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Abstract. Hello protocol is the basic technique for neighborhood dis-
covery in wireless ad hoc networks. It requires nodes to claim their exis-
tence/aliveness by periodic ‘hello’ messages. Central to a hello protocol is
the determination of ‘hello’ message transmission rate. No fixed optimal
rate exists in the presence of node mobility. The rate should in fact adapt
to it, high for high mobility and low for low mobility. In this paper, we
propose a novel mobility prediction based hello protocol, named ARH
(Autoregressive Hello protocol). Each node predicts its own position by
an ever-updated autoregression-based mobility model, and neighboring
nodes predict its position by the same model. The node transmits ‘hello’
message (for location update) only when the predicted location is too
different from the true location (causing topology distortion), triggering
mobility model correction on both itself and each of its neighbors. ARH
evolves along with network dynamics, and seamlessly tunes itself to the
optimal configuration on the fly using local knowledge only. Through
simulation, we demonstrate the effectiveness and efficiency of ARH, in
comparison with the only competitive protocol TAP (Turnover based
Adaptive hello Protocol) [9]. With a small model order, ARH achieves
the same high neighborhood discovery performance as TAP, with dra-
matically reduced message overhead (about 50% lower ‘hello’ rate).

1 Introduction

Amobile ad hoc network (MANET) is a dynamic environment, where a collection
of mobile nodes interconnect via wireless links spontaneously without centralized
control. Due to its self-organizing and infrastructure-less nature, MANET has
great potentials in both civilian and military applications [1]. Examples include
a network of PDAs carried by soldiers and officers in a battlefield for opera-
tional commanding, a network of wireless sensors attached to animals in the
wild for habitat monitoring, etc. In MANET, nodes have limited communica-
tion range. For any two nodes that are out of each other’s communication range,
their communication has to go through a number of intermediate nodes. Indeed,
the functioning of MANET relies on node cooperation on message forwarding.

In MANET, a fundamental issue for many network operations, e.g., mobil-
ity scheduling [2], topology control [3] and routing [4], just to name a few, is
neighborhood discovery, where each node finds out which other nodes are within



its communication range (i.e., neighboring it). A node may at the same time
discover other information about each neighbor, e.g., remaining energy level,
connectivity/hop count to certain destination, etc., depending on the needs of
upper layer protocols. Having up-to-date neighborhood knowledge, a node is able
to make proper networking decisions.

The basic technique for neighborhood discovery is hello protocol. The first
hello protocol was described in the Open Shortest Path First (OSPF) routing
algorithm [5] for IP networks. Nodes exchange ‘hello’ message carrying required
information periodically at fixed frequency. When node a receives ‘hello’ message
from node b, it creates an entry for b, or update the existing entry of b, in its
neighbor table depending on whether or not b is a new neighbor. If a does not
receive ‘hello’ message from b for a pre-defined amount of time, it will consider
b has left its neighborhood and remove b’s entry from the table. The protocol
enables nodes to maintain neighborhood information in the presence of node
mobility and dynamic node addition and removal.

1.1 Motivation

The usefulness of a hello protocol highly depends on the transmission rate of
‘hello’ message [6]. Choosing proper rate is not a trivial task. If the rate is too
high with respect to node mobility, precious communication bandwidth and en-
ergy supply will be wasted for unnecessarily frequent transmissions. On the other
hand, if it is too low, neighbor tables will quickly become out-of-date, leading to
failure in other network operations and thus bandwidth waste and energy loss in
those other operations. An optimal hello protocol maintains accurate neighbor-
hood information using minimized ‘hello’ transmission rate. Unfortunately, no
constant rate can always remain optimal in dynamic MANET. The rate should
evolve together with the network along time for the best performance.

In the literature, a majority of MANET protocols adopt hello protocol in
one form or another as a building block. But the impact of hello protocol on the
network performance has not been studied until recently in [7,8]. Existing hello
protocols all have noticeable limitations and weaknesses. They are inferior for
possible applications, compared to the protocol proposed in this article, for vari-
ety of reasons, e.g., assumption of static networks, use of fixed ‘hello’ frequency,
requirement of extra input parameters. A survey of these previous work will be
presented later, in Sec. 2. The importance of the topic and the incompleteness
of insufficiency of relevant research motivate our work presented here.

