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Chapter 1

Introduction

In this Master thesis we will present a new approach to simplify a model repre-
sentation based on a supplementary knowledge of a region in which the observer
is allowed to move, the so-called view cell. The simplified representation should
be faster to render, without loosing the similarity to the original objects. To
assure this we will present our main contribution, a new error bounding method,
which to our best knowledge, allows for the first time to restrain the error of a
representation for a given view cell. In particular, a lot of common assumptions
that were widely accepted are proven to be inexact. We will show several prop-
erties for the 3D case and solve a particular case, as well as a numerical solution
for points in 3D. For the 2D case we were able to obtain an exact solution which
allows our method to be applied on 2.5 dimensional scenes.

Our error bounding method is then used in the context of Billboard Clouds
[DDSDO03]. Still, our result is more general and thus not at all restricted to this
particular usage. The view-dependent Billboard Clouds that we will introduce
in this master thesis have several advantages. The error of the representation
can be bound and the simplification is very successful; to mention one example
a 4480 triangle scene has been simplified to approximately 40 billboards (80
triangles) with a ~ 5% representation error!, for a centered view cell inside
of the scene with a size approximately 1/10 of the bounding diagonal. Most
algorithms add ad-hoc criteria to preserve silhouettes, our algorithm preserves
them automatically. Other advantages of our method are that it works for any
kind of triangulated input and that it is easy to use; only two parameters are
needed (simplification error and texture quality). It is completely independent
of the view frustum that is used for the observer, which is not very common,
as most image based view-dependent simplification methods need a fixed view
frustum. Also our method does not share a common problem with most other
view cell approaches, where the representation becomes worse when the observer
approaches the border of the view cell. The construction of view-dependent
Billboard Clouds is mostly based on the original Billboard Cloud approach
[DDSDO03], but some slight improvements were made with respect to the original
algorithm.

Lthree degrees angular error



Chapter 2

Previous Work

Simplification has a very long history and over the years more and more algo-
rithms have been developed. The main goal is to transform an input represen-
tation into an output representation which should be faster to display and/or
less complex, but still 'close’ to the original, where ’close’ has to be interpreted
in an intuitive way, as the exact definition may vary from method to method.
Error bounds, polygon counts, or even runtime bounds to assure a certain frame
rate are possible criteria.

Today lots of different simplification techniques exist and it is almost impos-

o o sible to give an overview over all of them, but we will describe those which, in
ef\ % our eyes, seem the most innovative and important. In particular we will con-
- centrate on the error/quality measures which are used to ensure a convincing
triangles triangles representation.
{,1:— . Simplification becomes more and more important. Objects obtained from
\ r) tf} a laser scanner often contain much more triangles than actually necessary or
— 3 wanted. As a laser is only able to examine the surface point-wise, it has to
triangles triangles take lots of samples, which are then triangulated to build a surface. This tri-

angulation is probably not optimal, neither in the number of triangles nor in
the way the surface is triangulated, leading to a very recent branch of research,
remeshing, which will be examined shortly towards the end of this chapter.
Another important application is the rendering of objects on the screen.
If one imagines an object that is very close to the observer and a second one
which is farther away, it is intuitively clear that the second one does not have
to be as detailed as the closer one. Clark[Cla76] was the first to underline the
advantage of using different representations of the same object. This was in
1976 and for a long time lots of video games followed this approach, mostly by
using manually created multi-resolution models. Given the fast development
of graphic cards today a current trend is to enrich a simple model via special
techniques which are well suited for the hardware to obtain a result that looks
like a geometrically much more detailed model, but is still fast to render. In
particular, texture mapping, bump mapping and recently displacement mapping
have proven to be very useful to represent geometry with a lower rendering cost.
To accelerate the last id software game Doom 3[Sta04], the developers decided
to almost completely rely on texture and bump mapping. The models are
created at a very high resolution (approx. 250.000 polygons), then simplified
to a reasonable representation (approx. 1500 polygons) and the lost geometry
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is put back via bump mapping deduced from the finer detailed models. It
is important to mention that texture mapping and bump mapping are output
sensitive, meaning that the cost is related directly to the output size (in pixels)
on the screen, which makes these techniques especially interesting for games.
Still these two cannot replace geometry completely; a surface on which both of
these techniques are applied will, when seen from the side, still look as 'flat’” as
the original surface. This problem is partly solved by displacement mapping.
Unfortunately it is still very costly to work with displacement mapping, although
[WWT*03] showed that it is now possible to achieve real time frame rates on
common graphic cards. Nevertheless, all of these techniques are limited to the
resolution of the map. Knowing current graphics cards is an important point
when talking about simplification because the goal ('faster to render’) is indeed
directly linked to the hardware. We, too, will exploit graphics hardware to
optimize our simplified output.

In this master thesis we deal with a special sub group of simplification algo-
rithms, those which are view-dependent. In the first part we will take a look at
algorithms whose output results in triangulated scenes. In the second part we
will mention techniques that are based on alternative representations, in partic-
ular the so-called impostor methods. As mentioned before the main application
of simplification remains in optimizing the rendering speed while ensuring a
certain quality, but recently even in areas which do not seem to be directly
related, view-dependent simplification became important. To mention one ex-
ample, Cornish et al. [CRLO01] used view-dependent simplification for non-photo
realistic rendering. The goal was to obtain a more or less uniform sampling in
screen space, which is a nice property when placing strokes, therefore they at-
tached samples to the vertices based on a view-dependent simplification of the
initial model.

Interestingly most of the algorithms resulting in triangulated objects follow
the same framework. A hierarchy of the original representation is created, and
during run-time a model is chosen from the hierarchy which satisfies quality
criterions based on the current viewpoint.

One classic approach are the progressive meshes introduced by Hoppe [Hop96].

The main idea is to create a sequence of more and more simpler models. At each
step an edge of the previous object is removed based on an energy minimization.
It is represented as a sum of sub functions taking into account the distance of
vertices to the surface, but also a spring energy for each of the edges and energy
functions encoding scalar and discrete values like normals or material proper-
ties. The result allowed then to transform the models in a smooth continuous
way, a so-called geomorph. To add an edge, a vertex is split and the edge con-
tinuously grown until reaching its original size. The edge collapse could be done
continuously, too, by shrinking the edge slowly until the extremities coincide.
This approach already allowed for view-dependent simplification. The idea was
that for each vertex a query has to be answered whether the vertex should be
subdivided. If yes, the corresponding moment in the sequence is found where
the vertex was split and it is applied, if the current mesh contains the necessary
neighboring vertices. This query approach was later refined in [Hop97b].This
simple approach based on the edge lengths had several issues; no exact error
bound was provided and the refinement query was expensive to evaluate. Still,
it is very important to mention that Hoppe’s technique was one of the first to
take surface properties into account. A general problem of the method is that

A sequence of edge
collapsing operations
simplifies the model
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it is not capable of changing the genus of a surface, therefore disqualifying the
algorithm for extreme simplification.

Xia and Varshney [XV96] developed a view-dependent simplification algo-
rithm based also on edge collapsing. They develop a hierarchical structure the
so-called merge tree. A merge tree encodes a sequence of edge collapsing oper-
ations. At each level in the tree edge collapsing is applied to different regions
of influence. A region of influence consists of all triangles incident to a vertex.
This ensures that no overlapping/mesh folding occurs, when unfolding the edges
during runtime. Starting with the smallest edges, collapsing is performed, until
there is no more possible collapse on the current level. Then the algorithm reit-
erates on the obtained mesh. At each vertex the maximum distance to the child
vertices and the distance to the parent vertex is stored. On runtime the subdi-
vision in the merge tree is performed by ensuring that the projected size of these
distances obey a given threshold. A global geometric error is not obtained, as
the distances are given level by level, the direction of the edges is not taken into
account, nor is the error for the faces, as the bound is only established on the
edge. Unfortunately the assumption that the projection error of an edge implies
a bound on the projection error of a face is wrong as we will show in chapter 6.
To overcome some of the problems, more subdivision criteria were added that
are not explicitly described in the text, such as laying more importance on the
silhouettes and subdivision based on the lighting situation, for example around
a specular spot, or where the illumination creates the strongest variation (An
approach that had already been used for a long time for global illumination
and radiosity. [SP]). A problem, remaining for almost all algorithms based on
edge collapsing, is that only a gradual change is permitted from regions of high
refinement to regions of low refinement.

A very similar approach had been developed by El-Sana et al. [ESV99]
The main contribution was to overcome the problem that the genus of objects
remains unchanged. The solution was the introduction of virtual edges, similar
to the idea of a-Hulls introduced by the same authors that are used to close
holes smaller than a given value. This allows even for the application on non
manifold input data. These edges which are not present in the original model
are obtained via a Voronoi diagram. Neighboring cells in the Voronoi diagram
may be collapsed. Involving a quality measure to prefer equilateral triangles,
assuring to introduce no fold over cases and a spline based error measure, they
derive what they call a view-dependence tree. On which they apply a spline
based metric that takes not only the viewpoint distance, but also the light
source distance into account. Our approach, too, deals with objects of arbitrary
genus.

Later El-Sana et al. extended the approach to support visibility information
[ESSSO01]. A grid encoding opacity/solidity in the cells is precalculated and used
to estimate visibility. Two approaches are suggested, the area of the projection
of the faces onto the grid cell with respect to the grid cell surface and an esti-
mation using a discrete sample set of rays. The accumulation for an arbitrary
viewpoint takes the length of the ray segments inside a grid cell into account.
This kind of approaches were already used in radiosity calculations [SP]. Still
it is interesting because no algorithm used visibility information before as its
exact value is expensive to evaluate.

Another approach we want to mention was presented by Lindstrom et al
[LKR'96]. Their algorithm was suited solely for height fields a common rep-
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resentation for surfaces. A height field can be seen as a 2 dimensional planar
mesh, on which a function is applied, which elevates each of the vertices along
the normal direction of the mesh to the corresponding height. The approach is
very interesting, as the subdivision takes the orientation of the viewpoint and
perspective projection into account. The terrain is represented using a quadtree
like structure, a quad can be subdivided into four child quads to obtain a higher
resolution. They were able to derive a maximum (vertical) distance between
two different levels in the hierarchy. The goal is to measure this distance along
the normal direction of the terrain measured in screen space corresponding to
the viewpoint. Applying several simplifications/assumptions they obtain an
equation whose sign indicates whether or not a subdivision has to be performed
given a threshold. Interestingly geometrically this equation results in an object
that they call bialy, which is a torus without hole, which we will encounter in
the discussion of our method, too, although the calculus leading to this result is
completely different. In a final step to accelerate the computation, Lindstrom et
al. find for each block/quad a smallest value that when projected from a certain
point in the block exceeds the threshold and the biggest value which when pro-
jected from any point in the block remains underneath the threshold, leading to
an uncertainty interval. Therefore it is sufficient to compare the actual distance
value in such a block with the uncertainty interval to know, whether one surely
has to subdivide, or whether no subdivision at all will be necessary. For the
remaining vertices the bialy equation has to be evaluated. This leads to an
almost conservative algorithm (still the assumptions made before do not allow
to pronounce an exact bound, not even in this restricted case of height fields).
A nice property is that the algorithm, like ours, is not affected by tessellation.
Other than approaches that do not take the relative orientation between ob-
server and surface into account, as most runtime view-dependent optimizations,
as the approximation is mostly based on spheres of size corresponding to an
edge length value.

Another important article by Hoppe is [Hop97b] where he also exploited the
idea of starting with a very simple mesh and refining it on the fly depending
on the viewpoint of the observer. As already explained in [Hop96] a refinement
query is used, which depending on the viewpoint decides whether parts have
to be refined or not. The function to do so still seems intuitive, as no correct
bound on the error is obtained. A view frustum test is performed, followed by
a back-facing test which is applied on the normal cone created by the normals
beneath in the hierarchy. In a final step the screen projection error is approx-
imated. The main test is performed by projecting a sphere of size Hausdorff
distance! between the simplified and original model onto the screen, if the size
of the projection remains below a certain threshold, a subdivision does not have
to be performed. This test is then improved, by a generalization to an arbitrary
surface of [LKR'96]. Although, to ensure validity for curved surfaces a thresh-
old sphere is placed inside of the bialy. The hierarchical structure obtained
may take up to several hours of precalculations and although the subdivision is
performed on run time, the error bound is not exact. Still the results are very
impressive and lead to a speed up of a factor of almost seven. Also for many
approaches 'popping’ artifacts occur when changing from one representation to

Let M, N be two sets in a metric space, h(M,N) = mazmermin,ecyd(m,n),
where d denotes the distance, the Hausdorff distance H is then defined as H(M,N) :=
maz(h(M, N), h(N, M))

Lindstrom et al. perform
view-dependent simplification
of a height field
upper image ~0.5
lower =4 pixels error
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a second one. This problem was nicely solved using the geomorphing described
earlier in [Hop96], only this time the differently refined parts are morphed inde-
pendently, instead of the whole model. Compared to [XV96] the order in which
the edge collapsing is performed is no longer restricted to influence regions, as
the problem of overlapping is solved during runtime.

A special view-dependent simplification algorithm for terrains has also been
proposed by Hoppe [Hop97a] including several important contributions. The
geomorph is based on an estimation of where the observer might move next.
Allowing for a very smooth transition with lower cost. He had the insight that
for irregular subdivision schemes it is insufficient to test the error of reprojection
just at the vertices of the height field and he develops a new formula to find
an exact bound. He also describes a data structure that is output sensitive.
It is very interesting that the approach still decides the level of refinement
during runtime, which implies that an extrapolation of the observer’s movement
has to be done to make the geomorphs work. Instead of performing such an
extrapolation some approaches, especially methods for "impostors” which we
will examine more closely later, work with valid representations for a region
around the observer.

Coming back to more general approaches it is worth mentioning Luebke et
al.’s approach [LE97]. The main motivations for their algorithm are to make
as few assumptions about the input model as possible, the algorithm should
be completely automatic and adjustable via a fine-grained user interaction to
trade off performance and fidelity. All these points are also fulfilled by our
algorithm that we are going to present in the chapter 7. The main idea of
Luebke et al.’s algorithm is to cluster vertices together. Corresponding to the
current viewpoint clusters are refined or regrouped to bigger clusters. Therefore
the final representation just contains the vertices that are necessary to fulfil
the user specified fidelity for a given viewpoint. It deals with arbitrary scenes
not only with single objects. The algorithm works as follows. In each cluster a
bounding sphere volume is saved. For all clusters used in the scene this sphere is
projected onto the projection plane of the current viewpoint. If the size exceeds
a user specified threshold the same test is performed for all the sub cluster, if the
size is below the threshold the cluster is collapsed and the algorithm is applied
recursively. To optimize the result Luebke et al. also take normals into account,
to further refine at silhouettes. As in [XV96] normal cones are used for the test.
If any of the normals in the cone is orthogonal to a normal of the view cone
from the current viewpoint a subdivision is performed. To optimize the speed
several accelerations are used. A special visibility culling is performed working
only on the higher clusters, to avoid a complete tree traversal. The algorithm is
very effective and more or less easy to implement. The idea of grouping together
vertices is rather intuitive, as it is completely independent of the topology. But
unfortunately the method has some major drawbacks; the error bound is very
simple, due to the fact that it has to be evaluated several times for each frame
during execution. The subdivision at silhouettes seems rather ad-hoc and the
screen space error is only valid for vertices, which is insufficient, as we will show
in chapter 6.

The idea to cluster together vertices is also used in [RCRB], although the
algorithm does not provide really new insights it shows that for foliage simpli-
fication topology does not play a huge role. Based on several aforementioned
algorithms Remolar et al. combine small details (in this case leaves) together
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to form simpler shapes in a multi-resolution form. This shows nevertheless an
important issue concerning simplification. It is possible to develop special al-
gorithms for very particular objects. In particular for trees a whole lot of work
has been developed. As an example, Deussen [Deu03] presented a way to render
plants efficiently. When far away, the geometry is simply replaced by points
for leafs and lines for trunks. Leading to very convincing results that still run
in real time even for bigger scenes. Similarly Meyer and Neyret developed a
hierarchical representation in the case of pine trees ([MNO00]). In this document
we want to focus on general simplifications.

Recently remeshing algorithms have become very popular. Remeshing works
as follows. Given a triangulated object, one tries to infer something which could
be seen as an underlying surface. This underlying surface is then used to create
a new polygonal model, which is approximating this surface. This is very impor-
tant nowadays, for meshes resulting from a laser scan, as aforementioned. The
sampling is mostly uniform and therefore even planar regions will be tesselated.
To overcome this problem remeshing algorithms create a mesh whose vertices
and edges are placed in a way to be conform with the shape. Without men-
tioning all work that has been done in this area we still want to point out some
important works, as it has interesting impacts on simplification algorithms.

The article [ACSDT03] exploits the local curvature of an object to place
vertices. The algorithm works only on objects topologically equivalent to a disc.
This is because in a first step the model is parameterized in 2D, a curvature
tensor field is estimated and the so-called umbilics are extracted (points where
the curvature is identical in all directions). From these points min and max
curvature lines are developed over the whole surface, spaced according to a user
defined precision. These lines create a grid (locally orthogonal) that follows the
curvature of the object. The intersection points between min and max curvature
lines are then used to define the mesh. This approach exploits very well the local
behavior of the surface. An exact error bound of course is impossible to deduce.
Still the observation that not only vertex positions, but also edges and their
orientation play a huge role in the appearance of an object is very important.
Most simplification algorithms work with the Hausdorff distance, which is purely
point-based and does not include any information about orientation of edges,
we will come back to this point in chapter 3. The observation was not new
though ([Sim94]), but usually the solutions were restricted to perform sequences
of edge flipping operations, to achieve a local minimum, instead of exploiting
curvature directly during a reconstruction step.

