N

N

2-Microlocal Analysis and Application in Signal
Processing
Bertrand Guiheneuf, Jacques Lévy Véhel

» To cite this version:

Bertrand Guiheneuf, Jacques Lévy Véhel. 2-Microlocal Analysis and Application in Signal Processing.
International Wavelet Conference, Apr 1998, Tanger, Morocco. inria-00598752

HAL Id: inria-00598752
https://inria.hal.science/inria-00598752

Submitted on 7 Jun 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00598752
https://hal.archives-ouvertes.fr

2-MICROLOCAL ANALYSIS AND APPLICATIONS IN SIGNAL PROCESSING

Bertrand Guiheneuf, Jacques Lévy Véhel

Projet FRACTALES, INRIA Rocquencourt
78153 Le Chesnay - FRANCE
Bertrand.Guiheneuf@inria.fr, Jacques.Levy_Vehel@inria.fr
http ://www-rocq.inria.fr/fractales/

1. INTRODUCTION

Holder regularity has numerous applications in signal
processing [1, 2, 3, 4, 5, 6]: classification (for instance,
in medical images such as scintographies, or for com-
puter traffic traces), detection, segmentation (e.g. satel-
lite images) or synthesis (for instance of speech signals).
A lot is known on the theoretical properties of such a
characterization [7, 8], and many papers have also been
devoted to the important problem of obtaining reliable
numerical estimates of the Holder exponent [9, 10].

Nevertheless, there are well known situations where
the Holder exponent gives totally irrelevant and some-
times misleading information. The simplest case is that
of the chirp |a:|73m(ﬁ), but more complex signals
arise for instance in the frame of multifractal analy-
sis. In such cases, several authors [11, 8, 12] have pro-
posed to refine the regularity analysis by adjoining to
the Holder exponent a at point z a second exponent
(8 which characterizes , in some sense, the “oscillation”
of the signal around z. This is particularly clear in
the the case of chirp, since one simply has a = 7 and
B = 0. Though several variants exist, in most cases,
one replaces a single exponent by a couple of values,
that give a more complete information concerning the
local regularity. While this enhanced description has
many potential applications (the most celebrated one
being the detection of gravitational waves), a major
problem is the estimation of (a, 3) on real data, which
seems to be a difficult task.

On the other hand, the couple («,f) is far from
exhausting the local regularity information. To obtain
a complete picture, one indeed needs to define a “reg-
ularity function” at each point, which, loosely speak-
ing, describes how the Holder exponent behaves under
differentiation/integration of the signal. The technical
name of such an tool is 2-microlocal analysis, and it was
introduced by Bony [13] in the frame of EDP. Though
it may seem a formidable task to a whole regularity
function instead of a single number, such an informa-

tion is needed in some applications, as image denoising,
which is described in section 4. A careful study of 2-
microlocal analysis shows however that this hierarchy
of exponents is very much constrained, so that its de-
termination is greatly simplified. Moreover, theoretical
results such as the one described in theorem 3.2 tend
to indicate that taking into account the whole avail-
able information might indeed in some cases ease the
computation of the Holder and chirp exponents.

This paper is organized as follows: Section 2 re-
calls the definitions of the different Holder exponents
and gives the basics of 2-microlocal analysis. Section
3 focuses on the properties of the 2-microlocal fron-
tier which is defined and thoroughly studied. Section
4 presents an application to a topic in image analy-
sis, namely image denoising. A general method is de-
scribed and experiments on SAR images are presented,
that support the idea that 2-microlocal analysis might
indeed become an important tool in signal processing.

2. INTRODUCTION TO 2-MICROLOCAL
ANALYSIS

2.1. Holder regularity

There are two main paths of measuring the regularity of
a function f : K — R where K is a bounded subset of
R. The first one is geometrical in nature, and consists
in evaluating a (fractional) dimension of its graph T
Roughly speaking, one seeks to determine how much
' “fills the space” at small scales. The precise way of
measuring this property depends on the definition of
the dimension one uses : the most frequent choices are
the Hausdorff, the box, and the Tricot dimension ([14])

The second, analytical, way of evaluating the regu-
larity of f is to consider a family of (nested) functional
spaces, and to determine the ones it actually belongs
to. A popular choice is to consider Holder spaces, either
in their global, local or pointwise version (see below for
precise definitions).