1.2 Contributions

We address the problem of neighborhood discovery in MANET, by proposing
a novel mobility prediction based hello protocol, named ARH (Autoregressive
Hello protocol). This protocol adaptively adjusts ‘hello’ message rate to the
optimal value according to time-varying node mobility. The idea is to let each
node constantly estimate its neighbors’ position using past location reports, and
transmits ‘hello’ message (reporting its current position) when its own location
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estimated by a neighbor is not accurate enough. For ease of presentation, terms
‘predict’ and ‘estimate’ are used interchangeably.

More specifically, each node n samples its position at regular intervals and
considers the position samples as a time series of data. From this series, it com-
putes two associated time series, respectively for its moving direction and ve-
locity. It applies autoregressive (AR) modeling on the two series and obtains
a mobility model for itself. Each neighboring node m builds and maintains an
identical mobility model for n using n’s previous location reports (carried by
‘hello’ message) and estimates n’s position. In the meantime, n predicts its own
mobility (moving direction and velocity) and position using the AR-based mobil-
ity model so that it has the same location estimates for itself as its neighbors. It
transmits a ‘hello’ message carrying its current position only when the predicted
position leads to false topological change (which means its location estimates
by neighboring nodes are no longer accurate). Further, AR-based ‘hello’ fre-
quency prediction is suggested to detect neighborhood change caused by node
removal/departure and improve the algorithm performance.

Through extensive simulation, we study the performance of ARH using real
mobility trace data, in comparison with the best known competitive hello pro-
tocol TAP (Turnover based Adaptive hello Protocol) [9]. Our simulation results
indicate that both protocols require a short learning curve to stabilize. Their
learning curves have roughly equal length, 20 − 30 seconds. Once passing the
learning curve, they stabilize to the same high neighborhood discovery perfor-
mance, about 96% accurately reflecting true neighborhood situation. In partic-
ular, ARH results in dramatically lower ‘hello’ frequency than TAP, i.e.,around
50% less message overhead, therefore saving both bandwidth and energy.

The remainder of the paper is organized as follows. We review related work
in Sec. 2 and introduce autoregressive mode in Sec. 3. We present ARH in Sec. 4
and report simulation study in Sec. 5, followed by the closing remarks in Sec. 6.

2 Related work

In [10], the authors considered a static network whose size is known a priori, and
they aim to reduce the overall energy consumption for communication. Time is
slotted. At the beginning of each time slot, a node chooses with a pre-defined
probability pstate to enter one of the three states: transmitting (‘hello’ message),
listening, and sleeping. The sum of the probabilities for the three states is 1.
The authors studied the optimal values for pstate. In dynamic networks such as
MANET, where node mobility and node addition/removal are present, finding
optimal pstate remains to be an open problem. This protocol is not suitable for
MANET, where nodes are mobile and network size is varying.

Similar to [10], three protocols RP, LP, and SP are presented for static net-
works in [11, 12] rather than MANET. A node can be either in talking state
or in listening state, and it can stay in a state for a random period. In RP, a
node at each time slot enters talking state with probability p and listening state
with probability 1 − p. In LP, if current state is talking, the next state will be
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listening; otherwise, it will make random decision as in RP. In SP, if the current
and previous states are different, the node will back off for a while. The backoff
period is modeled as a uniform random variable with values in a pre-defined
range. After this period, the node sends a message back to the original sender.

In [13], a two-state hello protocol is presented. In this protocol, there are
two different ‘hello‘ message frequencies, 0.2s for low-dynamic network (default
frequency) and 1s for high-dynamic network, whose selection is however not
justified. Which frequency to use depends on two factors: Time to Link Failure
(TLF) and Time Without link Changes (TWC). Each node estimates TLF and
TWC among its neighborhood based on past neighborhood change. If TLF is
smaller than a threshold, the system switches to the High dynamics state. When
TWC becomes greater than another threshold, the mechanism switches back
to the Low dynamics state. This protocol alternates only between two fixed
transmission rates. Its adaptation to network dynamics is obviously very limited.