In [Fre00] Frey presents not directly an algorithm but a very general frame-
work for simplification/remeshing/refinement. The main idea is to infer from
the given triangulation an underlying continuous and smooth surface. For nu-
merical stability, this step involves what Frey calls a geometric mesh, which
is a simplification of the input mesh based on Hausdorff distance and quality
criteria (equilateral triangles are preferred, strong G discontinuities are kept).
One cannot suppose that the underlying surface is G! as sharp features could
be present in the model. The algorithm detects these and marks them. The
other edges are assumed to be discrete representations of Bezier patches. In
a second step he develops a locally varying metric, which is usually based on
the curvature (and the orientation), but could be completely arbitrary. Based
on this metric edges are split and collapsed until a unit mesh is obtained. A
unit mesh has the property that all edge lengths are included in an interval

output mesh

Alliez et al. align
edges with the principal
curvature directions
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[1/v/2,+/2]. The introduced vertices are not placed on the original mesh, but
on the assumed underlying surface, therefore it is even possible to 'create’ more
information than what was present in the input. On the other hand edges are
simply split and not reoriented. He mentions that edge flipping can be per-
formed, but it is not clear in what way it should be applied. And still it is not
sufficient to achieve the best result. Nevertheless the article describes a very
nice frame work, and although this is not mentioned in the text, we believe
that it should be applicable in a view-dependent context, too. Our bound for
reprojection errors (see chapter 5) could be directly transferred into the metric.
A unit mesh would then represent a view-dependent simplification.

Turk [Tur92] does not perform remeshing, but his approach is also based
on a sampling of the original model. Points are spread on the object based
uniformly with respect to area, but with preference of high curvature areas. A
relaxation places/moves the points based on repelling forces. Different levels of
detail are obtained by adding sample points.

Other important algorithms work on subdivision/spline/implicit surfaces.
All these surfaces have the property that they are not triangulated and therefore
not limited to a certain resolution. Anyway, arbitrarily precise polygonal models
could be deduced. The problem posed in this context is that one would like to
infer a triangulated representation which is nicely approximating the underlying
surface for a given viewpoint/view cell. For subdivision and spline surfaces it
is possible to obtain a triangulated approximation, such that the area of all
triangles are smaller than a given threshold, but this would lead to subdivisions
on back-facing triangles, as well as to over refinement in some areas that are e.g.
very far away from the viewpoint. Therefore the goal is to drive the subdivision
based on the observer’s positions.

In [CKO1] Chugani et al. describe an algorithm to visualize spline surfaces
that is interesting, as the triangulation is completely done on the fly. Starting
with lists of well chosen sampling points, which locally minimize the error of the
spline patch, the whole object is placed in an octree. The octree blocks sizes
are used during runtime to decide which of the sampling points are used in the
mesh, which is triangulated during runtime. If the sampling was insufficient in
a region for the current viewpoint more sampling points are added on the fly.
Several optimizations are applied to improve speed and also to prevent ’cracks’
that could appear between two spline patches that are sampled differently. The
goal of the algorithm was not to have an exact error bound, which in fact is
not provided by this method, but to have a sufficiently detailed representation
in form of a triangulated surface and to achieve acceptable frame rates. The
on-the-fly-triangulation keeps the algorithm from being applicable in situations
where high performance is needed. Another problem is that texture information
is probably difficult to use in these conditions.

A different approach is [ALSS] by Alliez et al. concerning subdivision sur-
faces. The algorithm is far from providing realtime performance. The goal is to
obtain a refinement that corresponds to the current viewpoint and is still the re-
sult of the refinement operator used for the subdivision surface. More precisely,
they show their results on surfaces, refined using the v/3 method. This operator
involves several edge flips, which is why a precalculated hierarchical structure
cannot be applied. They extract regions of interest, which could be classified
as front facing, or silhouette regions of the object. These are potential areas for
refinement. They do not precise the method to decide when a refinement has
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to occur, their goal was just the general framework, still they point out that
projection error, a subdivision limit, curvature and silhouette criteria should be
taken into account. This framework, too, could benefit greatly from a correct
error bound.

For completeness, concerning iso-surfaces, we only want to mention an article
by Gregorski et al. [GDL102]. Using a tetrahedron based subdivision scheme
the iso-surface is approximated via a mesh. The error measure is based on a
simple approximation using spheres with a radius corresponding to the current
distance of the mesh to the iso-surface.

The last examples show that simplification is not equivalent to ’less trian-
gles’. In general it is a transformation of some input data into an output form Griginal msh
which is more convenient. Which leads us to impostor algorithms, which use dif- (current viewpoint)
ferent possibilities to represent geometry, so-called alternative representations.

Billboards, which could be considered as a simple textured quad facing
the observer, have been used successfully in computer games for a long time.
Lately they have also been used for volume rendering(e.g. [RMDO04]). Billboard
Clouds [DDSDO03] use several textured quads that might interpenetrate each
other to approximate a model. As this technique is the base of our approach we
will take a closer look at it in chapter 4.

Other well known approaches like Light Field [LH96] and Lumigraph [GGSC96]
represent an object indirectly via a plenoptic function. Simply saying, in this
case, two planes are used to parameterize rays leaving the eye. Based on the two
intersection points on these planes a corresponding color value is taken from a
look-up-table.

Volume rendering, is usually applied when the input is given in form of an
iso-surface. As we will mostly be interested in triangulated inputs we will skip
this point.

Finally shaders have become very popular nowadays in particular due to the
success of shader languages, like Cg?, that are now even working on standard
graphics hardware in real time. For example, Goldman [Gol97] used a statistical
model to deduce a shader to represent fur on animals, which found application
in a movie and Neyret et al. [Ney00] used shaders to represent clouds. Shaders
have also been applied in Billboard Clouds to perform relighting of the simplified
objects.

Impostors are themselves a special form of alternative representation.

Refined mesh

Sillion et al. introduced the mesh impostor in [SDB97]. The idea is to rep- Alliez et al. perform
resent the geometry farther away by one single mesh grid. The algorithm was surface subdivision
proposed in the context of city simplification. Therefore the observer is sup- based on the viewpoint

posed to walk inside of streets, which restricts the movement more or less to
a forward/backward translation. For each street an impostor is created which
replaces the far away geometry. The mesh is obtained using the z-buffer. An
image is shot at the entry point of the view cell, so in this case a segment, the
image contains a color and a distance information. Using the distance infor-
mation (the Z-image) a simple mesh is created. Strong discontinuities in the
Z-image are detected and combined to edges of discontinuities. These edges of
discontinuities are used together with a constrained Delaunay triangulation to
obtain a final mesh grid. On this simple triangle grid the texture is applied. This
leads to a very simple model, which still contains the strongest discontinuities

4D parameterization

2 Although that it seems as if Cg is no longer supported by NVidia

Goldman’s fur shader
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and therefore parallax effects of the original mesh. An error bound is not pro-
vided. The most important point is the brilliant idea to rebuild geometry from
what is actually seen at a given resolution instead of transforming the geometry,
which is a simple still effective procedure. Nevertheless all these approaches will
suffer from geometric errors that result from an insufficient sampling resolution.
Other problems particular for this approach are that geometry not visible from
the sampling point will not appear in the impostor, even if it is visible from
other viewpoints. This is particularly problematic for hidden areas. This leads
to skins, or rubber sheets at the borders of the object, as shown in the margin.

An improvement was then suggested in [DSSD99], Décoret et al. propose
to subdivide the mesh impostor explained before into several layers. Objects
are grouped together in layers based on a parallax measure in 2D. The parallax
measure corresponds to the difference between biggest and the smallest angle
under which two vertices, one from each object, can be seen from a segment view
cell. A graph is created between all the objects that overlap for a viewpoint in
the view cell, weighted by their angular distance. Based on this graph objects
are grouped together until in each group the sum of all weights from one object
to another remains underneath a threshold value. Each of the layers is then
created independently. Another important contribution is the way textures are
calculated. A very coarse texture is saved for each impostor. A finer version
is calculated on-the-fly, while the observer is moving inside of the view cell.
Although the approach is very elegant and works well in practice, one problem
remains, the fact that the reasoning is vertex based, which does not assure exact
bounds on single faces. Moreover, the error created by the transformation to an
impostor is not taken into account. Artifacts due to the use of a single viewpoint
to create the impostor also remain.

An important approach [JWS02], but also limited by a fixed viewpoint to
create the impostors, was presented by Jeschke et al. Their impostor-based
approach ensures a correct approximation for a very special case, assuming the
view cell is a cube, contained in a near field cube of a certain size, in which
the original geometry is used. Around these cubes impostor cubes are placed at
distances appropriate to remain below a certain error threshold. Unfortunately
the whole calculation concerning the choice of the distances is missing in the
paper, and was not publicly available.We show in chapter 6 that, to obtain a
correct error bound, there has to be a limit on the minimum size of the near
field cube because they predict in their approach of englobing cubes, like many
others, that the viewpoints maximizing a reprojection error are always on the
extremity of the view cell. We proved this assumption wrong in the general
case, and the counterexample shows that it is wrong in this case, too, if a limit
size does not exist. Unfortunately the paper does not answer to this question.
What they mention briefly is that they bound the error for a very special case,
where the observer moves in a straight line from the center of the view cell to
a corner, the replaced geometry is assumed to be entirely on a parallel plane
behind the impostor, on which the projection is performed. Leading to a correct
representation only for a part of the view cell and only for geometry that is
actually already planar and aligned with view cell and impostor, which sounds
very restricting. Apart of this problem, when assuming the error bound were
correct, due to the projection on a cube, faces that are not aligned will lead to a
huge error, therefore enforcing the impostors to be very close to each other. This
is why in our approach we want to take the orientation/shape of the geometry

10
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Figure 2.1: A comparison image showing the problems of approaches with a
creation based on a fized viewpoint (TDM) and the incremental textured depth-
mesh approach which involves several viewpoints (IDTM). The latter is already
very close to results obtained by level of detail methods(LOD), which are much
slower, due to the on-the-fly simplification.

into account too.

A second article [JW02] by Jeschke et al. improves these results slightly.
Instead of using planar impostors a coarse geometry is deduced, involving a voxel
approximation. The texture is still created from the center point, therefore still
leading to skins. The error bound used, is the same as in the aforementioned
article.

In general for the impostor representations based on a single point of view the
artifacts increase the more one moves away from the view cell center. This leads
to severe 'popping’ artifacts when changing between one view cell to the other
because two different extremes of artifacts are exchanged. Therefore it is more
convenient to have a representation that distributes the error uniformly over
the view cell. Our method meets this criteria, as well as some more methods,
all based on an approach involving several viewpoints during the construction,
which also helps to avoid skins.

A recent article on impostors was written by Wilson and Manocha [WMO03].
Their approach improves Textured Depth Meshes drastically. A comparison can
be found in figure 2.1.

They pointed out that the main problem of Textured Depth Meshes are re-
gions, that are invisible from the sampling point. This leads to severe artifacts.
Therefore they chose several sampling points inside the view cell. These sam-
pling points are selected based on a heuristic trying to evaluate which sampling
point uncovers the maximum invisible region for the other sampling points, the
so-called void regions. As this problem is very hard to solve, they apply a heuris-
tic. A Voronoi decomposition of the view cell is created and the voronoi points
are designated to be potential new sampling points. For these points, optimized
via graphics hardware an ”objective function” is approximated, which mea-
sures the projected extent of the void regions unveiled by the sampling point.
Sampling points are added until the objective function remains below a certain
threshold. As for other impostors, a triangle grid is deduced from the image,
which is shot at a sampling point. This grid is first simplified by a standard
simplification and then further on, based on the view-dependent approach by
Luebke et al. ([LE97]). To optimize storage, a tree is created, based on the
distances of the sampling points from the centroid of the view cell. Having this
hierarchy all redundant information, meaning pixels/triangles, which are visible
for an ancestor node are deleted from the children. During rendering the algo-
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rithm descents in the tree, until a cost limit is reached (based on triangles, or
nodes). Though the algorithm delivers high frame rates and visually pleasing
results, no error bound can be given. The approach is completely based on
the images shot at the sampling points, not on the geometry itself. Another
problem, which remains true for most impostor methods, is the huge storage
amount necessary. For the famous power plant model, which contains 13 Million
triangles, covering 15 % of the terrain by view cells lead to the amount of 1,4
GB of texture, at a resolution of 512*512. But the authors mention that for a
similar quality for the original Textured Depth Mesh approach 9,4 GB would be
necessary. Another point interesting to mention is, that a complete exhaustive
separation of the power plant in view cells would have needed more than a week
of calculation on a Pentium IV processor, although this cannot be seen as a
disadvantage, as it is always time consuming to simplify extremely complicated
models.

A layered depth image approach to perform simplification is described in
[AL99]. A layered depth image (LDI) contains in one pixel all the intersections
with the scene (see [GWHC] for an overview). The algorithm needs lots of stor-
age space but achieves an almost guaranteed frame rate. Given a fixed number
of triangles that are allowed to remain in the scene for a given viewpoint a rep-
resentation is achieved obeying to this constraint. The main observation is that
for a viewpoint A, if its view frustum/viewcone is completely contained inside
the one of a viewpoint B, B already sees all the geometry A does. Therefore
given sample viewpoints, for which an alternative representation is available and
a new viewpoint it is sufficient to look for the closest sample viewpoint which
is contained in the inverse view frustum of the new viewpoint, we will refer to
this point as the corresponding sample point. The representation for the new
viewpoint will be based on its corresponding sample point. The choice of sam-
ple viewpoints is not easy. First the position of the projection plane plays a
role, as for a new viewpoint which is in front of the projection plane of its cor-
responding sample point geometry behind the observer would appear in front.
Ensuring with sufficient sampling points, that this case does not occur the ac-
tual simplification is started. At each sample point a new representation of the
scene is created in form of an octree with limited depth. There are only a finite
number of viewing directions with different octree cells in the view frustum.
For all these views a Cost-Benefit function is evaluated, that is measuring the
effect, when replacing a contiguous subset of octree cells in the view frustum
via layered depth images, taking into account the complexity of the geometry
and its screen projection and the distance. Preferring dense, small, far away
cells. The algorithm continues, until for all views, the polygonal budget is met.
Layered depth images are efficient in the representation, as McMillan pointed
out ([GwHC]), that a back to front ordering of the elements (which is neces-
sary, to deal correctly with occlusions) could be highly optimized by treating
the image in a special order. Nevertheless LDIs are not amenable to hardware
acceleration. One problem of the approach are the extreme amount of storage
space necessary (an example was a 2M triangles model, where the constraint
was fixed at 250,000 triangles leading to 3.4 GB of LDI’s) Another limitation is
that the algorithm assumes the observer to move in the (x,y)-plane and rotate
only around the z-axis. This is necessary to solve the projection plane problem
and probably also because of computation time; the aforementioned example
took more than 20 hours to calculate.

12
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All algorithms until now suffer from some artifacts and most view-dependent
simplifications assure a quality for a single given viewpoint, as it is simpler to
evaluate. Impostor approaches usually do not provide an exact error bound,
but the result will still remain reasonably close to the original geometry, as the
representation is based on an evaluation of a view. There is also an ambiguity
between appearance and geometry, which will be further discussed in E. Where
we will also shortly explain another impostor algorithm [WWSO01] based on
points, encoding a plenoptic function.

Capturing appearance is a rather new development. Lindstrom et al. [LT00]
simplify the mesh via edge collapses and shoot several images of the simplified
model to compare them to images of the original model. The algorithm is
accelerated by rerendering only parts that are affected by simplification. In
particular texture distortion is measured indirectly and optimized for using a
geometric heuristic. In our approach a correct bound for all the points on the
surface and therefore also the texture is derived. Therefore we treat texture
distortion as an inherent part of simplification, which to our best knowledge has
not been done before.

A last approach we want to mention because it describes a trend leaving
simply geometric distances towards more meaningful distances. Williams et al.
[WLCT03] presented an algorithm which takes human perception into account.
This is very important, e.g. perception of detail is very weak in high frequency
regions, in low frequency regions the introduction of high frequency would result
in artifacts that are very evident. We will come back to this point during the
future work.

13
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Chapter 3

Motivation

3.1 Properties of the Algorithm

In our algorithm we want to combine the benefits of several approaches. Con-
cerning the input, we want to be able to deal with any triangular input from
non-manifold to polygon-soups. Our output should be fast to render and ex-
tremely simple.

Silhouettes of objects, which play an important role for the appearance
should be represented other than by polygons, as this would be too expensive.

View cell approaches benefit from the fact that no hierarchy has to be es-
tablished for any potential viewpoint and there is no function to be evaluated
at runtime which modifies the representation. On the other hand most view
cell approaches do not measure the error on the real geometry, but more often
on the alternative representation. We want to use a view cell approach, but
establish an error bound with respect to the original geometry. It has to be
pointed out that a view cell approach still allows for walkthroughs, as one could
define several view cells and switch or blend between the solutions during the
transition. The error in representation will still be bounded. We want our error
measure not to be based on the Hausdorff distance, as it is a pure shape close-
ness measure. It is expensive to calculate exactly and therefore almost always
approximated. Texture information is not taken into account. Imagining two
models M; and Ms. If the Hausdorff distance H(M;7, Ms) between M; and
M equals g, this assures only that for each point in the original model there
is a point in the new model which is at most at a distance € and vice versa.
The image in the margin shows an example of the problem that arises from this
approach. The object A will be considered closer to the object original as B
because B is slightly smaller. Neither texture distortion, nor distance between
corresponding vertices plays a role. Our error measure should therefore be de-
fined on a per point basis, meaning that each point of the original model® is
only allowed to move in a certain region, what we call the validity region. Our
algorithm should have the property that the distance, as seen by any viewpoint
in the view cell, between a point in the validity region and the original mesh
point remains below a certain threshold. Parallax effects should be taken into
account during simplification. Far away objects should be simplified more than

Lwhere point does not necessarily mean vertex
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closer ones.
All of the mentioned goals were possible to achieve in one single algorithm,
which is described in this master’s thesis.

3.2 Angular Distance

We started from the question: What does it mean that two points are close,
given that the observer moves within a certain view cell? The choice of a
metric like Lo or L, are unsatisfying choices, as far away distances project to a
smaller area on the screen than distances closer to the view cell. Our definition
of closeness should take this effect into account. One possibility would be to use
a projectional distance, meaning that the distance of the two points projected
on the screen should be close. This approach would be perfect, if the projection
matrix, including view frustum, that will be used to display the model is known
a priori. To be independent of this constraint we decided to define an angular
distance. Given a view cell V, the distance between two points P and @) will be
defined as: .

vRrve
where FV\Q denotes the smallest positive angle between the three points?. As-
suming for the moment that the optical center of the projection matrix coincides
with the viewpoint. Then this expression means, that if P and @ are at a dis-
tance of © to each other, when replacing P by @, the two rays passing through
the optical center and one of the points will create an angle smaller or equal to
O, for any viewpoint in the view cell.