Of course, the selection of one or another approach,
and the subsequent choice of the dimension or of the
functional spaces used eventually depends on the kind
of properties one wishes to investigate.

We will be interested in this paper in refinements of
the Holder characterization of regularity. Let us first
recall some basic definitions.

Definition 2.1. Pointwise Hélder exponent

Let o be a positive real number, o ¢ N, and xy €
R. A function f : R — R is in Cp if there exists a
polynomial P of degree less than « such that:

|f(z) = Pz — x0)| < clo — o] (1)
When « €]0, 1], this reduces to:
|f(x) = f(zo)| < clw — o|® (2)

The pointwise Holder exponent of f at xg, denoted
a(xg), is the supremum of the « for which (1) holds.
The pointwise Holder function of f is defined as:

alz) =sup{a: feCl}.

This regularity characterization is widely used in
fractal analysis because it has direct interpretations
both mathematically and in applications. It has been
shown for instance [1] that ay indeed corresponds to
the auditive perception of smoothness for voice signals.
Similarly, simply computing the Hdolder exponent at
each point of an image already gives a good idea of
its structure, as for instance its edges [15]. More gen-
erally, in many applications, it is desirable to model,
synthetize or process signals which are highly irregu-
lar, and for which the relevant information lies in the
singularities more than in the amplitude (this is in-
deed the case for image segmentation). In such cases,
the study of the Holder function is of obvious interest.
From a theoretical point of view, the structure of a; is
known [7]: the class of Holder functions of continuous
signals is exactly the set of lower limits of continuous
functions. This allows to handle a large variety of situ-
ations. However, the pointwise Holder characterization
has a number of drawbacks, a major one being that it
is not stable under the action of (pseudo) differential
operators. This precludes, for instance, the use of the
Hilbert transform, commonly used in signal process-
ing. In the same way, knowing the pointwise Holder
exponent of a function at a point xp is not sufficient
to predict the Holder exponent of its derivative at the
same point. Finally, this exponent is generally hard to
compute numerically, in particular in the case of mul-
tifractal signals.

An alternative solution is to consider the local Holder
exponent: Let a €]0,1[, & C R One says that f €
Cpr(Q) if:

Then, let:
o (f,z0,p) =sup{a: f € C}' (B (z0,p))}

ay (f, zo, p) is non increasing as a function of p.
We are now in position to give the definition of the
local Hélder exponent :

Definition 2.2. Let f be a continuous function. The
local Holder exponent of f at xo is the real number:

[&7] (f,l’()) = }il}%al (f;l“o,l))

This exponent is stable under differentiation or in-
tegration. Moreover, it is easier to estimate than the
pointwise Holder exponent. Its main drawback is that
the local Hélder function, a; (f,.), is a lower semi con-
tinuous function (l.s.c), i.e. :

Vg € R Ve, I :
yEB(a:o,n)ioq(f,y)>al(f,a:0)—e (3)
Recall the following result:

Lemma 2.1. [16] Two l.s.c. functions which coincide
on an everywhere dense set are equal.

This shows that the local Holder exponent is a less
versatile notion than its pointwise counterpart.

In summary, neither o nor a; is complely satisfac-
tory. One would thus like to find a framework which
would combine the good properties of each exponent.
Such a framework indeed exists : it provides the added
benefit of unifying the local and pointwise exponents,
and allows to define functionnal spaces that behave
nicely under (pseudo) differential operators.

2.2. 2-microlocal spaces: Definition and basic
properties

The original definition of the 2-microlocal spaces [13] is
based on a Littlewood Paley analysis (L.P.A).A Little-
wood Paley analysis is a spatially localized filter bank.
One may understand it as an intermediate between a
discrete and a continuous wavelet analysis. More pre-
cisely, let S(R) be the Schwartz space defined as:

S(R) ={f € C*(R) :

Y(a, ) € N2, sup |z°0° f ()| < oo} . @)



Let now

_[e©=1l¢l<3
P SE ‘{ PO =0l ¢l>1
and .
pj(z) = 27p(2'z)
One has

(&) =a(277¢).

The {p;} set acts as low pass filter bank, which leads
naturally to the associated band pass filter bank:

Vi = @jt1 — ;.

Definition 2.3. Let u € S'(R). The Littlewood Paley
Analysis of u is the set of distributions:

S[)U =
A]”U, =

Y *xu

One has:

u = Sou+ iA]U

=0

. .
We can now define the two microlocal spaces C3:* .