In [14], three hello protocols are presented. In an adaptive protocol, a node
transmits if its travel distance is beyond a threshold since last transmission.
Transmission frequency is additionally subject to predefined a minimum value
(enabling static nodes to transmit) and a maximum value (preventing ‘hello’
message storm). This protocol may cause unnecessary transmissions, e.g., when
the node moves along a small circle. In a reactive protocol, a node starts, before
sending a data packet, neighborhood discovery where it transmits ‘hello‘ mes-
sage and expects a reply from each neighbor. If no reply is received within a
pre-defined period of time, the process is repeated, up to a maximum number
of times. This protocol brings large delay into data communication and is vul-
nerable to high mobility. In an event-based protocol, fixed ‘hello’ rate is used.
However, a transmission may be skipped if no communication activity is ob-
served in previous ‘hello’ interval. It is possible that some nodes moving from
“quiet” area to “quiet” area are never discovered.

In [9], the authors defined turnover ratio as the ratio of the number of new
neighbors to the total number of neighbors during a time period ∆t. The authors
studied optimal (expected) turnover ropt. They concluded that node velocity does
not have any impact on ropt and that ropt is related only to ‘hello’ frequency and
communication radius. Then they suggested to adjust ‘hello’ rate toward the op-
timal value for obtaining the optimal turnover (i.e., expecting to discover all new
neighbors). Based on this idea, a protocol named TAP (Turnover based Adaptive
hello Protocol) is presented. In the protocol, nodes initially transmit ‘hello’ mes-
sages at a default frequency. Turnover is checked periodically, everytime when
‘hello’ message is transmitted; the ‘hello’ rate is immediately adjusted by certain
modification formula that takes current turnover and optimal turnover as input.

TAP is to our knowledge the only adaptive protocol comparable to our pro-
posed ARH here. Other protocols have various obvious weaknesses as summa-
rized above. As we will see in the sequel, ARH assumes location-awareness on
each node while TAP does not. This assumption limits ARH to the scenarios
where location information is available. But nevertheless, by making good use
of it ARH outperforms TAP to a great extent.
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3 Preliminaries

The ARH protocol to be proposed in the sequel uses autoregressive (AR) model
for mobility prediction. For a better understanding of ARH, in this section we
briefly introduce AR modeling. Note that there are other mobility predication
methods [15], which are out of the scope of this paper.

3.1 Autoregressive model

Autoregressive model (AR) [16] is a tool for understanding and predicting a time
series of data. It estimates the current term zk of the series by a linear weighted
sum of previous p terms (i.e., observations) in the series. The model order p is
generally less than the length of the series. Formally, AR(p) is written as

zk = c+

p
∑

i=1

φizk−i + ǫk , (1)

where c is a constant standing for the mean of the series, ϕi autoregression co-
efficients, and ǫk zero-mean Gaussian white noise error term. For simplicity, the
constant c is often omitted. Deriving AR(p) involves determining the coefficients
ϕi for i ∈ [1..p] that give a good prediction. The model can be updated continu-
ously as new samples arrive so as to ensure accuracy, or it may be recomputed
only when the predication is too far from the true measurement (beyond certain
threshold).

AR is a good choice if observations are stationary. Otherwise, generalized
AR, called autoregressive integrated (ARI) model, should be used. ARI uses
differencing operations to remove the non-stationarity in AR modeling. It is
denoted by ARI(p, d), where d indicates the order of differencing. The first order

differencing of the original time series data is denoted by z
(d=1)
k = zk − zk−1.

ARI(p, d) can be written as

z
(d)
k = c+

p
∑

i=1

ϕiz
(d)
k−i + ǫk . (2)

While AR/ARI depends only on previous terms of a time series data, moving
average model (MA) describes the current value of the series using white noise
or random shocks of its prior q values. Here q is model order. AR (or ARI) is
often combined with MA to obtain complex ARMA (resp., ARIMA) model with
generally improved accuracy.

AR/ARI/MA model derivation (i.e., determining model coefficients) can be
done through complex calculus, for example, by the Yule-Walker equations [17]
or Burg method [18]. ARMA/ARIMA model contains more coefficients. Their
establishment therefore needs yet complicated algorithms, e.g., deviating fast
search algorithm [19], or optimal parameter search algorithm [20]. The calculus
in any of the above methods require a large amount of computational power. It
is not embeddable on tiny and computationally weak devices such as sensors.
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3.2 Simplified autoregressive model

In [21], a simplified AR model is proposed. This model requires to be fed with
its own estimates as samples to generate new estimates. Although its order p
may be larger than 1, it can be updated using only a single sample (in contrast
to the whole sample set in the traditional model). Model update needs only
trivial calculus, greatly reducing the requirement on the computational power
on the nodes that implement the model. Thus it becomes embeddable on tiny
and computationally weak devices such as wireless sensors. In the following, we
elaborate on this simplified AR model.

