Higher-Order Averaging, Formal Series and Numerical Integration I: B-series

Abstract : We show how B-series may be used to derive in a systematic way the analytical expressions of the high-order stroboscopic averaged equations that approximate the slow dynamics of highly oscillatory systems. For first-order systems we give explicitly the form of the averaged systems with O( j ) errors, j = 1, 2,3 (2π denotes the period of the fast oscillations). For second-order systems with large O( −1) forces, we give the explicit form of the averaged systems with O( j ) errors, j = 1, 2. A variant of the Fermi-Pasta-Ulam model and the inverted Kapitsa pendulum are used as illustrations. For the former it is shown that our approach establishes the adiabatic invariance of the oscillatory energy. Finally we use B-series to analyze multiscale numerical integrators that implement the method of averaging. We construct
Type de document :
Article dans une revue
Foundations of Computational Mathematics, Springer Verlag, 2010, 10 (6), pp.695-727. 〈10.1007/s10208-010-9074-0〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00598357
Contributeur : Ist Rennes <>
Soumis le : lundi 6 juin 2011 - 12:25:51
Dernière modification le : mercredi 11 avril 2018 - 01:59:58
Document(s) archivé(s) le : vendredi 9 novembre 2012 - 14:35:34

Fichier

Chartier1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Philippe Chartier, Ander Murua, Jesus Maria Sanz-Serna. Higher-Order Averaging, Formal Series and Numerical Integration I: B-series. Foundations of Computational Mathematics, Springer Verlag, 2010, 10 (6), pp.695-727. 〈10.1007/s10208-010-9074-0〉. 〈inria-00598357〉

Partager

Métriques

Consultations de la notice

484

Téléchargements de fichiers

120