Definition 2.4. A distribution u € S'(R) belongs to
the 2-microlocal space C3:* if:

3 ¢c>0 st
|Sou(z)| < e(1 + |z — 2o|)~*
1A ju(z)| < 2795 (1+ 27|z — xo]) ™

The Littlewood Paley analysis is a good starting
point in a attempt to generalize the previous regular-
ity notion. Indeed, L.P.A. proves to be very useful
to characterize many regularity spaces. For example,
LPA gives equivalent norms on function spaces such as
LT, global Hélder spaces and more generally on all the
Besov spaces:

+o00 q

I f lga~ll £ Dl + | D_12%7 11855 1)

=0

Let us indicate why 2-microlocal spaces are stable
under differentiation.
First, derive the relation between Aj(u) and Aj(u'):

—

Aj(u) () = ul;(€) = i€a(€) - (€),

0<a<l).

but

supp (u',3;) C supp(p;) C £[2771, 271

We can thus define a function

E(z) € S(R) : B(¢) = £ on + [~

=, 1].
2’]

Let then E;(§) = 22 E(27x).
One gets:

Ej(¢) =¢on +[27121).

Which leads to:

Aj(u') i€U(E); (&) = B (€)a(€) iy (€)
- ’L E’j X Aj (u) .
=
Finally:
AW = 2% / £t — 2) B2 )da

= 9

/fj(t — 2i2)E(z)dx

We now make use of the following lemma:

Lemma 2.2. Peetre inequality,

Va,Vy s (L+ |z +y)) ™ < (14 [N @+ [y))

Since: |Aj(u)| < 2775(1 + 27|z — wol) ™"
We get:

|A;(u)(t)] < 2j2_j3/(1+2j|t—2jm—w0|)_s’E(w)dm
< 279601 4 2|t — zo|)
Ja+lah E@as. )
And one sees that:

7 ’
weCy = u' e Ci .



2.3. Wavelets, 2-microlocal analysis and con-
nection to Holder regularity.

We have already mentionned the similarity between an
LPA and a wavelet transform: While a discrete wavelet
transform can be seen as the discretisation of a contin-
uous W.T., both in time and scale, an LPA discretizes
only the scales axis.

It is therefore not a surprise that the 2-microlocal
spaces can be characterized by simple conditions on
continuous a discrete wavelet coefficients.

Notations:

If the ¢, 1 = 29/2¢)(2/z — k) form an orthonormal ba-
sis of L2(R), with ¢ in the Schwartz class, define the
discrete wavelet coefficients of f by

cj =27 /f(:r)z/J(2ja: — k)dz

If ¥ is an admissible analysing wavelet, define the con-
tinuous wavelet transform of a function f by:

W, (a,b) = é/f(a:)\I! (x;b> iz

Theorem 2.1. [8]

Let u € S(R),{¢jx} an orthonormal wavelet basis
and ¥ an admissible wavelet. Both analyzing functions
¥ and ¥ are supposed to be regular enough and with
sufficient vanishing moments. The following conditions
are equivalent:

1. ue C’j[’f’
2. lejul < 27951 + |k — 2xo)*, Vi, k
3. ¥Ya>0,b—mzo| <1:

b— 0|\~
< ca’® (1 + 7| x0|>

|Wu(a7b)| a

Theorem 2.2. [8] Vzo € R,Vs > 0:
e CF CCo?

o C3 CC3 Vs+s >0

xo?

2.4. Discussion.

As was mentionned in section 2.1, the Holder expo-
nent has been extremely useful in many applications in
signal processing. However there are situations when
both a and «; are insensitive to what one would like
to consider as irregularities. This can be misleading
in applications such as classification or segmentation.