It is possible to bound the distance in the reprojection via the angular dis-
tance and vice versa. A ’problem’ is that, due to the more general angular
expression, points at the boundary of the view frustum with an angular dis-
tance © will be farther away in the reprojection, than points in the center. This
is not really problematic: first of all the angular error could be decreased and
secondly human visual perception degrades toward the periphery. Therefore it
is even desirable to have a degradation of quality towards the boundary of the
view frustum.

Indirectly we also capture the parallax effect of the scene. The parallax effect
is the distance between the smallest and the biggest signed angle seen between
two mesh points, when the observer moves in the view cell. Let’s imagine that
two mesh points who have a common point at a distance < ©. This implies that
the angle between the two mesh points is smaller than 20 for all viewpoints,
therefore the parallax effect between the two will be small. On the other hand,
if the angle between two mesh points exceeds for one single viewpoint 20 it is
impossible to find a point to which the two could be simplified.

Another advantage of the angular approach is that a simplification should
be more aggressive for distant objects than for close ones. Therefore a corre-
spondence between distance and level of detail exists.

Unfortunately it is all but trivial to apply the angular distance in practice,
but we present a solution in this document.

2This expression could also be defined via smallest geodesic distances on a sphere centered
at V, but this would be less intuitive and unnecessarily more complicated in notation. But it
shows that this definition results in a distance function in the mathematical sense.
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Chapter 4

Billboard Clouds

In this chapter we want to give an overview of the technique presented at Sig-
graph 2003, by Décoret et al. which is the basis for the new algorithm we
propose in this document.

The main idea is to simplify 3D models onto a set of planes with texture
and transparency maps. Based on a heuristic ”optimal” planes are chosen which
are more or less tangent to the model. Geometry that is close enough is then
projected onto these planes and stored in form of a texture and transparency
information.

The goal of the algorithm is to obtain an alternative representation of the
input model, such that the L., distance of each point of the model to the corre-
sponding simplified point on the plane remains below a user-defined distance €.
Planes are added in a ”greedy fashion” until all faces of the object are simplified.
To evaluate the importance of a particular plane P a density d(P) is calculated.
The density consists actually of two values:

where C' corresponds to a ”coverage” value indicating the amount of faces that
could be simplified onto this plane. P(P) represents a penalty to favor tangent
planes.

A face f is wvalid for a plane if all its points are at a distance inferior to e.
Let valid.(P) denote the set of valid faces for P. Therefore the goal of the

Lgh

(a) (b) (c)

Figure 4.1: The input model (a) is approximated using planes (b), which are
textured with images of the original model, leading to the so-called Billboard
Cloud(c), (d) shows how the billboards look like.
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algorithm is to find a minimal set {P;} such that for all faces f there exist i
such that f € valid.(P;), a problem which is NP-hard.
The coverage of a plane P is calculated as:

C(P)= Y. areap(f)

fevalid:(P)

where areap(f) denotes the (orthogonally) projected area of the face f onto P.
Therefore more weight is put on planes on which a large amount of the models
surface could be simplified and which is more or less tangent to the model.

It can be shown that using this approach a sphere would be badly repre-
sented, as the first, best plane for a sphere cuts off a small part which cannot
be simplified on this plane. To avoid this case and to force the algorithm to
start with tangent planes, a penalty term is subtracted from the density. The
penalty term is given by:

P(P) := wpenaity Z areap(f)
femiss(P)

where wpenaity is a constant, usually set to 10 and miss(P) denotes the set of
faces that miss the plane P slightly. More precisely, a plane P misses a face f,
if there exists a parallel plane P’ such that f ¢ valid.(P)) and f € valid.(P').
Furthermore let 7 be the normal of P, then there exist a € (0,¢) such that
P’ + ari = P. The figure in the margin depicts the valid and penalty region at
a sphere.

As the problem is NP-hard, the selection of the planes is based on a 'greedy’
optimization approach. The space of planes is represented by a discretisation
of the Hough space [HOU]. In the Hough space a plane is represented by a nor-
mal direction 7i(¢,1)) = (cos(¢)cos(v)),sin(¢) cos(v),sin(¢))) T and a distance
to the origin p, the plane resulting equation is P(z) :=< (¢, ¥)|z > —rho. A
discretized version of the plane space can therefore be obtained from a discretiza-
tion of the Hough space. The Hough space is non-uniform and has singularities
at the poles, but this does not matter in this context as some areas are simply
oversampled. The discretisation results in a set of bins B4y ,). For each bin
a density is computed, such that a face contributes to a bin if the bin con-
tains a plane for which the face is valid. This can be computed efficiently by
looping only on ¢,1. The distance of a point p to a plane at the origin with
normal 7i(¢, 1) implies the p value of the plane passing through p. Therefore
the p values of valid planes for this point will lie in [p — &, p + €]. To obtain
the valid region for a face f its vertices are tested and the valid region for the
face is deduced. Assuming f is a triangle one obtains [p},.,, Phvaz]s [P20ins Powas)
and [p2,;., p2.ae) as valid regions for the vertices. The valid region for the face
is given by [max(prlninvpgninvp?nin)7min(prlnaz7pznavagnaw)]' To obtain a con-
servative estimate for a bin B4 y ,no), the four plane directions given by the

borders of the bin results in four p-regions for a face [pfL | pPL 1. [pP%  pP2 1,

[pP2  pP3 ] and [pPs  pP% 1. A conservative estimate is therefore given by:

. pl D2 p3 p4d 1 2 p3 p4
[mln(pmzﬁw Pmins Pmins pmzn)’ max( maz’ Pmaz’ Pmaz> pmaz)]

and the face contributes to the bin, if the interval between the lower and upper
p-value of the bin intersects this p-region of the face. Having densities in the
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bins, planes can be chosen based on the highest density. The density of the
simplified faces is then removed from the bins and the algorithm iterates until
no more faces are left to simplify.

This naive description would lead to a very high computation time, when
choosing a very fine discretization, or a very poor behavior concerning the choice
of planes, when choosing a very coarse discretization. Therefore an adaptive
refinement has been developed. The bin with the highest density is taken, if all
the faces are valid for the plane given by the center of the bin, then this plane
is chosen. Otherwise all the faces that contributed to this bin are collected in
a set valide(B). The bin and its 26 neighbors are subdivided and this new
density array is filled up with the densities from wvalid.(B). The algorithm
reiterates until an acceptable center plane is found, or a user-specified limit for
the subdivisions is reached.

Having specified a set of planes, bounding rectangles in each plane are cal-
culated, which contain the entire geometry that has been simplified onto the
plane. A texture is then created by placing an orthogonal camera such that
the view frustum corresponds exactly to the rectangle and by placing clipping
planes at distances €. The alpha channel is used to capture the parts, which do
not contain geometry.

The billboard is then displayed by using the textured rectangles. The trans-
parent parts are created using alpha blending.

To optimize texture usage a slight modification is done. A problem is that
distant objects might end up on the same plane, but therefore leaving lot of
transparent space on the billboard. To prevent this behavior, during the sub-
division step of the bin, all the faces that contributed are projected onto the
center plane. Clustering is then performed to group close faces together, the
algorithm continues by only selecting the biggest cluster instead of all faces that
remain valid. It has to be pointed out, that faces discarded in this way will be
handled in subsequent iterations.

Castle (167 billboards) Dino (110 billboards)

Figure 4.2: Upper row: originals, lower row: simplifications
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Chapter 5

Deriving an Error Measure
for view-dependent
Simplification

This chapter deals with the main theoretical results of our work. We are inter-
ested in an appropriate simplification of a model given that the observer moves
within a given region, the view cell.

Our method consists in defining for each mesh point M on the model a
region in space such that for any point P of this region the reprojection error
will be below a certain threshold. The reprojection error has to be understood
as the observed distance of M and P from an arbitrary viewpoint within the
view cell.

Starting with the development of formulae for points in space, we will interest
ourselves afterwards to the case of faces and we will develop an exact solution
for the 2D case.

To our best knowledge, this theoretical result has never been achieved before.
Although lots of possible approximations exist (see chapter 2), no exact measure
for the reprojection error had been established up to now.

5.1 Mathematical Definition of the Problem

The input of the problem is a mesh M and a view cell V. The mesh is defined
by vertices V; and faces F;, and is made of all the points on those faces. The
view cell is a set of viewpoints.

The goal is to simplify M into another mesh S. A simplification is a mapping
of the points of M to the points of S :

s M—S
M — s(M) (5.1)

The simplification s is a surjection but not an injection i.e. several points can
be “simplified” to the same place.
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CHAPTER 5. DERIVING AN ERROR MEASURE FOR
VIEW-DEPENDENT SIMPLIFICATION

5.2 Simplification Error Definitions

The problem of measuring the error due to the simplification is crucial. A
classical approach is to measure the distance between M and S = s(M) using
the Hausdorff distance for example. As explained before, these approaches only
consider the geometric difference between the mesh and its simplification. If
every point on the mesh has a color (e.g. via texturing), two meshes can have
the same shape (i.e. a null Hausdorff distance) but look very different. For that
reason, we want to measure the extent to which each individual point on the
mesh is allowed to “move” during the simplification. In other words we want
the distance between M and s(M) to be bounded by a certain metric for all
points on the mesh.

Definition. Reprojection error
We define the reprojection error at a viewpoint V of a point M simplified to
S = s(M) as the angle under which the segment [MS] is seen from V.

re(V,M) = MVS (5.2)

The reprojection error for the view cell is simply the maximum reprojection
error when the viewpoint moves in the view cell :

re(M) = r&lg\)}((re(V, M) (5.3)

We decided to measure an angular error, as it allows to remain independent
of the observers view frustum, which might be unknown by the time of simpli-
fication. Nevertheless, having fixed a view frustum it is possible to bound the
error via the angle and vice versa. (compare 3.2)

Definition. Validity region

For an error bound! ©, we define the validity region of a point M for viewpoint V
as the cone of apex V, aperture 20 and opened in the direction of M and whose
axes pass through M. The validity region for the view cell is the intersection of
all these cones :

VRe(M) = (| VRe(V, M) (5.4)
Vey
Clearly, simplifying/moving a point in its validity region yields a reprojection
error less than ©, that is :
s(M)eVRe(M) = re(M) <0 (5.5)

The shape of the validity regions is complex even in 2D. Figure 5.1 shows
some examples. Notice in particular that it is not necessarily bounded.
To extend this idea to the whole mesh, we will define the following:

Definition. Valid sitmplification
For an error bound O, a simplification is said to be wvalid for a set F of points
of the mesh (e.g. a face of the mesh, or the mesh itself) if :

VM € F s(M) € VRe(M) (5.6)

that is; no simplified point will reproject “farther” than © from where the
original point projects.

1For convenience we will assume that © < % For practical applications this will be
absolutely sufficient, as it corresponds to a field of view of 180c. Mathematically this avoids
to treat redundant cases.
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[ ] [ ] [ ]

Figure 5.1: Example of validity regions in 2D for a rectangle. Images are com-
puted by sampling the view cell and performing the intersection of a finite number
of cones.

5.3 Properties of the Validity Region

From the definition we can deduce several properties.

Remark. The intersection of validity regions of different view cells corresponds
to the validity region of the union of these view cells, this is why in the future
we will assume connectivity of the view cell.

Lemma 5.1. The wvalidity region of a point M is conver and star shaped?
around M .

Proof. So let’s consider the validity region around a point M. As an intersection
of convex sets, a cone is convex, the validity region will be convex. Convexity
then implies star shape, which is in particular true for the point M. O

This property implies that it is sufficient to know the extent of the validity
region for all directions to reconstruct it properly.

This leads to the following definition:

Definition. Validity Segment, Extent of the Validity Segment
The validity segment VR%(M ), given a point M, a view cell, a threshold angle

© and a direction d is the intersection of the line passing through M in direction
d with VRe (M). The extent of the validity segment/region in a direction d will
be the intersection of the ray starting in M in direction d with the boundary
of the validity region. The extents of a validity segment [Ey, Es] are simply F;
and Es.

We see, that the extents in direction d and —d are sufficient to calculate the
validity segment and vice versa. In the following we will therefore focus on one
fixed direction d.

In a first step we want to consider a view cell containing a single viewpoint.
From what we have just seen, it is possible to parameterize the validity region
via a spherical parametrization. Knowing this we can restrain ourselves to find
a solution for a given direction d. The proof of the theorem could be skipped

2A set S is called star shaped, if it contains a particular point C, such that for all points
P € S the segment [C,P] € S
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during a first reading, as the resulting formula is not crucial for the further
understanding.

Theorem: 5.1. The extents of the validity segment for a point M in a given
direction d and view cell containing one viewpoint V are given by E; = M—i—ald
(i=1,2), where

—sin? 0 < IIM VH|d>:l:sm@cos@)\/HdH2 < || ||

Q12 = M-V
I I < IIM V|||d >2 — cos? O)|d][2

in the case where the signs of the two alpha differ. Otherwise the alpha with the
smaller absolute value is valid and the other should be set to ‘oo respectively.

Proof. The two points E'1, E2 we are looking for lie on the line passing through
M in direction d and are leading to an angle of © between F; — V and M — V,
where i = 1, 2.

We therefore obtain the equation:

|<M—V|(M+ad) -V >| _
1M = V|[[[(M + ad) = V||

cos ©

us

As © is supposed to be smaller than § squaring this equation leads to the
same set of solutions. Straightforward transformations lead to a quadratic ex-
pression:

A(B + Ca) + Da? =0

where A = sin?O||M — V|2, B = ||[M = V]2, C =2 < M —V|d > and
D =< M—V|V >% —cos*0||M — V|]2||d]|?

There is only one solution to this equation when % = cos? O, the
interpretation is that if the angle between the direction d and the viewing di-
rection towards M creates an angle ©, one side of the cone defining the validity
region will become parallel to the direction d, therefore there exists no inter-
section, which means, that even if we place the approximation of M at infinity
along dj the projection will still be close to the projection of the original point
M. More precisely we see that the intersection, to be in the direction of CZ; the
angle between d and V — M has to be smaller than ©. By construction we would
expect two different values, one positive, the other one negative. If this is not
the case, we have a ”false” intersection on the ”wrong” side of the view frustum
as depicted on the image in the margin. But as we supposed that © € (0, §)
a false intersection can only happen if the two alpha values obtained share the
same sign and more importantly the one with the bigger absolute value will
correspond to the 'wrong’ intersection, which makes the calculation a lot easier.
If one does not accept this distinction, a formula for one of each rays could be
derived, what will actually be necessary in section 6, but we decided to stick to
this much more efficient proof. In the end of this section this particular problem
will also be further clarified.
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We will now focus on the case where we have two solutions:
IM = V[]?sin?© < M — V|d >
< M —V|d >2 —cosO||M — V|]2||d]|?

aq .2

i\/ M -V|[*sin'® <M -V]d>2 sin® ©]|M — V||4

(< M —V|d>2—cos2O||M — V|2[|d][2)2 < M —V|d >2 —cos? ©||M — V|[2]|d] |2
|IM —V|]2sin?0 < M — V|d >

< M- V|d>2 —cos20[|M — V||2||d]|2

VIM = VIP|Idl]P— < M - V|d>?

+||M — V||| sin ©] cos © = =
| < M —V|d>2 —cos? O||M — V||?||d||?]

Exploiting once more the fact that © < § we obtain:

—sin?©®@ < M —V|d > :l:sin@cos@\/HM—VHQHd_H?— <M —V|d>2

ars = [|M=V]? 7 1
I | <M —V|d>2 —cos?2O||M — V||2||d]|

Due to the Cauchy-Schwartz inequality we see that there is always at least one
solution to the equation, showing that we treated all cases possible.
O

Remark. From the theorem 5.1 it is possible to calculate the resulting extent
for an arbitrary mesh point. Interestingly the resulting equation (theorem 5.1)
leads to a ruled surface. Implying that only the relative angle (< %\J >)
and the distance (||M —V||) have an influence on the result, where the distance
has a linear influence on the extent. These results correspond exactly to the
intuition.

In real-life a human observer encounter this effect regularly. The farther
an object is away, the more difficult it becomes to estimate its actual size.
This becomes more evident when looking at far away mountains. Although the
heights might differ by several hundred meters it is very hard to estimate the
exact difference without a reference point.

Lemma 5.2. Given a point M a view cell and a direction d the validity segment
of M will be unbounded if and only if the cone with apex M and aperture 20
opened in direction —d does contain all points of the view cell. (figure 5.2)

Proof. Following the remark in theorem 5.1 we know that the validity region is
bounded if and only if the cosine of the angle between d and P — V is smaller
than cos ©. This is equivalent to the construction of the cone. O

5.4 Iso Values

We have seen in the last section how to calculate the validity region given that
the view cell only contains one point.

In this section we will be interested in understanding which viewpoints in
space are actually responsible for the extents of a validity region. That is to say
given a point of the mesh and a simplification point we would like to determine
the viewpoints for which those two points are at an angular distance of ©.
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Figure 5.2: The viewcones of the viewpoints inside the cone will not intersect

with the ray from M in direction cf, therefore the validity segment will be un-
bounded. For viewpoints on the cone we have the special case where the view-
cone aligns with the ray. For viewpoints outside we will have an intersection
and therefore a limited validity segment.

Definition. Iso-points, iso-viewpoints

For a point M and a simplification S = s(M), we call iso-points © the points
in space that see [M S] under the angle ©, and iso-viewpoints © the viewpoints
that sees [M S] under the angle ©.

In the 2 dimensional case, the set of these iso-viewpoints can be described
geometrically. From the Thales theorem, and remembering that © < 7/2,
these iso-viewpoints are on the intersection of an eight shape and the view cell.
Furthermore the theorem implies that points inside the eight shape would see
M and S in with an angle superior and outside inferior to ©.

