: for j =1 — m do

63: if MonoStiffnessModel then > For Mono-stiffness compliance model
k41 k 5;6 + 5?“ k

64: E;™ =Ej + ———0F;

65: //Determine the work done during the compression phase W, ;

66: if (5;c >0, 5;”'1 < 0) then © transition from the compression to
expansion phase

67: W ;= EF

68: end if

69: //Check the energetic constraint

70: if (5;c <0, E]’c < (1—eZ;)We;) then > during the expansion
phase and the energetic constraint is satisfied

71: EJk =0 > discard the potential energy

72: end if
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Algorithm 3 Algorithm for LZB-complementarity multiple impact model (part

3)
73: else if BiStiffnessModel then © For Bi-stiffness compliance model
74: if 5;? >0 then > contact located in the compression phase
oF 4 gkt
. E+1 _ ok OJ J k
75: E;7 =E7 + 5 oP;
76: else if 5;-“ < 0 then > contact located in the expansion phase
1 ok 4ottt
: k1 _ gk~ %5 0% sk
e E;7 =E7 + =N 5 OP;
5,7
78: end if
79: end if
80: end for
81: //=—=—=—=—==========Compute the force at the contact points using
@
82: for j=1—mdo
83: if E]’c =0 then > the potential energy at this contact is zero
o,
84: N = (14 )T K7 (Sko PRy
85: else > the potential energy at this contact is not zero
1
86: N = (14 )7 K7 (BR )7,
87: end if
88: end for
89: //=—==——========== Compute the principal impulse P* and the

time t during the impact process
90: P, =P, +0PF
k
o1 t=1t+ 2k
92: end while
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Algorithm 4 Algorithm for the event-driven scheme
while t* <t/ do
//=============== Check if some contacts are activated or not
at instant t*
if I* = () then

status® =0 > Free flight motion
else

status® =1 > Some contacts are activated
end if
//===========—=—— Integrate up to the next instant t"+!

if status® = 0 then
Integrate the DAE @) up to the next instant t**'. During this in-
tegration, the ODE solver will perfom a root finding of functions 46;(t) =
0 Vj € I. If a root is found at an instant ¢* < th+1. the solver throws an
integer Istate = 1 and Istate = 0 if otherwise.

if Istate = 1 then > A nonsmooth even is found
Add a new event at instant ¢*
Set th+l = ¢*
ProcessN SEvent = true > the added event needs to be processed
end if

else if status® =1 then
Integrate the the system LCP at acceleration level (28) + ODE Z3) up
to the next instant t**!. During this integration, the ODE solver will perfom
a root finding of functions 6;(t) =0 Vj € I\ I¥ and \;(t) =0 Vj e IF. Ifa
root is found at an instant t* < t**1, the solver throws an integer Istate = 1
and Istate = 0 if otherwise.
if Istate =1 then
Add a new event at instant ¢*

Set, tF+1 = ¢*
ProcessN SEvent = true > the added event needs to be processed
end if
end if
//=============== Update the index sets
Update the index sets with the algorithm described in
//=============== Process nonsmooth events if they are found

if ProcessN SFEvent = true then
Process the nonsmooth events added with the algorithm described in
B
end if

end while
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Algorithm 5 Algorithm to update the index sets at instant ¢ 1

for j € I**! do
//============——= First, update the index set [F+1
if j > I*! then > if j is not in the index set IF+!
if 0¥*' =0 then
Insert j into [F+1
end if
else > if j is already in the index set IF+!
if 057" > 0 then
Remove j from [F+!

end if

end if

)/==========—=—=——— Update the index set I**!

if j € I*! then > if j is in the index set [F+1
if j > I**! then > if j is not in the index set IF+1

if 5;?“ =0 then
Insert j into [F+1
end if
else > if j is already in the index set IK+!
if 5;?“ # 0 then
Remove j from [F+!
end if
end if
else > if j is not in the index set IF+1
Remove j from [F+1
end if

end for

Algorithm 6 Algorithm to process the nonsmooth events

//==============[f impact occurs at some contact points
if 781\ [+ £ () then
Solve the impact problem using the LZB-complementarity multiple impact
model with the algorithm described in [0l and
Update the index sets I¥T! and I**! with the algorithm described in
Make sure that 751\ [F+1 =)
end if
//=—=—=—=—====—=—=—==[f detachment occurs at some contact points
if I¥*1 #£ () then
Solve LCP at acceleration level (2]
// Update the index set I**t1 with values )\?H and 5;““ obtained from the
resolution of LCP (28]
for j € I*! do
if (65! >0, "1 =0) then
Remove j from [F+!
end if
end for

end if
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