Perhaps the simplest example where this occurs is that
of the chirp |:r|73m(ﬁ) for which o = vy and oy = 75-.
Thus « is totally blind to the rapid oscillation in the
signal around 0, and gives the same result as for the
signal |z|7 (see figures 1 and 2). «; on the other hand
mixes v and § in such a way that two very different
chirps can lead to the same exponent. Obviously, since
there are two free parameters in a chirp, a richer char-
acterization is needed, such as the one provided by the
2-microlocal analysis. Indeed, it is easy to show that
a (7,0) chirp belongs to all 2-microlocal spaces CS’SI

! a—Ss
such that s’ < 5

While chirps are expected to be present in gravita-
tional waves, they form a rather restricted class of oscil-
lating singularities. Moreover, it would seem that de-
tecting a chirp, as long as one has a reasonable PSNR,

should be much easier than evaluating the C5° to
which the signal belongs. The situation changes if one
considers, instead of an isolated singularity, a finite sum
of chirps (figure 3), or even a signal containing almost
everywhere oscillating singularities (figure 4). This last
signal is a lacunary wavelet series as described in [17].
The most noticeable fact is that it is not at all ob-
vious from visual inspection that oscillating singular-
ities are present. In other words, if a signal contains
a large number of such singularities, they are not eas-
ily detected. In particular, a real world signal may well
contain lots of “chirps”, which are not detected by clas-
sical techniques. The signal on figure 6, for instance, is
a lumping of two lacunary wavelet series with the same
pointwise Holder exponent but different oscillating be-
haviour. The segmentation of such a signal requires a
more refined analysis such as 2-microlocal analysis.

-0.01 -0.005 Tl 0.d0s 0.01
t

Figure 1: Singular signal with exponent 0.5



Figure 2: Singular signal with exponent 0.5 with oscil-
latory behaviour

3. 2-MICROLOCAL FRONTIER ANALYSIS

3.1. Definition

Following the notation in [12], we will call ¥(f, zo) the
2-microlocal domain of a function f at xo: X(f, o) is
the set of all couples (s, s") for which f belongs to C’;Ef’.
This set is convex and the following relation hold:

feCs” = 059+ Ve > 0.

It is thus completely defined by its frontier I'( f, zo) =
6E(f) 1’0) :

Definition 3.1. 2-microlocal frontier parametrization

Let f: R = R,
S(o,z) = sup {s f e C;"T*S}
S (0,2) = inf{s’: feC;’*S"S'}

The 2-microlocal frontier is the set of points

L'(f, o) {(5(0),0 = S(0))}
= {(0-5%0),5(0))}
We will often call S(o) or S'(o) the 2-microlocal

fontier of f, because both completely define I'(f, zo),
and because this induces no ambiguity.

The following properties of S and S’ are easy to check:
The function S(.,xo) is decreasing and concave.

The function S’(., x) is increasing and convex. More-
over, one has, for all positive 7:

S;O(O' +7)> S;O(O’) +7T

See figure 7 for an example of a 2-microlocal frontier.

log(Instantaneous frequency)

signal

Figure 3: Finite sum of chirps and corresponding in-
stantaneous frequencies

3.2. Connection with various regularity expo-
nents

I
The following properties hold:

e The local Holder exponent is given by the rela-
tion:
aq (:L’g) =0y

where o is the unique value for which

S(Ug,l’g) =0y

e Let a(zp) =supS(e),e >0
If a(zo) > O then :

a(zo) = a(zo)

As was announced in section 2.1, the 2-microlocal
analysis thus allows to recover both the pointwise and
local Hoélder exponents. Of course, the 2-microlocal
frontier contains a much richer information. For in-
stance, the value the chirp exponents can be read from
S(o): Recall that the chirp exponents of a function at
one point are defined as: [8]

Definition 3.2. Let F("™) a n-th order primitive of
F. F is called a (h,B)-type chirp at xq if

Vn e N : F(-%) ¢ ohtn(1+6),

One can show that the chirp exponents of f at xg are
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Figure 4: Singular signal with almost everywhere oscil-
latory behaviour

(h, ) if and only if the boundary of the 2-microlocal
domain of f at xo is above the half-line starting at
(s,s") = (h,—h) of slope —(8+ 1)/8, and if this prop-
erty no more holds for larger values of h or 3 (see figure
8).

3.3. Frontier prescription at one point

One may wonder what is the most general form that
the 2-microlocal frontier of a signal can assume. The
answer is given in [12] and is the following:

Theorem 3.1. Any decreasing concave function S(o)
can be the 2-micolocal frontier of a signal at one point.

One may in fact construct such a signal via its
wavelet coefficients. Suppose S(o) is not a line. Let

¢ =279/ inf 2797 (277 4 277k — )5

and

F@) =" cintjn(@)
ik

then, the 2-microlocal frontier of the function f at 0 is
S(o).