In the 3 dimensional case this set quite similar. Due to the following lemma:

Lemma 5.3. Two points M and S all viewpoints which lie on a circle orthogonal
to the direction M — S with its center on the line passing through M in the
direction M — S share the same angle of view for [MS].

Proof. The formulation of this problem is actually more difficult than the proof.
The problem is depicted in figure 5.3. Imagining that we fix a viewpoint V,
which is rotated around the axis described by M and S, the angle under which
the segment [MS] is seen remains the same.

Mathematically the proof can be performed using the formula we found
before. It is clear that the observation is also valid if we apply a rigid transfor-
mations. Therefore we assume d = (0,0,1)T, M = (0,0,0)T and V is replaced
by —V leading to the much simpler form:

—sin® < V|d'> +cos 0/ ||V][2— < V|d >2
< V|d >2 —cos? ©||V|]2

sin@||V||2(

If one now expresses V' in coordinates conform to the rotational invariance we
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Figure 5.3: The angle under which two points are seen does not change if the
viewpoint is rotated around the segment created by these points.

want to prove, V (¢, r,z) = (rcos¢,rsing, z) T, we obtain:

cos Or —sin Oz
22 —cosO(r? + 22)

sin ©(r? + 2?)

which is independent of ¢ O

Unfortunately when looking at the formula in the proof of lemma 5.3, one
sees that a (still) complicated relationship remains between the two other pa-
rameters of the parametrization, which makes the problem very difficult in three
dimensions.

Still it is possible to describe the iso-viewpoints in 3D geometrically. Know-
ing that we have a rotational symmetry for the iso values we can place ourselves
back into R2. This is done by intersecting with a plane passing through the
point M on the mesh and a point S which represents the simplification (see
figure 5.4). We know that on this plane the iso-points correspond to an eight-
shape. Rotating this plane around the axis defined by M and S we get an idea
of the 3D shape. We see that we obtain a torus without hole in the middle.
This shape, called bialy, was obtained by Lindstrom et al. [LKR'96] (page 4)
to measure the error, but with a completely different approach. We will refer
to this set further on as the iso-torus, even in the 2D case, as the cut of the
iso-torus by a plane results in the aforementioned eight-shape (figure 5.4).
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T @

Figure 5.4: As the 3D shape is rotationally invariant along the axis M and d it
is sufficient to understand the 2D case to get an idea of the 3D shape. The 2D
shape is rotated around the aforementioned azis.

5.5 Maximum Viewpoints

Definition. Mazxzimum viewpoints

Let M be a point and d a direction. We call a mazimum viewpoint a viewpoint
V' for which the validity region border of M in direction d coincides with a point
on the border of the view cone of V. The view cone is the cone with apex V,
aperture 20 and the axis is given by M — V. In other words as VRg(M) is
constructed via the intersection of all view cones. For each given direction there
is at least one viewpoint whose cone limits the validity region in that direction,
these are exactly the maximum viewpoints.

To assure the existence, from now on, we will assume that our view cell is
a closed set. For ’real life’ applications this is not a restriction. Most of the
times view cells will be defined by polygonal borders. Having a closed set we
know from the definition of the validity region, that for a given direction d there
exists a point the mazimum viewpoint in the view cell whose cone created the
border of the view cell in this direction.

Remark. Existence of maximum viewpoints: Usually for the existence one would
need compactness, but we will see that closeness is sufficient. Objects become smaller
the farther the observer moves away, so when the distance to the mesh point becomes
very large, the angle under which two points are seen will approach zero. Given a
sequence of viewpoints restricting the validity region more and more until the validity
region corresponds to the validity region for the whole view cell, the sequence is nec-
essarily bounded. Therefore we have a sequence in a bounded and closed set, which
in R™ is equivalent to compactness. The theorem of choice gives us a converging sub-
sequence. The limit of this subsequence has to be a maximum viewpoint. It has to be
pointed out, that the original sequence does not necessarily converge. Given as view
cell the (x,y)-plane we are looking for the maximum viewpoints of M = (0,0,1) and
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S =0,0,2. Due to the rotational symmetry, if (x,y,0) is a maximum viewpoint, so is
(cos(¢p)x —sin(¢)y, sin(¢p)x + cos(¢)y) for an arbitrary ¢. This exceptional case, where
M — S is orthogonal to the view cell is actually the only case, as we will see later.

Now we can prove a very important result:

Lemma 5.4. For a volume view® cell the mazximum viewpoints are necessarily
on the boundary.

%In 2, resp. 3 dimensions a 2, resp. 3 dimensional viewcell

Proof. Intuitively we will show that a close viewpoint to the point M restricts
the validity region more than a viewpoint farther away. Meaning that for a
viewpoint that is very close to the object the simplification has to be less ag-
gressive than for a far away viewpoint. Given a direction d_: we call M the point
on the mesh and S the extent of the validity region in direction d. Assuming
we have a maximum viewpoint V in the interior. By definition of the interior
of a set, we can find a sphere B (V) of radius € around V which lies completely
inside the view cell. Let’s call ¥’ the direction of the bisector o@ and define
V' =V +¢/253. Clearly the angle MV'S is greater than MV S = © which
is a contradiction, as it implies that shrinking the angle back to © one could
not cover the whole segment [MS] and therefore S cannot lie on the border of
VRe (M), leading to a contradiction. O

This proof implies, that for volume view cells only the boundary is important.
This does not imply that the maximum viewpoints are always ”extremities”,
which is falsely assumed in several articles. (see chapter 2). The image to
the right shows a counter example. Following the false assumption that the
error is maximized at the extremities, leads to a validity region which is a
polyhedron. We will see later that the validity region is more properly described
using hyperboles.

5.6 Finding Maximum Viewpoints for a Hyper-
plane View Cell

From the previous sections we have seen that it is sufficient to know the border
of the validity region for a given direction due to its star shape (Lemma 5.1).
Then we showed how to calculate this validity segment, if the view cell contains
no more than a single point (Theorem 5.1). Afterwards we were interested in
the shape of iso-points which correspond to points in space which create the
same validity segment for a given direction. By using the Thales theorem we
got a good insight in the shape of this set (page 23 - 25). In the next step
we have introduced the notion of a maximum viewpoint (5.5), those viewpoints
which actually restrict the validity region, and we have shown that these points
are always on the view cell’s boundary (lemma 5.4).

Having all this information we are now able to calculate the validity region
of a point given a hyperplane view cell. We will show how to determine the
maximum viewpoints and derive a geometric interpretation of iso-viewpoints.

V=Vt 2
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As aforementioned we will fix a direction d for which we will determine the
extent of the validity region, this means we will detect the extent only in the
direction ai not in the direction —d.

To ease the comprehension we will restrain ourselves to the 2D case first,
before solving the problem in 3D. As mentioned before it is sufficient to find the
maximum viewpoint for a given direction d. To achieve this goal the intuition
is to grow the iso-torus of iso-points until it becomes tangent to the view cell
(see figure 5.5).

S(@)

M,

A

viewcell

Figure 5.5: The idea to find the mazimum viewpoint is to grow the iso-torus
until it becomes tangent to the view cell. Due to the Thales theorem the tangent
point is the one we are looking for.

To get started we want to parameterize the iso-torus using a parameterized
simplification point S(a) = M + ad. Let’s first assume S has been chosen.
The first observation is that in 2D the iso-torus correspond to the union of two
circular parts therefore we are first of all interested in creating each of those
circles independently for each side. To find the corresponding iso-values we will
start by constructing a third point V’, such that the angle MV'S equals ©. This
will be useful, to construct a circle through these three points*. Once again the
Thales theorem tells us, that all the points which create an angle © with M and
S and lie on the same side as V’ will be found on this circle. The point V" is given
by the intersection of the mediator and the line passing via M in direction R,
where Rp is a rotation matrix of angle I'. The angle I" equals ”59 or 2m— ”;9
—%, depending on which side of the eight-shape we are interested in. The
angles come from a simple geometric reasoning; the sum of the angles inside of a
triangle equals 7). The situation is depicted in the margin. If one assumes that
the middle point of the segment [MS] has coordinates M + td we obtain the
following line equations: 1 (a) := M + a(Rr(d)) and Iy(8) := (M + td) + Bd*.
Those lead to the intersection point V' = M + td + tanT'dt. One realizes,
that the result is always valid except for I' = £7, which implies that © = 0 or

s

© = 3 both of these cases had been excluded. More precisely the result for the
concrete situation as depicted before would be V! = M + td + cot( %)Jl and
V' =M +td— cot(%)cil for the 'mirrored’ one.

Now having one parameterized point we can construct a parameterized circle.
To construct the circle we use basic geometry, as depicted in the margin the

~

4slightly more efficient would be to use the fact that the angle for the circle’s center with
M and S is of 20, but we preferred this more intuitive approach.
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intersection of the mediators gives the surrounding circle’s center C(¢). The
result is given by C(t) = M + td — tcot(2I)d> = M + t(d + cot(©)d™) and
exists under the same conditions as in the step before® Having the center one
can deduce the radius using the distance of the center to any of the other points
of the triangle. Involving several trigonometric transformations the radius is
given via r(t) = m = L5 in both cases the radius is the same, which
can be explained geometrically, as one case is the mirrored of the other.

Having a parameterized circle, we now apply the idea of growing it until it
touches the view cell. To further simplify the problem we will assume for the
moment that the view cell is actually a hyperplane and without loss of generality
we consider it to be y = 0. We assume for the moment, that the viewpoint that
is given by the tangent circle is actually the maximum viewpoint we are looking
for. The problem is, that the Thales theorem predicts an eight shape, in 3D the
iso-torus, so when growing a circle and calculating the intersection with the view
cell, we might encounter an intersection with the part of the circle which would
have been excluded by the Thales theorem. We will show in chapter Aan exact
classification of when these viewpoints are actual maximum viewpoints. To ease
the understanding we will restrict ourselves to look for a potential maximum
viewpoint.

Starting to grow the circle, we now would have to distinguish two cases,
the one where the point M lies in the half space given by y > 0 and the
one where M lies in the half space given by y < 0. Both cases are solved
in the same way, therefore we will concentrate on the case for M in the half
space y > 0 and announce simply the result for the other half space. For each
circle the point with the smallest y value on the circle will be described by
Pt)=C(t)+r(t)(0,-1)"

To find the tangent point, we only have to solve a linear equation given by:

C@t)+rt)0,-1)" = (x,0)" (5.7)

Resulting in
L sin Omg
" +cosOd; — sinOds + 1

(5.8)

where d = (dy,d2)T and M = (my,ms)7. + corresponds to the two different
sides. To see for which values this equation is undefined we have to take a
closer look at the denominator. As ||d|| = 1 we can write d = (cos~,siny)T.
The denominator thus simplifies in the first case to cos(© + ) + 1 which is the
case for v = m — © and without a surprise in the other case we obtain v = ©.
"Without a surprise’, as it corresponds to the 'mirrored case’ and the angle is
mirrored at the y-axis (the normal of the view cell). The situation is depicted
in the figure 5.6.

This case implies that even if the real view cell were the whole hyperplane,
it would not be possible for any viewpoint to see the segment [M.S] from this
direction. On the other hand we have proven in this step, that there is always
one side, from where the segment can actually be seen.

In the case where M is in the half space y > 0, we would have to replace

5To distinguish the two cases, one might remember that for the case in direction of d* the
coefficient in front has to be positive.
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viewcell

Figure 5.6: The image shows the case where we are looking for a mazimum

viewpoint which is situated to the right of the ray defined by M and d. One sees
that in the situation where the angle ofcfea:ceeds m— 0O (measured at the z-axis)
there cannot be any maximum viewpoint, as for all viewpoints in the half plane
we do not have an intersection with the ray. Actually for the point at infinity
we would encounter the case where the view cone aligns with the direction d.

(0,—1)" by (0,1)7 in equation 5.7. Leading to almost the same equation
L sin ©ms
" +cosOd; — sinO®ds — 1

Remark. In practice we will never need this second equation, as it is sufficient
for each face of the view cell to consider only the points which lie in ’front’ of
the face®. The proof is analog to lemma 5.4 and will therefore be skipped”.

When considering these equations we might end up with a negative result for
t, which means that there is no maximum viewpoint for M, .S and the direction
v on the considered side of the segment [MS]. This can be seen because the
numerator of ¢ is greater than zero. Therefore the sign change can only result
from the denominator. We have seen at which moment the denominator changes
its sign; it is the moment when there are no more maximum viewpoints for this
side of the segment [MS].

It is now very interesting that a very beautiful parametrization of the extent
of the validity border can be achieved, which is not very useful in practice, but
very nice from a theoretical point of view.

Theorem: 5.2. The validity region of a point for a plane view cell for a given
direction d is the intersection of two hyperboles.

Proof. Looking at equation 5.8 one could imagine to observe the variation of ¢
(which corresponds to the extent of the validity region) in dependance of the
direction d. The resulting equation is

. sin ©Omo
t((cosvy,sinvy)) = tcos(©@ £7) — 1

This is a very well known equation. It is a parametrization of a hyperbole. [

SIn the case that the view cell just consists of one view cell face, it would have to be
considered twice, once for each orientation.

7Short proof: The idea is to assume that it is not the case, then the connecting segment
between the point to simplify and maximum viewpoint intersects the view cell. This is a
contradiction, as all viewpoints on this segment will restrict the validity region more than the
‘maximum viewpoint’.
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This result reveals, that the assumption of having a polyhedron (which would
be the case if the maximum error is obtained on the extremities of the view cell)
is false. This result is also interesting as it shows once again, that a polygonal
sampling of the validity region would remain in the interior of the validity region
due to the curvature of hyperboles, allowing for a conservative estimate in the
case of hyperplane view cells.

The result for the a view cell line will now be transferred to the 3D case,
where the view cell is a plane. The following lemma will show that it is possible
to treat the 3D case having solved the 2D case.

Lemma 5.5. Given a direction zf, a mesh point M and a view cell which is a
plane, the maximum viewpoint can be found on the line |, which is the orthogonal
projection of the line passing through M in direction d onto the view cell. If d
1s orthogonal to the plane, the maximum viewpoints, are all situated on a circle,
around the orthographic projection of M onto the view cell. (The situation is
depicted in figure 5.7)

Figure 5.7: The mazimum viewpoints for a plane are restricted to the ortho-

graphic projection of the line passing through M in direction d onto the view
cell plane. The mazimum viewpoint in this case is indicated with a V.

Proof. We have shown that the iso-points are situated on an object which is
rotationally invariant around the axis A defined by M and d (see lemma 5.3)
and looks like an eight shape when intersected with a plane containing the
line through M in direction d. We also know, that the maximum viewpoint
V' corresponds to a tangent point at the view cell of an isotorus containing V.
We have seen that the validity region of M will not change if we replace the
plane view cell via the half space, bounded by the plane and not containing
M (see lemma 5.4). If V is not on [ and d is not orthogonal to the view
cell, by construction of [ a rotation of V around the aforementioned axis A
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would penetrate the interior of the half space view cell. This means that there
would also be a maximum viewpoint in the interior, which is impossible due
to lemma 5.4. In the case where d is orthogonal to the view cell a maximum
viewpoint rotated around the axis would result in a circle on the plane. O

Due to the lemma above it is now sufficient to restrain the 3D case to the 2D
case by working in the plane passing through M and containing the directions
d and the normal of the view cell plane.

5.7 Finding the Maximum Viewpoint for a Polyg-
onal View Cell

Maximum viewpoints are always situated on the border of volume view cells.
Therefore it is possible to consider only the faces of the view cell. Following the
implies that

In this section we will use this result to solve the case of a polygonal view
cell (not necessarily bounded)®. As mentioned before it is sufficient to restrict
ourselves to the faces creating the view cell®(remark on page 21 and lemma 5.4).
The idea in this part, is to use the maximum viewpoints approach, to define a
finite set of viewpoints, that have to be considered.

Remark. Given a point M, a direction dand a polygonal view cell V, which is
contained in a hyperplane H. If the maximum viewpoint for H is inside V then
the extent in direction d for V equals to the one of H.

The difference will thus be in the cases where the maximum viewpoint for
the hyperplane falls outside of the polygonal view cell.

It is actually the polygonal shape of the view cell which makes the whole
problem of bounding the error difficult. We will encounter this problem again
in the chapter 6. The validity region will be calculated indirectly via the classi-
fication of maximum viewpoints. The idea is to find always the viewpoint which
minimizes the extent of the validity region in a given direction. As usual we
will solve the problem in the 2D case before explaining how to deal with the 3D
case.

The advantage of the indirect computation of the validity region lies also in
the fact, that it is sufficient for a given direction to determine a finite set of view-
points which will be needed to determine the validity segment. If some of those
viewpoints are useless or falsely classified as maximum viewpoints the result will
still be coherent, as by definition the validity region is given by the intersection
of ALL view cones. As on page 28 we will consider both sides of the eight shaped
isotorus separately. We will then determine 'maximum viewpoints’ for each side
and the validity region will be given by the intersection of the cones of this
finite set. Abusing the notation we will also refer to these 'pseudo’ maximum
viewpoints as maximum viewpoints, as they represent a maximum viewpoint
for one side. Figure 5.8 shows this situation where a maximum viewpoint for
one side does not correspond to the 'real’ maximum viewpoint.

8more precisely a view cell given by the finite union of finite intersections of closed half-

spaces
9n 2D a segment, in 3D a planar polygon (not necessarily bounded)
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Figure 5.8: Although the mazimum viewpoint for the hyperplane view cell lies
to the left V, the mazimum viewpoint for the view cell lies to the right V"', as
can be seen when compared to the mazimum viewpoint to the left V'.

To obtain the maximum viewpoint of a polygonal view cell we will first go
back to the case where the view cell is a hyperplane. We have seen, how the 3D
case can be solved by reducing the problem to the 2D case (see lemma 5.5).

In the following we determined the validity segment for a hyperplane view
cell. During the calculus we have not exploited all the information. The equation
given by the first line of equation 5.7 will allow us to calculate the coordinates of
the maximum viewpoint by inserting the result of equation 5.8 in equation 5.7.
Due to the assumptions we made (M = (mj,mz)' is in the halfspace y > 0,
the view cell is given by y = 0) mathematical transformations lead to the point:

sin ©d; =+ cos Ody
+cosOd; —sin®Ody + 1’

Vinaz = (ml + mo *

0) (5.9)

If this point falls inside the polygonal view cell it represents a potential maxi-
mum viewpoint. If it falls outside we have to determine where the actual maxi-
mum viewpoint is located. As before we have seen that we can grow the isotorus
until it becomes tangent to the view cell. The following lemma will show, that
in this case the maximum viewpoint will be on the view cell’s extremities.