Recall that p is the model order. A single sample is needed to initialize the
model. At initialization, i.e., at time k = 0, we set φi =

1
p
for all i ∈ [0..p] and

zi = z0 for all i < 1. Let the estimate error be ek = zk − ẑk at time k > 0. When
ek is too big, the φ coefficients need to be adjusted.

Assume that ek is completely due to use of estimates as samples. We spread
the error evenly over the p samples and the current estimate. Each sample has
error 1

p+1ek. Then the estimate with maximum error will be ẑk = zk − ek +
1

p+1ek = zk−
p

p+1ek. We update φ coefficients by enforcing the following equation:

p
∑

i=1

φiXk−i = Xk −
p

p+ 1
ek . (3)

We update φ coefficients iteratively. We first take φp as variable and the
others as constant. We computes new φp (denoted by φ′

p) by solving the above
equation. Then we plug φ′

p into the equation. Meanwhile, we need to increase

the right side by 1
p+1ek because the use of φ′

p will bring that much more error.
After that, we compute a new φp−1, and so on. We update the coefficients one
at a time in this way from φp downto φ1 = p. We compute in this order because
the farther away the sample is in time, the less important its coefficient. The
update sequence is shown below:

φ′

1 =
1

zk−1
(zk −

1

p+ 1
ek −

p
∑

i=2

φizk−i − c);

...

φ′

j =
1

zk−j

(zk −
j

p+ 1
ek −

j−1
∑

i=1

φ′

izk−i −

p
∑

i=j+1

φizk−i − c);

...

φ′

p =
1

zk−p

(zk −
p

p+ 1
ek −

p−1
∑

i=1

φ′

izk−i − c) .

At last, value c can be updated such as zk = ẑk:

c = zk −

p
∑

i=1

φ′

izk−1
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4 Autoregressive Hello Protocol

In this section, we present a novel Autoregressive Hello protocol (ARH) for mo-
bile ad hoc networks. The protocol records historical location information and
applies AR modeling to predict node mobility (moving direction and velocity). It
determines when to transmit ‘hello’ message according to prediction accuracy.
We start with our assumptions. Then we give an overview of the algorithm,
followed by elaboration on individual algorithmic building blocks.

4.1 Assumptions

Nodes have locomotion by being attached to, for example, human being or ani-
mal, and are free to move. They may be constrained computing devices such as
wireless sensors. They are aware of their own geographic location X = [x, y]T

by equipped GPS devices or other localization means. For simplicity, we assume
that time is synchronized. However, this time synchronization assumption is by
no means necessary and can be easily relaxed, as explained at the end of Sec. 4.2.

Nodes independently divide the time domain into slots of equal length λ.
The global parameter λ is a positive real number, the same for all the nodes.
It defines position sampling rate. That is, each node samples its position Xi =
[xi, yi]

T at the beginning of every time slot i. Node movement is described by
direction θi and velocity si. We assume that λ is selected small enough such
that a node’s moving direction does not change more than 2π in each time slot
i. Nodes have equal communication radius rc. Each of them is associated with
a unique identifier (ID) such as MAC address or manufacturer serial number by
which it can be distinguished from others.

4.2 Algorithm overview

After being added into the network, each node n samples its position X at the
beginning of every time slot. The position samples Xi, i = 0, 1, 2, · · · constitute a
time series. n applies the simplified AR modeling to this time series to predict its
own mobility and future position. Considering potential computational weakness
of nodes, we choose to use the simplified AR model [21], as detailed in Sec. 4.3.
At time slot k, it estimates its position at next time slot k+1, and the position
estimate is denoted by X̂. As soon as n obtains the ground truth Xi+1, it checks
position estimate error. If the error is acceptable, i.e., ˆXi+1 is close enough to
Xi+1, it will update the AR-based mobility model by feeding X̂k+1 back to
it as sample (this is the feature of simplified AR modeling); otherwise, it will
update the mobility model using the real sample Xk+1. In the latter case, n also
transmits a ‘hello’ message that carries Xk+1 and its ID. Section 4.4 explains
how to evaluate position estimate error in detail.