The proof of this result uses the following observa-
tion:
Using a continuous wavelet transform instead of the or-
thonormal wavelet coefficients, equation (3.3) becomes,
with z, =0 :

W(a,b) = inf a® (a + b))~

Applying the following coordinate change:

a = eu(1+v)
b=e"(1—ewW)

I I I I I
200 400 600 800 1000 1200

Figure 5: Signal with local regularity 0.1 and almost
everywhere pointwise regularity 0.12

v>0, u<0,
(3.3) becomes

T(U,’U) = et inf,[cv+S(0)]

e—uS*(—v)

where S*(.) is the Legendre-Fenchel transform of S:
S*(o*) = sup|o*o — S(0)]

a
The end of the proof mainly uses the inversion formula
of the Legendre transform of concave functions.

3.4. A new characterization of the 2-microlocal
frontier using the Legendre Transform

As was already suggested in [12], the Legendre trans-
form of S seems to be an important tool in the study
of the 2-microlocal domain. In this section we give a
result in that further support this view. In fact, we will
rather use S'() as a parametrization of the frontier.

Here is the main result of this section. Its interpre-
tation is that, rouhly speaking, the knowledge of the
power law behaviour of T'(a,b) along curves defined by
b = xz,+a® is sufficient to obtain the whole 2-microlocal
domain. More precisely:

Theorem 3.2. Let :
7(a) = sup{y : |T(a, £a® + xp)| < ca”
Va<la€l0,1[}

7(1) = sup{y : |T(a,b+ zo)| < ca”
Vo< || <a<1}
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Figure 6: Lumping of lacunary wavelet series
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Figure 7: An admissible S'(.)

u(B) = pr (%)

Then, the 2-microlocal frontier of f at xo is given by:

| S'(0) =u*(0) |

Proof. For sake of simplicity, we will take z¢o = 0.
We will mainly use the following lemma:

Lemma 3.1. Let o et s’ be two real numbers. The
relations (6) et (7) are equivalent

-2

w -3

_— 2-microlocal frontier

4 -— - s'=h - s(1+B)/p

-5

-6

-7

-8 L

Figure 8: Relation between 2-microlocal domain and
chirps exponents

IT(a,b)| < ci(0)a” (a+ [b) ™ (6)
YV (a,b): (a+1]b)) <1l,a>0

Jer(o) >0

Jex(o) >0 (7)
|T(a,a%)| < ea2(0) alo—as)
Va €10,1],V]a+a% <1

|T(a,b)| < ca(o) alo=s")
V(a+ b)) <l:a>b

Proof. First, one has:

z® <z +z* <22” (8)

Ya € [0,1], Vz € [0, 1]
applying this relation respectively to (a + a%) and to
(|b] 4 |b|*/*) when « € [0,1] and « € [1,+00] gives the

result.
O

We have:

|T(a,b)| < ca’(a+ |b|)fS’(o)75
Ve > 0,Y0,¥(a+[b]) < 1. (9)

this implies that: Ya €]0, 1]



|T(a’aa)| < cafrfaS’(a)fs

< cq¥(5-5"(0)-%)

As S'(.) is convex,

S[** — S[

and
S (0*) = suploo* — §'(0)]

Thus, Yo*,¥n > 0,30, :

S™(e*) < oyt =S"(oy) +1
e e < e )E )
= 7(a) > aS"™ (1) Yo €]0,1]
= §7(B) < u@ Ve >1

Using the Legendre Transform inversion formula,
this in turn implies that: forall 3:

Now:

This implies that:

|T(a,a®)| < ca®(8-u"(0)-%) Yo,Va,Ve
= |T(a,a®)| < ca”"% (0)== Yo,Va,Ve
= |T(a,b)] < ca’(a+ |p|)~* (@)=
And this finally leads to: Vo
S'(o) < u*(o)
[l

Figure 9: Original SAR image

4. APPLICATION TO IMAGE ANALYSIS

4.1. Basics of Multifractal analysis

Multifractal analysis (MA) deals with the description
of the singularity structure of signals (which can be
measures [18, 19, 20, 21, 22], functions [23] or capac-
ities [24]), both in a local and a global way. The lo-
cal information is given by the Holder exponent at
each point, while the global information is captured
through a characterization of the geometrical or sta-
tistical distribution of the occurring Hélder exponents,
called multifractal spectrum. Such an analysis is use-
ful when one deals with very irregular signals (such as
for instance computer data traffic traces or radar im-
ages), and when the singularity structure has practical
consequences [25].