Lemma 5.6. If the mazimum viewpoint for a hyperplane view cell containing
the original view cell does not fall into the interior of the original view cell it
has to be on the extremities'”

10Tn 2 dimensions, extremities correspond to the extremal points of a segment view cell,
and in 3 dimensions to the bounding segments.
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Proof. The proof is not complicated, and easier to understand when following
it on the figure 5.9.

S(t2)
S(t1)

77777 V 'maxi < Vmax

_s‘eErﬁe_r{t viewcell
Figure 5.9: The mazimum viewpoint for a polygonal view cell is on the border,
if the corresponding mazximum view cell for the hyperplane falls outside of the
polygonal view cell.

To show this we assume that the maximum viewpoint V). for the hyper-
plane falls outside. Therefore we know that there is an isotorus passing through
this point and being tangent to the hyperplane. Due to its construction via the
Thales theorem, we know that smaller isotorus’ are contained in the bigger ones
(The Thales theorem states that points inside the circle form a bigger, outside
a smaller angle). Now we assume that we have grown the isotorus until the
concerned side of the eight shape comes into touch with the view cell at V4.
So segment [V.) . Vina.] has to lie in the interior of the isotorus. If V4. is not
the boundary of the view cell, there has to be a point V, . which lies on the
segment [V.!  V,...] and is closer to V. .. The isotorus passing through V.
would be included in the isotorus passing through Vi,.: as Viner was chosen to

be minimal we get V! ... = Vinep proving that V4, is on the border. O

In the 2D case this is sufficient to find the complete solution to our problem
because the extremities of a segment are two points. So if, as mentioned in
the lemma 5.6, the maximum viewpoint falls outside of the segment, the closer
border is the maximum viewpoint for the segment view cell.

Unfortunately this is insufficient to solve the 3D case because then bound-
aries correspond to segments, leaving us still with an infinity of possible max-
imum viewpoints to test. For more details and a numerical solution one could
refer to chapter B.
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Chapter 6

Validity Regions and
Projections

In the last chapter a new approach was presented to calculate the exact validity
region of a point. Unfortunately the validity region of vertices cannot simply be
used to ensure a validity for faces. In other words, there is no direct relationship
between the validity region of vertices of a face and the validity region of the
face itself.

Let’s consider two points M and N of the mesh and pick valid simplifications
for these points S € VRg(M) and T € VRg(N). Then the segment [ST| is
not a valid simplification for [M N]. This can be seen on the counter-example
of Figure 6.1.

viewcell

Figure 6.1: Validity regions cannot be linearly interpolated. When M and N
move within their validity regions, their middle point does not remain necessarily
in its validity region.

In particular, in a Billboard Cloud like approach, if the projection (orthog-
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onal or perspective) of M and N on a plane are valid simplifications for M and
N, the projection of [M N] is not necessarily valid.

Still our results concerning validity regions for points are not useless, as a
face could be sampled. The error that is created is bounded in relation to the
distance of the sampling points. A sampling scheme, e.g. Turk in [Tur92] and
[Tur01], could be used to offer an approximation of the validity for a face.

As we were more interested in a correct approximation with exact error
bound we further explored the validity of faces. In the following we will see that
it is a very difficult task, we will show that the polygonal character of the view
cell is the actual problem. For a hyperplane view cell the validity at vertices can
be used to ensure validity of the whole face, making our 3D solution work for this
restricted case. Finally we will provide a complete exhaustive solution in the
2D case which has applications not only in the context of Billboard Clouds (for
which we developed this approach) but also for other simplification algorithms.

6.1 Ensuring Validity of Points

As described in chapter 4 the simplification approach used by billboard clouds
is that elements are projected onto a plane. This projection corresponds to the
movement of several points along the plane normal. To ensure the validity for
view-dependent Billboard Clouds, it is necessary to ensure that the plane inter-
sects all the validity segments in direction of the plane normal of all points that
are supposed to be projected onto the plane. It is insufficient that the plane just
passes via the validity regions, the way the points are transferred/projected onto
the plane influences the validity. If the projection were to be a projective projec-

possible

. . simplification
invalid P

simplification

simplification
plane

viewcell

Figure 6.2: Although the simplification plane passes via the validity region of
the point M, an orthogonal projection will not necessarily lead to a valid sim-
plification. All that one can deduce is that there exists a projection direction for
which it would be a valid simplification.

tion for a fixed viewpoint, then the projection direction would change depending
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on the position. As the validity region is not spherical this would involve another
step of complexity to the problem. But as we will show in section D, it is not
convenient to use a fixed projection point. Having different points to shoot the
texture from might lead to another problem. Big faces might be more likely to
show distortion problems, when a perspective projection is used. Therefore the
distortion might already create an error superior the specified threshold © for
certain viewpoints. To be able to simplify the model, those big faces would have
to be cut in smaller ones, for which different projection centers are used, leading
to possibly higher complexity than the original model and possibly disturbing
texture discrepancies at the border of such patches.

These reasonings lead us to the decision to use orthographic projections,
nevertheless even for this case it is not a simple task.

Our goal is to ensure validity of a face given a plane, which is defined as
follows:

Definition. wvalidity for a (simplification) plane, projection direction
A face F is called valid for a plane P (under an orthographic projection), or
simply wvalid, if the validity segment for each point on the face given in direction
of the normal of P is intersected by P. To distinct this kind of plane we will
refer to it in the following as the simplification plane. In the same sense a
simplification plane will be called wvalid for a face, if the face is valid for the
simplification plane.

This is equivalent to the formulation: The simplification mapping S|+ de-
fined by the orthogonal projection onto P is a valid simplification for the face
F.

We will refer to the normal of the simplification plane as the projection
direction. (We will speak of a simplification 'plane’, and mesh face’ also in the
2 dimensional context)

viewcell

Figure 6.3: The upper plane represents an invalid simplification plane for its
projection direction, although it passes through the validity regions of all points.
The lower plane represents a valid simplification plane for its projection direc-
tion.

A first interesting observation can be made in a particular case. In section 5.6
we have seen how to calculate the validity region given that the view cell is a
hyperplane. The obtained equation (5.8) for the extent of the validity region in
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direction (di,ds) was :

L sin ©ms
" +cosOd; — sinBds + 1

(6.1)

where ¢ corresponded to the extent of the validity region, the point M =
(m1,m3)7 to the concerned mesh point and d = (d1,d2)T to the direction
and the view cell was assumed to be y = 0. The important observation is that
the extent depends linearly on the distance of the point M to the hyperplane
view cell, leading to the following lemma.

Lemma 6.1. In the case of a hyperplane view cell a valid simplification plane
for the vertices will also be a valid simplification plane for the face.

Proof. For the 3D case it is sufficient to assume that the face is a segment. If the
lemma were wrong for faces, but correct for segments, there would be a point
on the face which is not valid. It cannot lie on the border, as for segments the
lemma is true. But then it cannot lie in the interior, as it is sufficient to apply
the lemma for a segment passing through this point, with extremities on the
border of the face, which are proven to be valid. To show the result for a segment
we will show that the linearity expressed in equation 6.1 remains true in the 3D
case. We know from lemma 5.5 that in the case of a hyperplane view cell, and
a single mesh point it is sufficient to solve the 2D case for a plane containing
the mesh point, the normal of the view cell and the projection direction. If the
segment is already contained in this plane, we are done. Otherwise, the plane
is translated along the segment, therefore the intersection between plane and
segment varies linearly in the plane. The sum of two linear functions (change of
the extent of the validity region and the change of distance along the segment)
remains linear, therefore we also have linearity in the 3D case. A simplification
plane passing through the validity segment in the projection direction at the
vertices will, due to the linearity, remain in the validity region for all the points
on the segment. O

The lemma 6.1 ensures a solution for a special subcase of our problem. The
general situation is more complicated, therefore for the remaining of this chapter
we will consider only the 2D case. A 3D solution remains future work, but is
very complicated and will possibly remain an open problem for a longer time.
The approach we present will heavily depend on the possibility to calculate
maximum viewpoints exactly. Nevertheless we gained a good insight into the
3D case in the last chapters. It is probably even interesting to point out that
a straightforward approach, trying to solve all questions via sampling, would
lead to an arbitrarily huge reprojection error (lemma 5.2 told us that a single
viewpoint, or a small region of € size can change the validity region from co to
a bound valuel).

To solve our problem in the 2D case we will show that it is possible to sub-
divide the faces into a finite number of subsegments such that each subsegment
is valid if and only if the simplification of the extremities of the subsegments
are valid.

For example we have seen, that it is sufficient to test the vertices if the view
cell is a hyperplane, as the behavior is linear. In the same way, when looking

IFor a polygonal view cell though it is sufficient to add the extremities to get a more
reasonable bound.
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at the coordinates of the maximum viewpoint in equation 5.9 we see that the
position also depends linearly:

sin ©d; =+ cos Ody
+cosOd; —sin®Ody + 1’

Vinaz = (m1 4+ m2 x O)T
Therefore moving a point M continuously will move the maximum viewpoints
accordingly. If the maximum viewpoints fall into the view cell the validity region
behaves, as if we had a hyperplane view cell. This leads to the first idea; to
detect those parts of the face for which the maximum viewpoint falls inside
the view cell. The segmentation of the face will therefore start by isolating the
linear part and it is sufficient to compute the validity for its two extremities. For
the other cases we have already seen( lemma 5.6), that the maximum viewpoint
corresponds to an extremity of the view cell. Therefore it is inevitable to gain
further inside in the variation of a validity segment for points on a segment when
there is only one viewpoint. We will see that this behavior can be described via
a rational function, which will be the basis of how to decide where the segment
has to be further subdivided. (Actually we will see, that (at most) one further
subdivision is necessary.)

In the final step the simplification plane will be valid for a face if it has been
proven valid for all subsegments.

6.2 Detecting the Linear Part

It might still be confusing, that we are working on different ’sides’ of the direc-
tion d. If the view cell was a hyperplane, the ’side’ would be simply such that
the angle with the direction d becomes smaller. For a polygonal view cell this
is insufficient. (see chapter 5.7)

Following equation 5.9:

sin ©Od; =+ cos Ody )T

V. = 1 2
maz = (ml +m *:I:cos(adl—sin@dg—i—l’

it is possible to calculate the coordinates of the maximum viewpoint. One
sees, that if the projection direction d= (d, dg)—r remains fixed, which is the
case for an orthogonal projection, the existence of a maximum viewpoint only
depends on the angle between the view cell and d (this had been pointed out in
section 5.7).

If there is no maximum viewpoint we know that no viewpoint can see this
side of a segment [M,M + afi_], therefore the validity segment is infinite in
direction d. So let’s assume that there is a maximum viewpoint for a point on
the face. Then there will be a maximum viewpoint for all points on the face, as
the relationship is linear. It is therefore possible to find the two points on the
face, which have the maximum viewpoints that are the borders of the view cell,
as shown in the margin. All points in between these two will have maximum
viewpoints in the view cell. The part of the face which is linear has therefore
been detected successfully.

Having this idea it is still necessary to transform it to a mathematical
method. As before, without restriction, but to ease the calculation we will
assume the view cell to be a segment which is parallel to the x-axis. The face
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F is assumed to be in the halfspace y > 0. Thanks to equation 5.9 it is possible
to find the coordinates of the maximum viewpoint for a given point M.

sin ©d; + cos Odsy
+cosOd; —sin®dy + 17

0)"

Vmam(mla m2) = (ml + mg *

We will now replace M by the line equation that corresponds to the line con-
taining F. Assuming the line is given by : I(a) := M + a(Ms — M) = M + o
and one border of the view cell is given by (r,0)T. We can therefore solve the
equation: V. (I(a)) = (7,0)T which is a linear system. We have:

Vinaz(I(@)) = (r, O)T
& (my+cmg) + alw) + cws) =7

The solution in the case where (w; + cwsz) # 0 is therefore

r — (mq + cma)
w1 + cwsz

o =

L sin ©dy +cos Odo _ ; |
, where ¢ := 2R = st If (w1 + cws) = 0 we see that all points on the

face share the same maximum viewpoint, so either this point is inside the view
cell, therefore it is sufficient to assure validity at the vertices, or it is completely
outside and therefore there is no linear part.

An interesting observation can be drawn from this equation, too. One sees
that there exists a parametrization such that all points along one axis share the
same maximum viewpoint, in other words, the maximum viewpoints are given
by the intersection with a cone. This is a nice theoretical result, that does not
ease the formulas derived before, but it offers the possibility to derive a solution
independent of the coordinate system.

6.3 Dealing with the Non-linear Part

Having detected the linear part, we now consider faces, such that for all points
on the face the maximum viewpoint for a line view cell does not fall into the
view cell itself. In this case we already know, that the maximum viewpoint will
actually be one of the borders of the view cell and it will be the same border for
all points, as otherwise the face would contain a linear subsegment?. Therefore
we have to get a deeper insight into the case where the view cell only consists
of a single viewpoint. In this section, we will observe that, the variation of the
validity segments can be described by rational functions. To ensure validity
for all points of the non-linear part on the face, we will show, that we have
to calculate the tangent in the orthogonal direction of the projection direction
at this curve. As before, we will distinct the cases where this tangent point
corresponds to a point on the face and when not. We will then explain how to
handle both situations.

This section is structured as follows, first we will describe the mathematical
situation and derive the function representing the validity extents for points

2This can be seen, as the maximum viewpoints for a hyperplane view cell are displaced
linearly along the face, therefore there has to a part on the face where the maximum viewpoint
falls inside the view cell, but then this mesh point on the face would lie in the linear part of
the face.
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on a line face. During a first lecture the following exhaustive discussion of the
function can be skipped and the reader will be informed to do so in the text. At
the end of the discussion we will see, that only one additional subdivision has to
be performed to ensure validity of all subsegments just by assuring validity at
its vertices. During the discussion, we will point out, that due to our approach
'false’ intersections might be present in the graph. An exact classification of
these cases, leading to an optimization in computation time and more impor-
tantly to a complete understanding of the non-linear situation can be found in
C.

For the remainder of this section we are only interested in the non-linear
part and assume that the linear part of the face has already been detected.
Let’s suppose we have a face F, and a viewpoint V we are interested in the
curve that is described via the validity region extents in a given direction d. We
examine instead of the face itself a line passing through the face. Assuming for
the moment that the face is actually this line.

A first approach could consist in using the equation obtained in theorem 5.1
and to add these lengths to the actual points on the face. Unfortunately this
approach is very complicated and did not lead to a result. Instead we will de-
velop a direct representation and we will see, that this function is a lot simpler
than the one from theorem 5.1. Unfortunately we will have to divide the ap-
proach into two. Instead of considering a view cone of aperture 20 as we did
before, we will be interested in the intersection between a line passing through
the observed point and a ray shot at an angle © from the viewing direction.
(The ray corresponds to one border of the view cone.) The resulting graph of
all these intersections may contain points that correspond to ’false’ intersec-
tions, as we called them in the theorem 5.1. Those represent the moment when
there is no longer an intersection in 'front’ of the viewpoint. The image in the
margin depicts the new situation we are interested in. Of course we will have
to deal with the problem that only a part of the curve is actually valid and is
not based on false intersections, but for the moment we will keep it simple and
not bother about this because the resulting curve, though much simpler than
the formulation of Theorem 5.1 still remains quite complicated.

Having this curve we actually visualize the validity region extents created
by all the points on the face. To have a valid simplification plane, it has to be
below the curve, where below refers to the opposite projection direction d. It
is therefore necessary to find the tangent with direction d* at the curve in the
valid area.

The reader might want to skip parts of this section and come back later if he
wants, as we will concentrate in this section only on the resulting function and
we will show that it is possible to find a point on the face which minimizes the
validity region and therefore assures the simplification plane’s validity. Curious
readers might continue until further notice, if they want to get an idea of how
this is done one.

The following reasonings will in practice not only have to be performed
for © but also for —©. The reasoning is very similar and we will therefore
only concentrate on the case of © at the moment? Indirectly this distinction
was already present when looking for maximum viewpoints for a given direction
(meaning one of the rays in 2D of the maximum viewpoint was actually useless).

3The cases are not identical, as for © we have the property that 0 < © < g
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When M moves on a line we obtain a graph which we will examine more closely.
Figure 6.4 shows an example of how the curve looks like.

Figure 6.4: The figure shows the graph, obtained by intersecting two lines, one
corresponding to a view cone ray, the other to a line in projection direction,
passing through the points on the mesh face. One could think of this as some
kind of half (the second view cone ray is missing) validity region for the face’s
points.

To describe this function mathematically we will start by describing the
situation more precisely. Given a point M, the viewpoint V and the projection
direction d we are looking for the intersection between the two lines

L(B) := M+ Bd

and
la(a) ==V + aRe(V — M)

, where Rg describes a rotation of angle ©
To ease the calculus, but without loss of generality, we are going to assume
that V = (0,0)" and d = (0,1) 7. Calculating the intersection leads to

sin ©my + cos Om
I((m1,m2)7) := (m1,m ! T

cos Omy — sin ©Oms

This expression is not always defined, but we will examine this later. We now
want to discuss the curve we obtain if M is not fixed, but moves on a line. Let’s
represent this line as M(a) := (m1,ma) T + a(cosy,siny) T, we are therefore
interested in the graph of G := I o M («). We obtain the following expression:

sin©(my + acosy) + cos O(mg + asiny) , +
cos O(my + acosy) — sin O(mg + asiny)

G(a) := (m1+acosy, (m1+acosy)

To further simplify we will assume that My = (0,m)". This is actually
a restriction, as it is now impossible that M describes a vertical line which
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is not the y-axis. This is not crucial though, as the projection direction was
assumed to be be vertical. A face would be projected to a line (point in 2D) if
an orthogonal simplification plane were valid, which would not be a reasonable
way to simplify the face. Therefore we will simply assume that simplification
planes are not allowed to be perpendicular to the face they are supposed to
simplify. It has to be pointed out, that this choice has been made because it
makes sense and simplifies the calculus. Interestingly this special case will play
a special role in chapter D. Applying the simplification we obtain:

sinOa cosy + cos O(mg + asiny) , +

G(a) := (acos~y, acos - ;
(c) = ( 7 ’yc059acosw—sm@(m2 + asiny)
The geometry of a curve is not modified when applying a linear transforma-
tion to the parametrization. Therefore substituting the parameter o by ﬁ,
where cosy # 0 as we excluded vertical faces.