Upon receiving a ‘hello’ message from n, each neighboring node m initializes
an AR-based mobility model for n using the enclosed position sample of n if it
has not yet done so, and updates the model otherwise. Between two successive
‘hello’ messages, m uses this locally maintained mobility model to estimate n’s
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Fig. 1. Flow chart of ARH execution. Node n transmits ‘hello’ message according to
the accuracy of its location estimates produced by an AR-based mobility model; node
m is neighboring n and maintains an identical mobility model for n.

position and keep updating the model using position estimates. As such, m
makes the same position estimates for n as n does. This justifies why n transmits
‘hello’ message according to the accuracy of position estimate. Note that n must
transmits a ‘hello’ message right after getting its first position sample in order
to enable parallel model initialization and identical position estimation by m.

Figure 1 shows the flow chart of distributed execution of ARH on nodes n
and m. In Sec. 4.1, we assumed time synchronization for the purpose of sim-
plicity. The algorithm however is not dependent of this assumption. When time
is not synchronized, m and n may not have the exactly the same AR model,
thus identical location estimates, for n. To overcome this problem, n can simply
encapsulate its latest AR mode (all the coefficients and the entire sample set)
rather than just the last position sample into each ‘hello’ message. Then m eas-
ily synchronizes (replaces) its locally maintained AR model for n with the one
maintained by n itself.

4.3 Mobility modeling and position estimation

At each node n, the position samples X0, X1, X2, · · · constitutes a time series.
From it, two associated time series are computed, one for direction θ and one for
velocity s, describing the mobility of n over time. At time slot i > 1, direction
is computed as

θi =















arctan(yi−yi−1
xi−xi−1

) if xi > xi−1

arctan(yi−yi−1
xi−xi−1

) + π if xi < xi−1
1
2π if xi = xi−1 and yi > yi−1

− 1
2π if xi = xi−1 and yi ≤ yi−1

(4)

and speed
si =

√

(xi − xi−1)2 + (yi − yi−1)2 . (5)
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Future direction θ̂i+1 and speed ŝi+1 are predicted in order to deduce a position
estimate of

X̂i+1 =

[

x̂i+1

ŷi+1

]

= X̂i +

[

cos(θ̂i+1)

sin(θ̂i+1)

]

× ŝi+1 . (6)

s series can be directly applied in Eqn. 1; whereas, θ is a cyclic value in [0, 2π]
and needs an adaptation. We thus translate θ series into [0,∞[ by introducing t
series computed as follows:

ti =







θ1 if i = 1
ti = θi + 2kπ otherwise,with k ∈ N s.t.

|ti − ti−1| is minimum.
(7)

Note that the sample rate 1/λ is chosen such that between two successive sam-
ples, the moving direction of node n can not vary more than 2π. Equation 1 is
thus applied on t series to estimate t̂i+1. Finally, θ̂i+1 is obtained from t̂i+1 as
follows:

θ̂i+1 = t̂i+1 − ⌊
t̂i+1

2π
⌋ × 2π . (8)

Then, the mobility model of node n is composed of two simplified AR models,
one for s series and one for t series. The two series are processed independently.
Their corresponding AR models evolve along time by being input with estimates
produced by themselves and are periodically corrected by being fed with new
position samples, as described in Sec. 3.2.

4.4 Evaluating position estimates

When evaluating position estimates, a naive way is to use a pre-defined er-
ror threshold δ. That is, node n transmits a ‘hello’ message at time slot i if
|X̂i −Xi| > δ. This method introduces additional parameter δ, and renders the
algorithm performance subject to the selected parameter value. If δ is too small,
‘hello’ message frequency may unnecessarily increase; if it is too large, each node
could have a stale or ineffective neighborhood map (which degrades the perfor-
mance of other networking protocols, for example, routing protocols). The best
value of δ depends on global network conditions, which are usually beyond the
knowledge available to each node. To enable ARH to work in all mobility sce-
narios and adjust itself seamlessly to one of optimal protocols for any particular
mobility, we propose a parameterless evaluation method.

