C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

A. T. Cemgil, C. Fevotte, and S. J. , Variational and stochastic inference for Bayesian source separation, Digital Signal Processing, vol.17, issue.5, pp.891-913, 2007.
DOI : 10.1016/j.dsp.2007.03.008

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Cooke, P. Green, L. Josifovski, and A. Vizinho, Robust automatic speech recognition with missing and unreliable acoustic data, Speech Communication, vol.34, issue.3, pp.267-285, 2001.
DOI : 10.1016/S0167-6393(00)00034-0

L. Deng, J. Droppo, and A. Acero, Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion, IEEE Transactions on Speech and Audio Processing, vol.13, issue.3, pp.412-421, 2005.
DOI : 10.1109/TSA.2005.845814

N. Q. Duong, E. Vincent, and R. Gribonval, Under-Determined Reverberant Audio Source Separation Using a Full-Rank Spatial Covariance Model, IEEE Transactions on Audio, Speech, and Language Processing, vol.18, issue.7, pp.1830-1840, 2010.
DOI : 10.1109/TASL.2010.2050716

URL : https://hal.archives-ouvertes.fr/inria-00435807

J. Eggink and G. J. Brown, Application of missing feature theory to the recognition of musical instruments in polyphonic audio, Proc. Int. Symp. on Music Information Retrieval, 2003.

D. P. Ellis, C. V. Cotton, and M. I. Mandel, Crosscorrelation of beat-synchronous representations for music similarity, Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pp.57-60, 2008.

M. J. Gales, Model-Based Techniques for Noise Robust Speech Recognition, 1995.

D. Kolossa, R. F. Astudillo, E. Hoffmann, and R. Orglmeister, Independent component analysis and timefrequency masking for speech recognition in multitalker conditions, EURASIP Journal on Audio, Speech, and Music Processing, vol.2010, 2010.

B. Logan, Mel frequency cepstral coefficients for music modeling, Proc. Int. Symp. on Music Information Retrieval (ISMIR), 2000.

H. Rump, S. Miyabe, E. Tsunoo, N. Ono, and S. Sagayama, Autoregressive MFCC models for genre classification improved by harmonic-percussion separation, Proc. Int. Conf. on Music Information Retrieval (ISMIR), pp.87-92, 2010.

E. Vincent, R. Gribonval, and C. Févotte, Performance measurement in blind audio source separation, IEEE Transactions on Audio, Speech and Language Processing, vol.14, issue.4, pp.1462-1469, 2006.
DOI : 10.1109/TSA.2005.858005

URL : https://hal.archives-ouvertes.fr/inria-00544230

E. Vincent, M. J. Jafari, S. A. Abdallah, M. D. Plumbley, and M. E. Davies, Probabilistic Modeling Paradigms for Audio Source Separation, Machine Audition: Principles , Algorithms and Systems, 2010.
DOI : 10.4018/978-1-61520-919-4.ch007

URL : https://hal.archives-ouvertes.fr/inria-00544016