Gla) = (a, asin@a + c?s O(mg + atany) )T
cos O — sin ©(mg + atany)
Now this curve can actually simply be represented as the graph of the func-
tion
sinOa + cos O(ma + atany)

X(a):= “cosOa — sin ©(mg + atanvy)

As mentioned before we were interested in the tangent with normal equal
to the projection direction. As the projection direction has been chosen to be
(0,1)T, we are actually interested in local minima and maxima.

Due to the complicated coefficients calculating derivatives is an easy source of
error. On the other hand if one solves the problem for a more general function it
gets a lot easier. Assuming that the denominator of the function is not constant,
as X is a rational function we can rewrite* X as

X(a) = Aa+ B+ (6.2)

Foa+ F

Deriving the function 6.2 two times leads to:

X (a) G

do = (Ez+F)3

Therefore the curvature of the function can only have two different signs,
one for each side of the definition gap. Thus any point for which the derivative
vanishes is automatically an extremum, there cannot be any saddle points.

So all that has to be calculated are the roots of the first derivative. The
resulting expression is at most quadratic and therefore possible to solve.

We start by transforming X:

$inOa + cos O(ma + atan )

X(a) = cos Oa — sin O(mg + artany)

(sin© + cos © tan y)a + cos Omgy
(cos © — sin O tan y)a — sin Omy

asin(© + ) + cos © cos yme

acos(O + ) — sin © cos yma

4This result can be found in almost any book on analysis. It is actually a result of simple
polynomial division. An example would be the excellent book by Heuser[Heu].
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First one sees that for the two solutions to exist, we need AB # 0 (in equa-
tion 6.2 and the values under the square root have to be positive. Unfortunately
this part is quite tricky. As the function behaves very differently for different
values of v changing from a line, to a parabola, to a hyperbole and to a ’real’
rational function. Therefore we have to treat all of these cases. Fortunately we
already know a lot about the function, the curvature does not change its sign
on each branch of the function, where branch means a part which lies on one
single side of the definition gap. We will exploit this information to examine all
possible cases.

The discussion will be quite lengthy and technical. During the first reading
of this document it is to skip this part. The reader should just know, that it is
possible in all cases to calculate the tangent to the curve and therefore we can
decide whether the simplification plane is valid.

First we will treat the case where the numerator is of degree 2 the denomina-
tor of degree 1. Our first observation will be to find out when the denominator
divides the numerator.

Assuming that they would divide leading to ca (with ¢ # 0).

asin(© 4 ) + cos O cosymy

acos(O + ) — sin © cos ymg
& asin(© + ) + cos O cos yma = c¢(a cos(O + ) — sin © cosyma)
& asin(® 4 ) — ccos(© + 7)) + cosyma(cos© + csin®) =0

as cosy # 0, we will only need to distinct the cases ma = 0 and my # 0.
Assuming mgy # 0 then the constant part implies ¢ = — cot ©. Inserting this
into the linear part leads to sin(© + ) + tan © cos(© + ) = 0, implying that
cosy = 0. But this case had been excluded, as then the face would be vertical.
If now mg = 0, X simplifies to tan(© + v)a. A linear function, except that
two cases have to be distinguished (an example can be seen in figure 6.5). The
one where v = —O + /2 and the one where v # —0 + 7/2. We would also
need to consider —© + 7/2 4+ 7, but remembering that v describes the angle,
the lines for v and v + 7 coincide, we will therefore reason modulo 7. The case
v = —0© + 7/2 corresponds to what we already mentioned several times. The
ray in direction © becomes parallel to the projection direction (0,1).

So let’s deal with the case that we have a quadratic denominator and a linear
denominator and the expression cannot be simplified.

As before we know that we can write the function as follows:

X(a) = Aa+ B+ (6.3)

Ca+D

Due to the linearity of the denominator we know that at the poles the func-
tion ’jumps’ from co to —oo. On the other hand due to linear part we know
that the function approaches co and —oo when |a| goes to co. Let’s assume
the pole is at 7 and that leftlim,_., X (a) = oo, there has to be a minimum if
limy,—, — oo X () = 00, which corresponds to the case that A < 0. We therefore
only have to compare the signs of A and C. If they are opposing we cannot have
an extremum, and the function is monotone. If they are the same, the function
will have extremities.

Calculating the polynomial division leads to:

Mo cos? m3 cos® 7y sin ©
cos2(0 +7)  cos2(0 + )(cos(O + v)a — ma sin O cos )

X(a) = tan(©@+~v)a+
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.
(©=n/4, m2=0, y=0)

2

Fy

Figure 6.5: An example of the linear case.

Figure 6.6: An example of the parabola case.
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We see that the sign of the coefficients is determined via tan(© + «) in the
numerator and cos(© ++)/(cosysin ©). Therefore the relationship between the
signs can be determined via sin(© + «) (numerator) and (cos~ysin ©) (denomi-
nator).

We are now looking for the extrema.

dX m3 cos® v sin ©
— = tan(®@+7)— -
do cos(© + v)(cos(O + 7)o — mg sin © cos y)?
% = 0, implies
2 cos3 ~ sin ©
tan(0 + ) — m3 cos® 7 sin _0

cos(0 + ) (cos(0 + v)a — masin @ cos )2
5 m3cos’ysin©
© sin(© +7) -
& cos?(0 4 7)a? — 2cos(O + v)amasin(O) cos(7y)
m3 cos® ysin®
sin(© + v) -
& cos?(0 +7)a? — 2cos(O + vy)amasin(O) cos(y) +

m32 cos? «y sin ©

< (cos(O +v)a — msin(O) cos(y))

+m35in®0O cos? v —

m3 sin? © cos® y —

sin(© + )
o a2 ng sin@cos@a n
cos(© +7)
m3 sin? © cos? ma cos® vsin ©

cos2(©@+7)  sin(O© +7)cos?(0 + 7)
Applying the Mitternachts formula leads to the roots of the derivative.

cosysin ©
sin(© + )

— M2C08T (sin® +

cos(0 + ) ) (64)

a1 2

So we have seen how to deal with the case where the numerator and de-
nominator do not simplify. As we can see, the intuitive explication for when
the maxima exist correspond exactly to the mathematical formulation in equa-
tion 6.4.

It suffices now to examine the cases where they simplify. These two cases
correspond to sin(© + ) = 0 (numerator) and cos(© + ) = 0 (denominator),
realize, that they cannot both vanish at the same time.

The case sin(© + v) = 0 implies v = —©. As before the function can now
be written in the form:

X(a)=A+ BatC

This is a real hyperbole and we know that both branches are monotonic.
There cannot exist a tangent with normal (0,1)T at a hyperbole. The only
exception is when the numerator is completely zero which implies that my = 0
in this case D = A = 0 and therefore we have a linear function, the x-axis.
This is because the view cone ray aligns with the x-axis for all points in this
configuration.
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The second case cos(© + ) = 0, corresponds to v = 7/2 — ©. This leads
to a parabola (an example is shown in figure 6.6) except for mo = 0, when the
function is always undefined. The latter situation occurs if for all points on the
face the view cone ray aligns with the projection direction.

Let’s assume my # 0, modifying equation 6.3 according to the situation, we
obtain:

X(a) = o sin(© —&—.7) + cos © cos ymy
— sin © cos ymo

o2 sin(© +7)

- — cotBa
sin © cos ymo
Therefore % =0 if
2sin(©
- sin(6 +7) —cot® =0
sin © cos ymo
in ©
o oo _SinOcoesymy o

 2sin(0 4 7)

So we are able to detect the tangent.

Now that we have completely discussed the function, the next step has to be
to determine the validity of the function. Remembering that it contains false
intersection, we have to assure, that for a given direction and an angle © we are
only taking into account the restrictions which are not due to false intersections.
An exhaustive classification can be found in the appendix C.
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Chapter 7

View-dependent Billboard
Clouds

The view-dependent Billboard Clouds algorithm shows several similarities to
the original Billboard Cloud algorithm. The main difference is the way the
validity regions are calculated. In the original approach simple spheres where
sufficient. In the view-dependent case it is much more complicated, but all
the theory needed to calculate the validity regions for view-dependent billboard
clouds had been described in chapters 5 and 6, we will apply the results for the
2 dimensional case to simplify 2.5 dimensional scenes.

As for the Billboard Clouds algorithm we will use the Hough parametriza-
tion [HOU] to represent a plane (¢, p). Given a face, we will find for a given
angle ¢ two values ppin and ppq. such that any plane (¢, p) is a valid simplifi-
cation plane if and only if pymin < p < Pmaz. This will allow for a speed up in
the final algorithm, too. We will refer to the interval [pin, Pmaz] as the validity
interval.

To obtain these values for a polygonal view cell we will calculate all the
appropriate intervals for all view cell segments independently. As pointed out
before the formulas assumed that the face has to be completely in front or
behind the view cell segment. We have also seen that if this is not the case, we
can cut the mesh face into two parts, where one does not have to be taken into
account, as there is another view cell segment for which the validity of those
points will be smaller (compare the remark on page 30). The part which could
be discarded is the one lying on the same side as the interior of the view cell
at this view cell segment. This is actually a very effective acceleration of the
algorithm, as lots of faces can be culled for a given view cell segment. The
situation is depicted in figure 7.1.

Therefore the algorithm for a polygonal view cell can be described as follows.

GetValidityInterval (VIEWCELL v, FACE f, ANGLE phi) {
rhoMin=-infinity;
rhoMax=infinity;
FACE £2;
for each SEGMENT s of v
f2=CutFaceAtViewcell (f,s);
(rhoMinT,rhoMaxT)=GetValidityIntervalForSegmentVC(s,f2,phi);

48



CHAPTER 7. VIEW-DEPENDENT BILLBOARD CLOUDS

face

%} viewcell segment

unnecessary part viewcell

Figure 7.1: Only the part of a face, which lies in front of the view cell segment
has to be considered.

if (rhoMinT>rhoMin) rhoMin=rhoMinT;
if (rhoMaxT<rhoMax) rhoMax=rhoMaxT;
endfor;
return (rhoMin,rhoMax) ;

}

In general, data types are noted in uppercase, variables start with a lowercase
letter and function names with an uppercase letter.

The algorithm can be explained as follows. A polygon view cell is dealt
with separately for all its faces, as we have shown that this is sufficient. The
algorithm therefore iterates over all the view cell segments. CutFaceAtViewcell
will return only the part of the face which lies in front of the view cell segment
because the other part will be more restricted by a different view cell segment.
GetValidityIntervalForSegment VC calculates the validity region for a face given
a viewcell segment, which will be described in more detail further on. The final
validity region for the face is obtained by intersecting the solutions for all view
cell segments.

To simplify the explication of the function GetValidityIntervalForSegmentVC
we will describe a less optimized, but easier to follow algorithm for the cal-
culation of the validity for a segment view cell, that will not involve all the
optimizations already described in chapter 6.

The first step to determine the validity is to detect the linear part (see
chapter 6.2). We know that for this region it is sufficient to ensure that the
simplification plane P is valid for the two extremities. If one or both extremities
of the mesh face F fall inside the linear part, it is sufficient that P passes
via the validity extent of the extremity/extremities inside of the linear part.
The remaining segment(s) without linear part has (have) then to be dealt with
separately (see chapter 6.3). To deal with the non-linear part we calculate
the extrema. To find the corresponding point on F it suffices to project the
minimum on F in the projection direction J(qb) This is because the graph
was obtained by calculating the intersection between two lines, one of them
in dhecﬁon.dz¢) and passing through the examined point on F. Now if the
minimum is actually on F it is sufficient to calculate the validity segment at
this point, otherwise it is sufficient to test the extremities, as we know that the
function is monotone in the projection direction (f((;ﬁ) It is also important to
realize, that this non-linear part of F will be related to one of the extremities
of V, therefore calculating the validity region in the non-linear part corresponds
to one evaluation of the formula from theorem 5.1. Unfortunately the whole
calculation has still to be done for both ’sides’ (of the isotorus), as pointed out
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in chapters 5 and 6. Still we will end up with a finite number of validity extents
from which we chose the smallest one with respect to cf((b), which gives us the
value ppq.. Identically to obtain p,,;, the same steps are performed only for
the opposite projection direction —J((b). For optimization purposes one should
realize that the function for the non-linear part is the same for d(¢) and —d(¢).
Therefore both extrema could be recovered at once. It is correct to take the
min of the p;,q, with respect to (f((;ﬁ) Given a simplification plane of angle
¢ and distance p, it follows that if p exceeds any of the p,,.. we calculated,
then the plane cannot be a valid simplification plane. In the same way one can
explain why the maximum of all p,,;, has to be used to determine the final
validity interval. A simplification plane that lies between both of these values
is therefore a valid simplification plane for all the points on the face we have
chosen. As we selected them in a way to bound the error for the whole face, we
deduce, that the simplification plane is also valid for the face.

In pseudocode a simplified version of the algorithm could be described as follows:

GetValidityIntervalForSegmentVC (VIEWCELL v, FACE f, ANGLE phi) {
rhoMax= GetValidityForDirection(v,f,phi);
rhoMin= GetValidityForDirection(v,f,phi+PI);
return [rhoMin,rhoMax];

}

GetValidityForDirection (VIEWCELL v, FACE f, ANGLE phi) {
FACE nonLinLeft,linear,nonLinRight;
rho[2];
index=0;
for BOTH SIDES OF THE ISOTORUS s do
(NonLinLeft,Linear,NonLinRight)=CutOutLinearSegment (v,f,phi,s);
rhoNLLeft=GetValidityForDirNonLinear (nonLinLeft,Left(v),phi,s);

rhoNLRight=GetValidityForDirNonLinear (nonLinRight,Right (v) ,phi,s);

rholLinear =GetValidityForDirLinear(linear,v,phi,side);
rho[index++]=min(rhoNLLeft,rhoNLRight,rhoLinear) ;
endfor;
return min(rho[0],rho[1]);
}

To summarize, we calculate a validity region (pmin, Pmaz) Such that for all planes
with normal (cos(¢),sin(¢)) they are valid if their p-value lies inside of this
interval. Both values are calculated by the same function GetValidityForDir.
In this function the face is partitioned into a linear region, where it is sufficient
to test the extremities and two non-linear regions. The corresponding functions
are called for each face segment and for both sides of the iso-torus. The non-
linear part only needs the single viewpoint, which corresponds to the maximum
viewpoint (the functions Left, Right return the corresponding extremity of the
view cell segment). In the function GetValidityForDirNonLinear, the extrema
of the curve are computed, then if they fall onto the face, the value is evaluated,
otherwise, due to monotonicity, it only has to be evaluated at the extremities.

In the last step, the intersection of all obtained validity regions is performed.
It has to be pointed out, that the extremities of some subdivision segments
coincide, therefore one does not have to calculate the validity region for those
vertices twice.
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It is now possible to use these functions directly in the Billboard Clouds
algorithm.

Nevertheless, guiding the plane selection using the density is slightly more
complicated. We remember that the Billboard Cloud algorithm uses a dis-
cretization of the plane space into bins. For each bin densities are calculated,
which represent the amount of surface area that could be simplified on any of the
planes represented by the bin. This leads to better results than simply testing
for the center plane. In the original Billboard Cloud approach it was sufficient
to calculate the valid region of each face vertex to each limit plane of the bin
and intersect the valid regions of all the face vertices. In the view-dependent
case this step is a not so easy to perform. Creating the union as before would
be a bad approximation, although it remains conservative. Intuitively speaking,
this is because rho values are not only influenced by the plane normal, but also
by the direction of the face. To get a better estimate for the planes we decided
to test, whether the face is at least valid for one of the borders, if not, then the
face does not contribute, except for the case, when the face’s normal is included
in the bin’s plane normals. This leads to a much more efficient plane search
guiding, if the discretization is coarse.

The other question that remains is on what value the density will be based.
The penalty introduced in the original Billboard Clouds algorithm to assure
better placement for curved surfaces cannot easily be transferred. First of all
the application of the penalty is only valid if the origin is inside of the mesh.
The second assumption is, that the object has a rather spherical shape. For a
single object this might still hold, in our view-dependent approach it is more
likely that there are several objects in which case the assumption does no longer
hold. It is also questionable whether this penalty would be of benefit in the
view-dependent case for another reasons; the shape of the validity regions. The
validity regions look like drops and are a little longer away from the view cell,
therefore the first simplification plane at a sphere will not be placed very close
to the front, but more likely towards the center. Leaving a larger piece to the
front. Therefore even without penalty the billboard representation might be
optimal. See the figure in the margin showing an example simplification, where
the black cone represents the error. Concerning the calculated density we tried
to remain as general as possible. Therefore our density is based on two terms, a
view cell contribution ViewC and a projection contribution ProjC. For a given
plane P and a face F the density Cp(F) is given by:

Cp(F) = ProjCp(F)ViewCp(F)

Both terms can be explained as follows. ProjCp(F) corresponds to a factor
taking into account the projected area of the surface onto the plane. This
projected area is solely based on the segment face. To take the height into
account (for 2.5 dimensional scenes) ViewCp(F) is used. It could be observed,
that simply defining the value ViewCp(F') as the height of the object, would
lead to a density value, that corresponds exactly to the projected area in 3D.
On the other hand one could also include 3D visibility information in this term.
It is very common to decouple the visibility information as a multiplicative
term. One could also simply define ViewCp(F) to be a constant making the
density become a completely 2 dimensionally based value. We experimented
with several approaches including size as seen from the view cell of both, the
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face and its simplification, preferring planes aligned with edges of the view cell
values based on the height, pure 2D approaches and their combinations. One
has to remember that the density is only used to guide the plane selection. In
each case the simplification will be valid. None of the aforementioned formulas
resulted in a constantly more convincing result. Nevertheless the projected size
onto the billboard seems to be a good density value.