Specifically, at each time slot i node n maintains two neighborhood sub-
graphs Gn and Ĝn of its neighbors and itself using its true location Xi and
location estimate X̂i, respectively. In both graphs, neighbors’ locations are es-
timates. If an edge between n and neighbor m in Gn disappears in G′

n, we say
there is a false edge deletion in G′

n. Node n constructs a circular order among
its incidental edges according to their appearance sequence in certain direction,
either clockwise or counter-clockwise. If the order is different in the two graphs,
we say there is a false ordered adjacency in G′

n. Node n transmits a ‘hello’ mes-
sage if G′

n contains either false edge deletion or false ordered adjacency. This
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(a) False edge deletion (b) False ordered adjacency

Fig. 2. Evaluating location estimate

topology-based evaluation method does not require any pre-set parameter and
provides a great degree of flexibility.

Figure 2 illustrates the two false situations. Node n has 4 neighbors. Big
circles indicate its communication range. Gn is represented by solid links, while
G′

n is shown by dashed links. In Fig. 2(a), false edge deletion happens to edge
an; in Fig. 2(b), false ordered adjacency involves edges an and bn.

4.5 Detecting neighborhood change

If a node does not transmit ‘hello’ message, its neighbors will consider their
location estimates for that node are correct. They are not able to distinguish
this situation from node failure, where the node is malfunctioning and will never
transmit ‘hello’ message. If a newcomer node arrives without sending ‘hello’
message (it is possible when the current set of neighbors of that node all have
acceptable location estimates), the node will not be able to know it or update
its neighborhood. Additional mechanism is needed for detecting neighborhood
change and improve the algorithm performance.

A straightforward method is to use constant low frequency ‘hello’ message,
regardless of node mobility. While ‘hello’ message loss implies node departure,
forced ‘hello’ transmission increases the chance of new neighbor discovery. How-
ever, this method reserves our efforts so far and brings us back to the original
problem – how to determine the best ‘hello’ frequency. It is not a solution.

Here we propose a ‘hello’frequency predication based solution, similar to the
main body of ARH. We let each node n use an AR model to predict the inter-
arrival time of ‘hello’ message of each neighbor m. If ‘hello’ message does not
arrive on time for more than a threshold number α of times, then n considers that
m has left its neighborhood. Node m builds an AR model for itself to monitor
the inter-departure time of ‘hello’ message. The model is approximately equal
to the model that n builds for it. So, m will follow this model for ‘hello’ message
transmission. It transmits next ‘hello’ message within α number of successive
predicated intervals, even if it does not need to do so by the main algorithm.
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With some additional computation overhead on each node, this solution
adapts to node mobility and ensures detection of leaving neighbors. It still does
not guarantee new neighbor detection since the new neighbor may possibly not
transmit any message before moving away. But nevertheless, this is a problem for
any ‘hello’ protocol though. In fact, it is not possible to guarantee new neighbor
detection because ‘hello’ messages are transmitted at discrete time instants.

5 Performance evaluation

In this section, we evaluate our new hello protocol ARH through simulation,
in comparison with TAP [9] that is to date the most efficient adaptive hello
protocol known. Contrarily to ARH, note that TAP supposes that nodes are not
equipped with GPS-like devices and thus are not aware of their position.

Because the purpose of having a hello protocol is for neighborhood discovery,
the protocol must be able to keep the consistency of neighborhood tables among
nodes at minimal ‘hello’ frequency (i.e., message overhead). Thus in addition
to ‘hello’ frequency, we use two evaluation metrics: neighborhood accuracy and
neighborhood error. Assuming that N(u) is the set of actual neighbors of a node
u, andN ′(n) the set of neighbors known to u (i.e. whose identifier is present in its
neighborhood table), these two metrics are defined below. From their definition,
notice that acc(u) + err(u) is not necessarily equal to 1.

Definition 1. Neighborhood accuracy acc(u) is the proportion of actual neigh-
bors of node u that have been indeed detected by u.

acc(u) =
|N(u) ∩N ′(u)|

|N ′(u)|
× 100.

Definition 2. Neighborhood error err(u) measures both how many neighbors of
node u have not been detected, and how many “false neighbors” remain in its
neighborhood table ( i.e. old neighbors that have not been removed).

err(u) =
|N(u)\N ′(u)|+ |N ′(u)\N(u)|

|N(u)|
× 100.