Depending on the notion of Hélder exponent in use,
there are several MA of a signal. In addition, two spec-
tra are usually defined, as explained hereafter.

4.1.1. Hausdorff spectrum

The geometrical characterization of the singularities
distribution is obtained through the following function :

fula) = dimp(E,)

where FE, is the set of points having Holder expo-
nent «, and dim; denotes Hausdorff dimension. The
Hausdorff spectrum fj,(«) thus gives an indication of



Figure 10: Multifractal image denoising, with shift pa-
rameter 0.3

how much the singularity « is spread out over the signal
support.

4.1.2. Large deviation spectrum

For simplicity we consider a signal X () defined on [0,1]
which is nowhere differentiable! and define the analysis
with respect to the dyadic intervals:

IF=[k2 " (k+1)2 ", k=0,...2" —1,neN

Define the coarse Hélder exponents through
1
ok = —Zlog | X ((k+1)27™) — X(k27™)
n

where all logarithms are taken to the base 2 and where
log 0 := —o0.

The large deviation spectrum f, measures, loosely
speaking, how “fast” the probability of observing a
coarse Holder exponent different from the expected value
tends to zero as the resolution tends to co. More pre-
cisely, f, is related to the rate function appearing in the
large deviation analysis of such quantities. A heuristic
explanation is the following: assume we want to assess
how much the signal T}, may vary in a (small) time
interval I¥ of duration 27", with respect to n. The
strength of the variation is measured by ok, defined
as: T}, oc |IK|on = 27me% If of = 1, the signal varies
smoothly with respect to the scale of measurement ¢.

IThis way we will not have to deal with polynomial trends.

Figure 11: Multifractal image denoising, with shift pa-
rameter 0.5

It is thus of interest to evaluate the distribution of
the af’s when k is picked randomly from 0,...,2" "1
and n is large. This will allow to characterize the signal
in terms of:

e the highest degree of burstiness (resp.
ness) occurring in the signal,

sparse-

e the probability of hitting a given burstiness when
measuring the signal in a “small” time interval
picked randomly.

In this view, we set:

T log N, (a)
fy(@) = lim lim sup —=—"8==, (10)
where

Ny (a) = #{ar /|y, —al <e}.

The large deviation spectrum f, describes the dis-
tribution of the local singularities, since the number of
dyadic intervals of size 27" with coarse Hdlder expo-
nent ~ « varies roughly as 2*/s(®) for large n. Equiv-
alently:

Pu(af ~ a) o 271 Fs(@))

where the probability is related to a random choice of
k uniformly in {0,...,2" — 1}, i.e. P, is the uniform
distribution on the set of all dyadic intervals I* of size
27",



Figure 12: Multifractal image denoising, with shift pa-
rameter 0.7

Having defined f;, and f4, a natural question is to
inquire about how they are related. This is a topic
adressed by the multifractal formalism, which seeks
conditions under which f;, = f,. The interest of this is
that fj is typically very involved to compute theoret-
ically, and almost impossible to estimate numerically.
The evaluation of f, is in general significantly simpler,
in particular when the machinery of the large deviation
theory can be used, for instance through Ellis theorem.

4.2. Recalls on the multifractal analysis of im-
ages

The multifractal approach to image analysis makes the
following fundamental assumption:

fh:fg

In addition to providing a way to evaluate fj, this
assumption also allows to relate the geometrical and
probabilistic interpretation of e.g. edge points, as ex-
plained below.

The multifractal analysis of an image consists in
computing its multifractal spectrum, and then classi-
fying/processing each point x according to its
(a(z), f(a(z))) value, both in a geometrical and a prob-
abilistic fashion.