Another interesting aspect is that the sampling of the plane space via Hough
transformation is not uniform. Planes closer to the origin are sampled more
densely than planes farther away. On the other hand our view-dependent ap-
proach allows far away faces to be simplified more aggressively. These two
properties could be exploited. It is a good idea to place the origin in the center
of the view cell, where we define the center as the simple average of all view cell
vertices. This choice lead to better results of the heuristic plane selection.

Concerning the plane search guidance we realized another problem of the
original Billboard Clouds approach. The subdivision scheme always selects the
bin of highest density, but there might be several. Therefore the question arises,
whether it is acceptable to take the first bin of highest density. We discovered,
that this might lead to an algorithm that does not necessarily terminate. To
give an example, one might consider a single triangle aligned with the x-axis.
The highest density will therefore be encountered for planes orthogonal to the
x-axis. There is a region of [p—e¢, p+¢] of valid distances for the planes. Taking
the first bin encountered, would lead to a selection which contains the plane with
distance p —e. Which remains true for all further subdivision. So the plane
that is actually approximated will be the one at distance p — ¢, this could lead
to numerical problems because the center plane in this bin could be at p—e —§
for a § arbitrarily small and is therefore not valid. Several solutions exist. One,
which works well in practice is not to chose the first maximum encountered,
but to select the one which is the most centered one, meaning that if there are
several consecutive bins in p-direction having the same density we will select
the one in the middle. This improved convergence and assures termination of
the program, even in the special case described before.

Another step to further optimize the result is to calculate a least square
plane P¢ for the faces that have been selected to be simplified on a plane P,.
If Pc is also a valid simplification plane we will replace P, by Pe. This leads
to a better result. As in the aforementioned point the original algorithm, for
a single triangle would not be guided to the best approximation plane, which
would be the plane containing the triangle, but a plane, at a certain distance.
Therefore it is a very good idea to optimize the plane position in a final step.
It is highly possible, that even better plane positions could be found involving
e.g. the work by Alliez et al. [CSADO4].

Finally the texture storage, although this is seems no longer a real problem
(see [LNO4]), can be optimized by taking the view cell into account. This part
will be explained in the chapter D, where we will derive a minimum texel size to
be sure, that for each viewpoint the pixel size remains below a given size. Further
on in chapter D.2 we will describe a technique to optimize texture storage in the
particular case of view-dependent billboard clouds. We will derive an algorithm
to find a "best texturing” viewpoint for a given billboard, which leads to smaller
textures, as perspective deformation is exploited. Further on, we will describe,
how view-dependent textures can be used to obtain better results.
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Chapter 8

Discussion and Results

8.1 Results

The resulting algorithm allows for the first time to perform view-dependent
simplification with an exact error bound.

We implemented the algorithm described in this document in C++. The im-
plementation seems to be very effective, as scenes containing several thousands
of polygons are simplified in a couple of minutes, depending on the chosen qual-
ity. (One has to remember that without heuristic we still have to deal with a
NP complete problem.)

The view-dependent Billboard Clouds algorithm proves the usefulness of our
theory. The results are very promising. We tried for example to simplify the
faces of a tesselated circle around the view cell. The number of billboards used
for the simplification remained more or less constant with respect to the radius.
This would have been impossible without taking view-dependence into account.

We applied the algorithm also on a city model of the Boston Financial Dis-
trict. Unfortunately it is not the best model to show the strengths of our
approach as the streets are very narrow. Still it was interesting to examine the
algorithms behavior. With an error of approximately 3o all 4480 triangles have
been simplified on less than 50 billboards. Where 460 faces had been simplified
on the first billboard(> 10%). Figure 8.1 shows the resulting decomposition.
One problem remaining is the greedy plane selection approach. As some isolated
faces remain, which have to be simplified on very small billboards. This is a
general drawback from applying heuristics on NP-hard problems.

Another example can be seen on the image 8.2. Here 115 billboards represent
the whole scene with an approximate pixel error of 10. The margin image shows
the situation as seen in 2D.

Figure 8.3 shows the scene as seen from above. Revealing the stronger sim-
plification for faces farther away. In particular, one realizes that faces far away
project even on planes that are almost perpendicular.
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Figure 8.1: A city decomposition on less than 50 Billboards. The view cell
corresponds to the green line, the faces inside the red circle where culled. Shown
is the decomposition for the first 30 billboards.

Figure 8.2: 115 Billboards have been used to simplify the more than 4000 trian-
gles of the initial mesh. The error is at 0.3 degrees. The view frustum approxi-
mately 40 degrees, leading to a final approzimate error of 10 pixels. The upper
two images correspond to the Py extremity of the view cell, the middle part to
Py, the lower part to P, as shown on the 2D overview.
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Figure 8.3: Comparison, original scene to the left, simplified scene on 115 bill-
boards right. Realize the extreme simplification for far away faces. It becomes
hard to estimate the original geometry for those parts, although from the view
cell both representations are close.

8.2 Discussion

We developed a new error norm, which allows to bound the reprojection error
after a simplification has been performed. This result could easily be transferred
to many other algorithms. In particular we want to mention the work by Cohen
et al. [CVMT96]. Their main idea was to create a hull around the object,
which assures the simplified model to remain in an assured distance to the
original model. A simplification step would then be valid, if the simplified
model remains inside the hull. In the original approach the hull was based on
an approximation of the Hausdorff distance. Our case is more precise, our Hull
is defined by a validity region around all and each of the points therefore we
also take texture distortion into account. The application is very simple. The
algorithm [CVMT96] tries to delete vertices one after the other. A deletion
is accepted if the simplified mesh remains inside the hull. In our solution it
is tested, whether the orthogonal projection of the deleted faces onto the new
resulting faces results in a valid simplification. The image in the margin shows
the two dimensional case. The point M is simplified on a point S, which lies in
the orthogonal direction.

The huge generality can also be observed by considering to apply our ap-
proach on subdivision -, iso- or spline surfaces. One could apply the simplifica-
tion on a sufficiently refined model, which is fine enough, so that the distance
to the exact surface becomes invisible. This is given for a finite number of tri-
angles, as the screen resolution is discrete. One could also imagine to start with
an algorithm, like e.g. the one by Alliez et al. [ALSS] and use our metric to
further improve the result.

Our calculus also justifies a very common approach to represent the back-
ground in computer games by a single image. As for very far away objects, the
validity regions will become very long and therefore a simplification on a single
billboard becomes possible.
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Another important property of our algorithm is the preservation of silhou-
ettes. The validity region has the form of a drop, therefore allowing much
more movement in direction back and forth. Until now, most algorithms added
a test on the normal direction to stop subdividing at silhouettes. In no case
these ad-hoc solutions had a mathematically sound relationship to the other
simplification criteria. Our approach merges the silhouette preservation with
the simplification in a comprehensive mathematical based way. The properties
remain no longer independent. Usually the algorithms up to now calculate test
a silhouette criterion based on the normal direction and if the normal is orthog-
onal to the viewing direction a subdivision is performed. It is independent of
the actual error, that will be observed. In our case silhouettes are preserved,
only if otherwise it would lead to a perceptual difference. The length of edges no
longer plays a role in our approach. For example it is possible that the validity
region or a point is unbounded, in which case even in the simplified model edges
might appear that are longer as those of the original model, showing that edge
lengths are not necessarily useful to measure the quality of an approximation.

One important point has been neglected until now. The validity region for a
point M has always been calculated with respect to all the viewpoints in the view
cell. Still it is not sure, that all of them will see M, therefore they should usually
not contribute to restricting the validity region. In two dimensions algorithms
exist, that calculate the exact polygonal part of the view cell that corresponds
to the viewpoints that can actually see a given point, but unfortunately it is
not easy to code, nor very effective concerning computation time. (An example
would be the use of a radial decomposition [Ola02].) Therefore it would be
possible to include it in the algorithm, but as there is no convenient visibility
calculation in three dimensions, we decided, to exclude it, in order to keep hoping
for a complete three dimensional solution. The first step of the algorithm would
be to delete triangles which cannot be seen from the view cell. Simple solutions
involve a sampling of viewpoints and reading out the frame buffer. Other more
advanced techniques exist ([NBGO02]). Nevertheless, this cannot be considered
as future work, as we deliberately decided not to involve this step, to better
show the quality of our theory.

Concerning view-dependent Billboard Clouds, we achieved a highly efficient
approach to simplify models and still ensuring closeness to the original model.
Interestingly, the original Billboard Clouds approach can be seen as a subcase of
the view-dependent Billboard Clouds, if the view cell is chosen to be at infinity.
Nevertheless a complete three dimensional solution, for which we already ex-
plored some optimizations concerning the representation, remains to be found.
Nevertheless we already pointed out several properties and results as well as
numerical solutions and directions in this document, which might be the basis
for future research.

In the case of city simplification, the main subject of impostor strategies, the
algorithm performs very well and creates a view cell based alternative represen-
tation with respect to the geometry of the original scene, which lots of common
techniques do not (compare 2).
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8.3 Future Works

A whole variety of interesting avenues for future research have been proposed
in this work.

Our approach does not take into account any human visual system based
perception measures. This is important to mention, as a small geometric error
might still make a huge perceptual distance. In the margin we see four images,
the distance in the norm L., between the upper two images is exactly the
same as the distance between the lower two images. Still it is much easier to
distinguish the upper two images.

The view-dependent Billboard Clouds have the same problem. A Billboard
Cloud artifact are cracks, that can appear between different billboards. Cracks
are created when connected faces in the model are projected onto different
billboards. Although the size is bounded by 20, a distance of © for each side,
they might be displeasing and evident depending on the surrounding. A remedy
might be found in approaches like the so-called fat borders ([BMK]). Originally
the idea is to add line primitives that are rendered at the borders of Bézier
patches, to hide cracks, that could appear when two patches are differently
subdivided. One could imagine to add parts of faces to the texture, that have
not been simplified on a given billboard, but that are connected to a face, which
has been simplified onto this billboard. Unfortunately high tessellation will make
cracks even more probable, as we do not exploit any neighboring information,
in order to make our algorithm work for polygon soups, too. Future work could
include the use of neighboring information to perform a per object instead of
per face simplification.

Another problem is the limited possibility to perform relighting. Billboard
Clouds already used normal maps to allow for an approximation of diffuse light-
ing. Specular effects, reflections and also transparent objects cannot be handled.

Shadows for Billboard Clouds were calculated by projecting all the billboards
on the ground, using the transformation matrix by Herf et al. [Her]. View-
dependent Billboard Clouds do not assure to correspond in any way to the
shape of the original object, when seen from the light source. (As an example
one might think of the extreme case, where the validity regions are unbounded
and parts could be simplified to infinity. In this case the cast shadow of the sim-
plification might be completely incoherent with respect to the original shape.)
To diminish this problem, if really necessary, one could add the light, or even
a region around it, as a possible viewpoint. Therefore the shadow will remain
closer to the original. Unfortunately the error could still be arbitrarily large, a
small difference at the object might result in a huge difference in the shadow
(compare the ray theorem). On the other hand we developed a new approach
to calculate ’'nice’ shadows, inspired by view-dependent billboards, but which
we decided not to include in this thesis.

It could be interesting to see whether a different parametrization instead
of the Hough space could be used. Which is more important for the original
Billboard Clouds, than for the view-dependent Billboard Clouds.

Other interesting avenues could be to reuse screen information. Briere et al.
[BP96] described a technique, that is usable in ray-tracers. Moving objects are
detected and only the parts that become visible from one frame to the other are
updated. Our situation would be more complicated, as the camera is moving.

Finally, as for all image based simplifications, the texture amount cannot be
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neglected, but the memory usage of our algorithm remains reasonable, due to
the storage optimization described before. Concerning the loading of textures,
one could imagine the use of an estimator for the movement of the observer to
pre-fetch textures, that might be used soon.

Theoretical work, that remains, is finding a bound for the error when sam-
pling a three dimensional surface. It could also be interesting to perform a
classification of the shape of the linear part of a plane and to gain further inside
in the shape of the non-linear part, maybe by exploring the ruled surface given
in theorem 5.1. The analytical solution for the three dimensional case for points
also remains an open problem. The proposed avenues in chapter 5 merit further
exploration. We also started exploring to describe the whole problem based
on projective geometry, which we abandoned in the first place, as expressions
concerning angles can become very complicated.
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Appendix A

Validating the circle
growing approach

The problem that has been mentioned before is that we have not yet proven, that
the approach of growing a circle is correct, in the sense that the intersection point
we obtain is on the part of the circle, belonging to the iso-torus. In practice, this
is not a severe problem, as both sides are taken into account and therefore the
'wrong’ part of the circle is hidden inside of the correct part for the other side.
Still the computation can be accelerated by excluding these wrong viewpoints.

To prove this step we will first examine more closely what the choice of a side
actually represents. In the following chapter the idea, which will now only be
stated informally will be explained in detail. The choice of the side is equivalent
to the choice of a ray of the view frustum. This can be seen by imagining a
direction d and a point M. Let’s assume two viewpoints V; and V5 on two
different sides of the line through M in direction d. The view cones of V; will be
represented by the two rays r;” = V;+Re(M —V;) and r; = V;+R_o(M —V;),
where Rg denotes a rotation matrix of angle ©. For one of the view points
the intersection will be on r;r for the other on r; , if there is one. This idea of
choosing a ray instead of a side will reappear in the next chapter. The situation
is depicted in figure A.1.

Assuming that a point M lies in the halfspace y > 0 and the view cell is given
by y = 0. Given a direction d we will define S(t)y=M+ 2td the parameterized
simplification point as in the chapter 5.6 on page 28 on. The tangent at the point
S(t) will allow us to determine when we have an intersection on the side of the
circle which is not part of the Thales theorem. We will perform all reasonings for
a viewpoint on the side given by d*+. The tangent at a circle can be calculated,
as its direction is always normal to the vector connecting the center of the circle
C(t) with the tangent point. To clarify the situation one can refer to the image
in the margin. For the point S; the tangent’s direction implies that parts of
the circle are lower than the part between S; and M. Ss represents an example
where we would encounter a false intersection.

A first observation shows that if we had a false intersection, then the first
real maximum viewpoint that would be achieved by growing the circle further
until the correct part intersects the view cell is the intersection of the ray from
M in direction d with the plane. This maximum viewpoint could be considered
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APPENDIX A. VALIDATING THE CIRCLE GROWING APPROACH

Vi viewcell V>

Figure A.1: The choice of the ’side’ corresponds to a choice of a ray. Viewpoint
V1 has been chosen to be on the ’left’, and therefore the ray with an angle ©
corresponds to this choice, whereas Vo is the opposite.

as a viewpoint for the other ’side’ because the intersection is in the viewpoint
itself and therefore on both rays. Having a maximum viewpoint for the other
'side’” would therefore be sufficient. The question is now, for which direction
d this happens. This is where we will use the tangent. The moment we are
looking for is when the tangent at S(¢) becomes horizontal. Fortunately we will
see that the slope of the tangent at the point S(¢) does only depend on the
direction d = (cos~,siny)T.
Remembering the equations from section 5.6, we have

C(t) = M + td + t cot Od*

S(t) =M +2td

As the tangent is direction is normal to the vector from S(t) to C(¢), we are
interested in:

<S@t)—-Cc@®))1,0)" >=0

-

& <td—teot®d*-, (1,007 >=0
< cosy+ cotOsiny =0

& sin(O@+79)=0

& v =—-0O(+n)

For case v = m—© the point S(t) will in this case the wrong side always remains
above M therefore an intersection can only be valid. The other case v = —©
(figure A.2) is the one which is interesting. For all the maximum viewpoints we
detect between the angle —© and © the intersection we calculate will lie on the
wrong part of the circle. Nevertheless a maximum viewpoint is useless in this
range. As mentioned before, if the angle v lies between —© and 0 the maximum
viewpoint would be at the intersection between the ray through M in direction d
and the view cell. Therefore the intersection lies on both rays and therefore the
maximum viewpoint for this ray is given by the other maximum viewpoint for
the other ray. Between 0 and © we cannot encounter any intersection between
the corresponding frustum ray and the ray from M in direction d (see figure 5.6).
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Figure A.2: The limit case is depicted to the left. On the right a second viewpoint
18 shows that when it will become mazximum viewpoint, the intersection will lie
on both rays of the view cone.

To conclude the detection of the maximum viewpoint for a given side/ray
is given by our equation in the case that the angular constraint is satisfied,
otherwise there is no maximum viewpoint for this side/ray.
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Solving the problem in 3D

As mentioned before, it is Unfortunately not true that the maximum viewpoint
corresponds to one of the extremities of the boundary, if the max viewpoint for
the hyperplane view cell falls outside. Nevertheless we have shown, that they
lie on the border, which leaves us with a one dimensional view cell.

The figure B.1 is an approximation of what the iso-viewpoints on the view
cell plane look like. (approximation’ because the values are scaled and clamped,
to better show the shape)

\
\

Figure B.1: The iso-viewpoints on the plane are obtained by intersecting with
the growing isotorus. Therefore the resulting shapes seem to form half moons
creating ellipsoidal shapes. The brighter the red is the bigger is the abcisse. The
mazimum viewpoint is therefore the darkest one.

The problem in the 3D case is, that it is still quite complicated to derive an
exact solution. Still it is possible to obtain a numerical solution. From what we
have seen, the function on a 3D segment has either one or two minima (two in
the case where we cut the half moon shape). The poles are can be classified using
lemma 5.2. It would therefore be possible to subdivide the segment, in a way
to approach the minima. In our case this would be possible due to the ’simple’
shape. There are lots of numerical approaches to achieve this. One example
would be the 'golden cut’, which would only have to be slightly modified. It has
the advantage, that during subdivision the calculated borders could be reused.
For more details the interested reader could refer to [Fai01].

