P. R. Bending, Curves of genus 2 with ? 2 multiplication, 1998.

D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 no, pp.95-101, 1987.
DOI : 10.1090/S0025-5718-1987-0866101-0

D. G. Cantor, On the analogue of the division polynomials for hyperelliptic curves, J. Reine Angew. Math, vol.447, pp.91-145, 1994.

H. Cohen, H. W. Lenstra, and J. , Heuristics on class groups of number fields', in Number theory, Lecture Notes in Math, pp.1068-1101, 1983.

S. D. Galbraith, M. C. Harrison, D. J. Mireles, and . Morales, Efficient Hyperelliptic Arithmetic Using Balanced Representation for Divisors, Algorithmic Number Theory: ANTS-IX, pp.342-356, 2008.
DOI : 10.1007/978-3-540-79456-1_23

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

P. Gaudry, Fast genus 2 arithmetic based on Theta functions, Journal of Mathematical Cryptology, vol.1, issue.3, pp.243-265, 2007.
DOI : 10.1515/JMC.2007.012

URL : https://hal.archives-ouvertes.fr/inria-00000625

P. Gaudry and . Schost, Construction of Secure Random Curves of Genus 2 over Prime Fields, Advances in cryptology: EUROCRYPT 2004, pp.239-256, 2004.
DOI : 10.1007/978-3-540-24676-3_15

URL : https://hal.archives-ouvertes.fr/inria-00514121

P. Gaudry and . Schost, A low-memory parallel version of Matsuo, Chao, and Tsuji's algorithm, Algorithmic number theory: ANTS-VI, pp.208-222, 2004.

P. Gaudry and . Schost, Genus 2 point counting over prime fields, Preprint, 2010.
DOI : 10.1016/j.jsc.2011.09.003

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Gruenewald, Computing Humbert surfaces and applications, Contemp. Math, vol.521, pp.59-69, 2009.
DOI : 10.1090/conm/521/10274

D. R. Kohel and B. Smith, Efficiently Computable Endomorphisms for Hyperelliptic Curves, Algorithmic number theory: ANTS-VII, pp.495-509, 2006.
DOI : 10.1007/11792086_35

URL : https://hal.archives-ouvertes.fr/inria-00537882

K. Matsuo, J. Chao, and S. Tsuji, An Improved Baby Step Giant Step Algorithm for Point Counting of Hyperelliptic Curves over Finite Fields, Algorithmic number theory: ANTS-V, pp.2369-461, 2002.
DOI : 10.1007/3-540-45455-1_36

J. Mestre, Familles de courbes hyperelliptiquesàhyperelliptiquesà multiplications réelles', Arithmetic algebraic geometry (Texel, 1989), Progr, Math, vol.89, 1991.

J. Mestre, Couples de jacobiennes isogènes de courbes hyperelliptiques de genre arbitraire, p.1, 2009.

Y. H. Park, S. Jeong, and J. Lim, Speeding up point multiplication on hyperelliptic curves with efficientlycomputable endomorphisms, Advances in Cryptology?EUROCRYPT 2002, pp.197-208, 2002.
DOI : 10.1007/3-540-46035-7_13

J. Pila, Frobenius maps of abelian varieties and finding roots of unity in finite fields, Mathematics of Computation, vol.55, issue.192, pp.745-763, 1990.
DOI : 10.1090/S0025-5718-1990-1035941-X

H. Rück, Abelian surfaces and jacobian varieties over finite fields', Compositio Math, pp.76-351, 1990.

K. Takashima, A New Type of Fast Endomorphisms on Jacobians of Hyperelliptic Curves and Their Cryptographic Application, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol.89, issue.1, pp.89-124, 2006.
DOI : 10.1093/ietfec/e89-a.1.124

W. Tautz, J. Top, and A. Verberkmoes, Explicit hyperelliptic curves with real multiplication and permutation polynomials', Canad, J. Math, vol.43, issue.5, pp.1055-1064, 1991.
DOI : 10.4153/cjm-1991-061-x

J. Wilson, Curves of genus 2 with real multiplicaiton by a square root of 5, 1998.