The value of «a gives a local information pertaining
to the regularity of the considered point : edge points
will have exponents different from those of points in

Figure 13: Denoising by wavelet coefficient threshold-
ing

smooth regions or belonging to textured zones. How-
ever, the sole knowledge of « is not sufficient to decide,
for instance, that a point belongs to a contour, for at
least two reasons : first, the exponents are not invariant
under non linear transformations of the image. This
means that no absolute value of a can be attributed
once and for all to edge points. The second reason is
more subtle, and is in fact the main motivation for the
use of multifractal analysis in image processing : it is
based on the remark that a local information can not
suffice to characterize an edge point. Indeed, if the set
of candidate edge points is "too complex”, or if the
number of such points is “too large”, the visual sys-
tem will have a tendancy to see textures rather than
edges. This is illustrated on figure 4.2 : the points on
the black lines have the same exponent in the left and
the right image. However, while one clearly sees three
”contours” on the left image, most people would proba-
bly think of the right image as a ”textured” zone. This
is why a global information is needed in order to decide
the nature of a point. More precisely, in our setting,
an edge point is characterized by an exponent « (i.e. a
local information) such that :

e frn(a) = 1, because a smooth contour fills the
space like a line.

e fy(a) = 1, because, when choosing at random a
pixel of size 27" in a square image of side 1, the



probability of hitting a smooth contour decreases
as 27" = 2~ folo)n,

Figure 14: Three edges, a texture.

In fact, we may define the type of a point through
its associated f(«) value: For t € [0,2], we say that x
is a point of type t if fn(a(z)) = t.

More on this topic can be found in [15]

4.3. Multifractal Denoising
4.8.1. Principle

The basic idea of multifractal denoising is best ex-
plained on a simple example. The aim is to get rid of
“insignificant” irregularities while keeping “meaning-
ful” singularities. Moreover, after denoising, “most”
points should lie in smooth regions. On figure 15, all
points have the same regularity a = 0.5 except 0.5
where a step occurs (@ = 0). In term of multifractal
spectrum, fp(0.5) = 1, fn(0) = 0 and fp(a) = —o0
for a ¢ {0,0.5}. We want to find a simple method to
obtain a shifted spectrum f;, so that the maximum of
frn is located at & = 1 4¢€, € > 0. This will imply
that the transformed signal is almost everywhere (a.e.)
smooth while preserving the “rare” event “step at 0”
(figure 16). More formally, our assumption regarding
the presence of generic non significant singularities is
modeled as:

Jlag <2 : fh(a()):2 (11)

We then apply a transformation O so that the spectrum
fn of the modified image is

fh(a) = frla+ag —€—2) (12)

The resulting image will be such that “most” points
will have Holder exponents a little above 2 and will con-
sequently be a.e. smooth. On the other hand, since the
shape of the spectrum is preserved by O, the relative
strength of the singularities is not modified, i.e. salient
visual features remain unchanged. In particular, such
a procedure should not induce, in principle, any loss
of information. We describe in the following section a
practical method for deriving O.

Figure 15: A signal which Holder exponent is 0.5 every
where except in 0.5 where it is 0.

Figure 16: The signal in figure 15 which multifractal
spectrum has been shifted by 0.5

4.3.2. Operator design

Recall that, loosely speaking, if f has Holder exponent
a at @o, the (cjk) in Da, = {(j, k) : o0 € supp(¥jk)}
decrease as O(277%) when j tends to infinity [8]. In
order to modify the Holder regularity, a natural idea is
to act upon the wavelet coefficients. The simplest way
to increase the regularity from a to o' is to multiply
c) by 27922 (where Aa = o' — ). However, such a
naive approach does not insure that transformed signal
will have Holder exponent o, because of possible oscil-
lating behaviour. To obtain this result, it is necessary
to perform the 2-microlocal analysis of the signal, and
in particular to determine the function S(o) at each
point.

Let (V2 )~' denote the operator which consists in



multiplying each ¢; in D, by 2779 Let:

f7=(V5,) )
By (2.1), one has:

to(0,20) = S} (0 + 8. 20)
= Sfo(U,l'o):Sf((f—e,l’g)-f-a

and the Holder exponent of f7 at zg is:

a(f?, o) = S4e(0,20) = Sy(—0,20) + 6

As S¢(., o) is continuous, one can derive the following
result:

Proposition 4.1.

Va,>a 316, : f* e C

This result means that, for any Aa > 0, there is a
unique 6 such that the operator (V4 )~! increases the
pointwise regularity at zo by Aa.

We show on figures 9 to 13 an application of this
technique to the denoising of a SAR image. The orig-
inal image is on figure 9. Figures 10 to 12 show mul-
tifractal spectrum shiftings with increasing parameter
and figure 13 shows for comparison a denoising using
the classical wavelet schrinkage method. One sees in
particular how the river appears more and more clearly
in figures 10 to 12.
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