For an analytical solution we would have to discuss the function resulting
from theorem 5.1. Unfortunately the derivative becomes already quite complex,
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still it is possible to transform it into the form of a polynomial, whose roots
we would have to find. Unfortunately the degree exceeds four, which had been
proven in 1820 by Abel to be the highest degree allowing for a general solution
formula and for which Cardano had already found closed form solutions in the
16th century. In 1830 Galois was able to classify the different polynomials which
could actually being solved using radicals.! Unfortunately we were unable to
succeed in solving this final equation and even a last attempt using Maple did
not lead to a result. Still it might be possible that a geometric solution could
be found. Another approach we tried and which might be an interesting basis
for future research is based on the fact that we know how to solve the problem
in 2D and there is actually a way to bring the 3D case back to the 2D case.
As we know by lemma 5.3, the function is rotationally invariant. Therefore
we could imagine to rotate a plane around this axis and describe the resulting
graph of the intersection of the segment with the rotating plane. The resulting
curve would then be the representation of the 3D segment. Solving the 2D
case for this curve would solve the 3D case. Several researchers already worked
on the curves resulting from such an intersection, but the time for this master
thesis was not sufficient to undertake an exhaustive research in this direction.
Other approaches involving distances to a sphere that is then rotated around
the invariant axis (The iso-torus could also be seen as the result of a rotating
sphere instead of a circle), as well as trying to inverse the approach by first
finding angle maximizing points, which are then restricted to form an angle ©
did lead to no success. Either the polynomial had a degree that exceeded four
as well, or trigonometric expressions mixed with polynomials, leading to very
complicated expressions.

Nevertheless, even the result for planes in the 3D case is useful and applica-
ble. The view cell could be approximated via hyperplanes, culling the geometry
accordingly. An approximate, conservative solution could then be obtained ap-
plying the developed equations.

One could also imagine to approximate a model instead of a whole scene.
The observer moves around the object in this case. Therefore one view cells
could be created corresponding to faces of a discretized englobing sphere. Each
of these faces could be approximated by a plane which would allow to calculate
conservative validity regions for all vertices of the object. Due to the approxi-
mation via planes the transition between two cells will also become smoother,
as they share common viewpoints.

IMore information concerning algebra could be found in [vdW]
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Restricting the non linear
function

This section is very technical and only describes how to classify the extrema
obtained in the last section. It can be skipped during the first reading, especially,
as the result is not necessary for the algorithm and is more of theoretical and
optimization interest.

We arise the question which parts of the function X (equation 6.3) contain
the valid information we need to determine whether a simplification plane is
valid. First of all we are going to detect the false intersections. So the question
is, what part of the segment does not lead to false intersections.

Remembering, that we constructed our function by calculating the intersec-
tion between the two lines:

1(B) =M+ pd

and
la(a) ==V +aRe(M -V)

We assumed that d = (0,1)T and V = (0,0)T. The intersection between the
two lines was given for:
ml

cos Omq — sin ©Oms

A false intersection occurs, when the intersection point does not lie in the di-
rection of M. In other words, when o < 0. For the continuous parts of the
function we know that it would have to pass via 0 to change the sign. This is
only the case when m, equals zero. But the function also changes its sign, if the
denominator passes via zero. Therefore we will as before replace the point M
via a line. With a slight abuse of the notation we will assume that m; = x cos~y
and my = mg + xsiny. The denominator can therefore be transformed:

(x cosy)cosO — (mg + xsiny)sin® =0
< cos(y + O)r = masin©®
o o mo sin ©
cos(y + O)
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As usual the case where cos ©+7 = 0,7 = —0+7/2 has to be treated differently.
Here the denominator, as it is constant has no influence on the sign of a. Having
these two values the space is cut into three parts, in each of which we have to
determine whether it is a part of valid intersection or not. This implies only
two possibilities, the space is partitioned into (valid, invalid, valid) or (invalid,
valid, invalid). The test which of these two cases we encounter can be deduced
from the abcisses.

X COoS7y cos Yy

li =
2= 200 T cos(© +v) —masin®  cos(© + )

Therefore the sign of the limit implies the order. The two points on the seg-
ment where the sign might change are given by (0, ms) and (%ﬁ%";”, mo +
ma sin © cos vy )
cos(v+©)
What remains is the question when the intersection actually lies in the di-

rection we have chosen. Remembering the two lines we intersected:
L(B):=M+pd

and
la(a) ==V +aRg(M —V)

Applying the discussed simplifications (V = (0,0)T and d = (0,1)T) we could
consider the lines:
h(B) =M +5(0,1)"

and
la(a) == aRe (M)

We can see that all we are looking for is when the value of 3 for the inter-
section is positive. As before, for the value o we will be interested in the points
where § becomes zero. Therefore we know that 5 might change its sign at the
points where we encounter zero and at the definition gap. One could imagine
this situation like a camera that is following a point on a line. Intuitively there
can only be one point where the orientation changes. The situation could be
visualized by a camera watching an airplane take off (figure C). The airplane
passes right above the camera and the question is, for which moment the air-
plane will be turned over on the image of the camera. Intuitively there is one
point from where on the camera will always see the plane upside down. The
moment this happens is when the plane is right above us, therefore we cannot
see any of the upper parts of the plane.

Although it seems intuitive, the proof has to be done. The intersection point
between the two lines is given for:

3 sin ©my + cos Omeo
=m - — ma
cos Omy — sin ©Omes

replacing the point M by a line equation x(cos~y,sinvy) " 4 (0,m) we obtain:

sin ©(cosy) + cos O(x sin © + m)
cos O(x cosy) — sinO(z siny + m)

B(x) = cosy — (m+zsiny)

If this function is positive, we know that it is oriented in the projection direction
(6 was the coefficient of the projection direction in the second line equation).
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One sign change is given at the definition gap, which we already classified. A
second sign change can now only occur if §(z) has a root.
Transforming the system §(z) = 0, we will end up with

22 + 2msinyz +m? =0
The roots of this polynomial are all complex. The roots are given by:

x1,2 = m(siny £ /siny — 1)

As cosvy # 0 (vertical line) we have siny — 1 < 0 and therefore no real roots.
This finishes the classification. Only one side of the definition gap will be

of interest to us. To find the side which is of interest, we will use the same
reasoning as before

lim @ = cos w — sin

g—oco T Pycos(@ +7) 7
JFrom this value one could conclude which part we are interested in. As it still
involves several cases (it is not independent of the line orientation), in practice it
is more convenient to simply calculate a value of § for each side of the definition
gap and compare. This is correct, as we have seen before that the sign only
changes at the definition gap. Or one assures the angle of  to lie in [0, 7).
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Appendix D

Texturing

This section will explain two major things. First we will explain, why a single
viewpoint is not sufficient. Secondly we want to explain how the texture size in
the view-dependent Billboard Clouds could be further optimized, which is very,
seen that lots of objects will be far away from the view cell.

Starting with the first problem, texturing via a texturing viewpoint. This
is actually the case for several mesh impostor representations (see chapter 2).
First of all, a lot of the geometry will be hidden. Using appropriate clipping
planes this problem could only be solved partially. All faces of the model, which
align more or less with the view rays of the texturing viewpoint, will not be
appropriately represented in the texture.

Therefore one the viewpoint should be placed 'perpendicular’ to the face from
which the texture is taken. A very close texturing viewpoint with perspective
projection would lead to a huge distortion in the texture. To minimize this
unwanted effect, the camera should be placed as far away as possible. Placing
the camera at infinity leads to an orthogonal projection. So one could say that
for a face the orthogonal projection creates uniform information. On the other
hand we would like to benefit from the fact, that being restricted to a view cell
the resolution of far away objects could be smaller than for closer ones.

The selection of a best texturing point in a view cell shows many similarities
with the art-gallery problem. Unfortunately the classic version of the problem
has been shown to be NP-complete(see [O’'R]). It is therefore not very likely
that the problem can be solved easily.

We considered two solutions two optimize textures. The first will measure
the size of the texels that is necessary to remain below an angular threshold
for all viewpoints in the view cell. We further point out how the face could
be locally subdivided to benefit from perspective texture transformation that
could be used to further improve the storage space. Then we will explain the
probably best approach, which is a tradeoff between optimized complexity and
texture quality, which for practical applications seems the best solution.

D.1 Minimum Texel Sizes

To assure that the texel size of a texture remains below a certain angular er-
ror, we realize, that what we are looking is very similar to the calculations we
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encountered in chapter 5 and 6. As before, we will be interested in the angu-
lar distance between two points as seen from the view cell. These two points
will correspond to the center and the border of a texel. Therefore finding the
maximum viewpoint in this situation will lead to a minimum texture resolution,
nevertheless the approach described will mostly be of theoretical interest, as
a better solution will be described, based on choosing an optimal ’texturing’
viewpoint.

To derive the maximum size for a texel, such that for all viewpoints the
texel size of the texture remains below a certain threshold the same framework
as for the simplification can be used. As seen in the margin the texel border
could be considered as a simplification of the texels center. The exact algorithm
as before can be applied for a simplification direction inside the face. There
remains one problem because we excluded this situation when considering the
non-linear part, as it is not a reasonable projection direction. On the other hand
it is not very difficult to treat this case separately.

We are interested in the distance between the center of the texel and the ray
intersection. Using the equations of chapter 6.3, this leads to the function:

042—|—m%

cos ©Omy — sin O«

sin ©my + cos O«

Tex(a) =|ml |

cos ©Omy — sin O —al =sin@|
Therefore the function is positive if the denominator is positive. The denomi-
nator is zero for @ = cot ©my. This is the moment where the ray of angle ©
aligns with the vertical direction. As before we will concentrate on the case
© € (0,7/2). Nevertheless the same reasoning should be done for —©, but it
is completely analog. In the case our case we have therefore a < cot ©m;, oth-
erwise, there is no limitation on the texel size. Calculating the derivative leads

to:
dTex  a?sin© + 2acos Omy + m? sin ©

doa (cos ©my — sin O)?
Calculating the extrema we obtain:

1
ay2 =mi(cot Om) + ——
2 i ! | sin ®|)
One solution lies outside of the area of interest (o < cot ©my ). Therefore leaving
us with a single test to perform whether the minimum lies on the face, if not
the minimum must be one of the extremities due to monotony.

D.2 Optimizing the Texture Storage

In theory we would be able to calculate the exact texel size for each point on
the face. One might think, that it could be a good idea to perform subdivisions
into regions on the face, just as we did for the validity region detection. For
each of these regions, we could then approximate the variation via a linear
function. Having a texel variation that is linear, we could exploit the texture
matrix, to perform a linear transformation of the texture and therefore optimize
the storage. Unfortunately the number of subdivisions correspond directly to
the number of view cell segments, increasing the number of needed primitives
drastically. One has to keep in mind, that using a texture will always be an
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approximation in some way, therefore we propose a much easier method which
allows to exploit the benefit of perspective transformation of the texture and
keeps the simple geometry. We will shoot the texture for the billboard from one
single point inside of the view cell. As mentioned before, having a fixed point
leads to several artifacts, therefore we should select the texture viewpoint in
dependance of the billboard. We mentioned before that it is a good choice to
place the camera in front of the billboard. To generalize this idea, one might
want to place the camera such that the angle between the billboard normal and
the vector between camera and billboard center becomes minimal, as shown in
the margin. The billboard center will be the center of the rectangle created by
the simplified faces on the billboard.

In general there might not be a viewpoint which creates a zero angle. In this
case the texture viewpoint minimizing the angle will correspond to a viewpoint,
such that a tangent cone at the view cell can be found with apex in the center
of the billboard. Due to the tangency, there cannot be a viewpoint creating
a smaller angle. One problem remains, as it is not clear how to project the
faces onto the billboard. Projecting the geometry would lead to artifacts, as
overlapping faces will result in random pixel values because the depth values
coincide. The solution is quite simple. In a first step a temporary billboard
texture is created, with a very high resolution. This texture is obtained via
a usual orthogonal projection. The perspective texture is then deduced by
shooting a texture of the billboard textured with the temporary texture.

The calculation of the optimal texturing viewpoint can even be done in three
dimensions. Let’s recall, that the optimal position is defined by

argminge yicween0gle(x — center, normal(plane))

If the line passing through the center in the direction of the plane normal inter-
sects the view cell the optimal positions, correspond to the intersection of the
view cell and the line. The more difficult cases are those where the line passes
aside. In this case the optimal texturing viewpoint can always be found on the
boundary of the faces of the view cell (the idea behind is to grow the cone, until
it touches the view cell, either the cone becomes tangent, then it also intersects
a boundary, or it touches a boundary already). It has to be pointed out, that
finding the closest point to this line in the Ly norm would be insufficient, as the
intersection between a plane and a cone is a quadric and in general not a circle.
Let P, @ be the two extremities of one of the front face’s segments. We will
denote 77 the normal of the billboard plane. Without restriction, we suppose
that the scene’s center is the coordinate system’s origin. As we look for the
smallest angle, we actually have a maximization of the cosine between the two
vectors. Therefore our problem can be written as:

< (Ai[(P+a(@-P)) >
1P +a(Q — Pl

maro<a<i
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To simplify the calculation we will first derive the denominator:

LIP+a@-P)ll = - VIPTa@- Pl

#|IP +a(Q - P)[]?

3 TP+ a@ - P
<P+alQ-P)@—P)>

1P +a(@ = P)|

Now we start deriving the real function:

d <7|(P+a(Q—P)) >
do ||P+a(@— Pl
<A(Q = P) > ||P + a(Q — P)|| — SHUPTa(Q=PN><(P+a(Q=P))[(Q=P))>

[[PFa(@=P)]]
IP —a(@Q - P)[]?

At a maximum we will encounter a zero derivative, therefore setting this equa-
tion equal to zero and multiplying with ||P + a(Q — p)||?:

<iil(Q=P) > |[[P+a(Q—P)|’~ < @l|(P+a(Q—P)) >< (Q—P)|(P+a(Q—P)) >=0
Transforming the equation leads to:

(< PI(Q = P) ><ii|(Q— P) > — <P >||Q— P|[*)a
+ <il(Q—P) > ||P||*- < ii|P >< P|(Q — P) >=0 (D.1)

It is now interesting to see when we have a solutions. Therefore we examine
the coefficient of a. We want to see when

<Pl(Q-P)><Al(Q—-P)>—-<#AlP>|Q—P|*=0 (D.2)

One case is @ — P = 0 which is impossible as it represents a segment of the
view cell. If P equals zero the whole system becomes trivial. As this means
that the segment is actually passing through the billboard. (Remember the
assumption that the billboard center is at the origin) Dividing equation D.2 by
1Q — P|2]|P|| leads to:

P (@-P)

P @-P) Q-pr
<121 el

>< 7 > — < 1l D >=0
n — < N|yges- >=
1P|

1P| lQ — Pl

We realize that we now have only normalized vectors in this equation.

Rewriting the expression (where the subscript n refers to the fact, that the
vectors are normalized), leads to:

<A< P,|(Q—-P)p,>(Q—-P),— P, >=0 (D.3)

, the right hand vector could geometrically be interpreted as a the inverse of
the projection of P, onto the orthogonal space to (Q — P),. Interestingly
the expression for the part without « in the equation D.1 could be written as a
projection of (Q — P),, onto P,,. Supposing that the coefficient before « vanishes,
that is the equation D.3is true, we can write n, = y(Q—P)n+ (P X (Q—P)y),
as the two vectors are also orthogonal and therefore form a basis. Examining the
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part without « from the main equation D.1, we deduce that either v equals zero,
or the equation has no solution. The case |[(Q — P),|[* — (Q — P)n x Pn)?> =0
means that the segment aligns with the billboard center, in the closest point
to the billboard would do. The case where v equals zero corresponds to a
billboard which passes through the segment, therefore all points on the segment
are identically bad chosen because from no viewpoint of this segment, anything
on the billboard will be visible. On the other hand being aligned with a segment
means that there is at least one other segment, for which the angle is smaller
and through which the plane does not pass. Comparing the angles obtained for
all the segments of the view cell leads to the final optimal texturing point.

Other possibilities to improve the size for walkthroughs with several view
cells, would be an on-the-fly texture creation like the one described in [DSSD99].
A first approximation could be given by keeping first of all the textures of the
last view cell projected on the new billboards. A low-res ground texture could
have been saved to fill up eventual holes. Then one by one the textures are
calculated and replaced, an order could also be fixed off-line to replace first of
all the most important textures, or the ones, that could be calculated rapidly
etc.

D.3 Improving Quality

It is possible to further enhance the quality of the billboard textures by taking
the orientation of the billboard to the observer into account. A typical example
where this could become useful is depicted in the margin. Both faces with
different colors are simplified on the same region of the plane because they
remain at a distance smaller than ©. Therefore the error is measurable, but
on the other hand it is impossible to choose a color which would be convenient
for the pixels on the billboard. To solve this problem, we could associate two
textures for each side of the billboard. Depending on the current viewpoint the
according texture is chosen. Like for other on-the-fly simplifications, billboard
clouds could be extended in this way to adapt in a similar way.

A different idea concerning billboard clouds in general would be to save a
height field on the texture, too. It would then be possible to create an output
sensitive relief of the original geometry ([OBMO0O0]). The error bound would
remain valid, as points are actually just approaching its original representation.
But this remains a future work to explore.

Other possible avenues include the view-dependent texture mapping by De-
bevec et al. ([DTM96]).
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Appendix E

Appearance vs. Geometry

This section underlines the difference between closeness to geometry and actual
closeness to appearance.

The image in the margin shows a typical example. For different viewpoints
the appearance of the scene might completely change. Projecting all the points
on a central plane would make, for certain viewpoints, appear parts, which
were hidden in the original model. Therefore the perceived difference might be
arbitrarily huge.

To overcome this general problem, lots of articles can be found. They all
parameterize the so-called plenoptic function. It depends on the position of the
observer and the viewing direction®. It encodes exactly what a ray shot from
the observers position in the viewing direction would encounter. Therefore
the approaches become completely independent of the geometry of the scene.
(see [LHI6]).

Point-based impostors [WWS01] is an approach which combines geometry
and plenoptic function. The far away objects are represented by point clouds,
where each point is associated a color function that varies depending on the
observers position. Unfortunately the function is obtained using a numerical
approach, based on Monte Carlo ray-tracing. Therefore the absolute error can-
not be bounded. Nevertheless for reasonable scenes the method will succeed
and also solve the problem of aliasing, that appears when several triangles of
different colors fall into the same pixel.

n the original formulation it also takes time into account.
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