We implemented the two protocols ARH and TAP usingWSNet/Worldsens [22]
event-driven simulator, with IEEE 802.11 DCF being implemented at MAC layer
and free space propagation model at physical layer. Packet collisions and con-
tention were also implemented. In ARH, we set AR model order p = 5, position
sampling interval λ = 2s and α = 5 (the order of the AR model for ‘hello’ fre-
quency predication; see Sec. 4.5). We generated nodal mobility trace based on
logs obtained from real experiments on pedestrian runners. Node moving speed
was thus spread around a mean value of 1 meter per second. Two examples of
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Fig. 3. Real mobility trace from pedestrian runners (two examples).

mobility trace are shown in Fig. 3, where one curve stands for one runner; mobil-
ity trace data can be found in [23]. A varying number of nodes (from 100 to 300)
were uniformly randomly deployed in a 1000× 1000 square region. These nodes
have the same transmission range rc = 100m. For each setting, we conducted 50
simulation runs to obtain average results.

5.1 Performance in relation with time

We first evaluate the performance of ARH and TAP along time with a fixed
number of nodes. Figure 4(a) plots the message overhead, i.e., ‘hello’ frequency,
of both protocols. In ARH, each node first sends ‘hello’ message with higher fre-
quency so as to train its mobility model on neighboring nodes. Once the training
period (20− 30 seconds in our simulation), the number of ‘hello’ messages sent
greatly decreases to stabilize at about the half of messages sent by nodes with
TAP. This indicates that ARH is much less costly than TAP in both bandwidth
usage and energy consumption.

Figures 4(b) and 4(c) compare neighborhood discovery performance for ARH
and TAP. Starting from a low performance point, TAP achieves increasingly bet-
ter accuracy (resp. lower error) since it adapts ‘hello’ frequency till achieving a
stabilized turnover and better performance. Contrarily, at first, in ARH, each
node first sends a lot of ‘hello’ messages for modeling training. Frequent ‘hello’
transmission leads to very good neighborhood accuracy. After the mobility model
is fully trained, satisfactory location prediction can be computed, and the num-
ber of ‘hello’ messages sent decreases, resulting in a slight decrease in accuracy
and a slight increase of error. After the initial short training period, takes about
20− 30 seconds in our simulation, both protocols stabilize with the same excel-
lent performance, around 96% of accuracy and 6% error in neighborhood tables.

5.2 Performance in relation with number of nodes

Figure 5 plots the simulation results obtained with regards to different number
of nodes after the protocol ARH and TAP pass their initial learning curve. We
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Fig. 4. Performance in relation with time.
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Fig. 5. Performance in relation with number of nodes.

observe consistent performance as the number of nodes change, that is, that the
number of nodes has no impact on the protocol performance. Indeed, in TAP,
the adaptation of ‘hello’ rate is related to the mean speed of nodes and thus
is not impacted by the node density. In ARH, ‘hello’ rate depends on the error
that a node detects between its position estimate and its real position, which are
both independent from the number of neighbors and the total number of nodes.

6 Conclusions

We proposed a novel Autoregressive Hello protocol (ARH) for neighborhood dis-
covery in mobile ad hoc networks (MANET). Each node predicts its neighbors
mobility and position with autoregressive model, based on historical location
reports; it also predicts its own position using position samples in the same
way. The node updates its location among neighbors when the its own loca-
tion estimate leads to false topology change in its neighborhood. Each location
update corresponds to a ‘hello’ message transmission. With AR model order
being set to a small value 5 (implying minimal storage overhead at individ-
ual nodes), simulation results indicate that ARH achieves as high neighborhood
discovery performance as the best-known algorithm TAP [9], at dramatically
reduced ‘hello’ rate (about 50% smaller). This is a great advantage in wireless
communications since more message transmissions indicate more bandwidth us-
age and more energy consumption. It is at the cost of an additional requirement
for location-awareness on each node. We conclude that ARH is an highly-efficient
alternative to TAP when location information is readily available, e.g., in mobile
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sensor networks [2]. If a larger-valued p is used, ARH would have higher neigh-
borhood discovery performance due to increased model accuracy. In the future,
we will study the impact of model order p on ‘hello’ frequency in ARH and the
impact on other network operations such as routing in MANETs.
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