
HAL Id: inria-00599689
https://inria.hal.science/inria-00599689

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validation of real-time properties of a robotic software
architecture

Charles Lesire, David Doose, Hugues Cassé

To cite this version:
Charles Lesire, David Doose, Hugues Cassé. Validation of real-time properties of a robotic software
architecture. 6th National Conference on Control Architectures of Robots, INRIA Grenoble Rhône-
Alpes, May 2011, Grenoble, France. 7 p. �inria-00599689�

https://inria.hal.science/inria-00599689
https://hal.archives-ouvertes.fr

Validation of real-time properties of a robotic software architecture

Charles Lesire and David Doose
ONERA - The French Aerospace Lab

F-31055, Toulouse, France
{charles.lesire, david.doose}@onera.fr

Hugues Cassé
IRIT / University of Toulouse

F-31062, Toulouse, France
casse@irit.fr

Abstract— In this paper, we propose a mechanism allowing
to evaluate the schedulability of a robotic software architec-
ture, and then validate its real-time properties. The robotic
software architecture is described through a Domain Speci�c
Language (DSL), MAUVE, that allows to model communicating
components. The evaluation of schedulability of the architecture
consists in �rst computing the Worst-Case Execution Time
(WCET) of the elementary functions of the components. Then
the Worst Case Response Time (WCRT) of the component is
computed from the elementary WCET and the component mod-
els, allowing to validate the schedulatiblity of the architecture.
We illustrate our methodology on the evaluation of a control
architecture for a ground mobile robot.

I. INTRODUCTION

Robots are more and more used in very diverse situations:
service robotics, where they are directly in contact with
persons; military missions, where they navigate in complex
and dangerous environments; crisis management, where they
may be responsible for the survival of human-beings.

In all these situations, robots must be safe and reliable.
Robotic manufacturers must be able to provide the evidences
that the robot behavior will fulfill some safety requirements.
Such requirements aim at guaranteeing that the robotic
system will hurt nobody, will not damage infrastructure, and
if possible, will accomplish the goal for which the robot is
used.

Among these requirements, we are more specifically in-
terested in the requirements that concern the embedded
software. Software architectures indeed support the behavior
of the robot, in term of movement and navigation, commu-
nication management, and mission achievement.

Software requirements usually deal with the correctness
of the code itself (i.e., verifying that the code corresponds
to a formal algorithm, e.g. for laser mapping, or obstacle
avoidance), and with the evaluation of the schedulability of
the software architecture, i.e. to guarantee that the embedded
software will be executed on time, ensuring for instance
that the motion command will be sent to the actuators at a
specific rate.

Next section presents the state of the art related to valida-
tion of robotic architectures. Then, in section III, we propose
a methodology to analyze the schedulability of a robotic
software architecture, based on a Domain Specific Language
called Mauve. Finally, we illustrate this methodology on the
control architecture of a mobile robot in section IV.

II. VALIDATION OF ROBOTIC ARCHITECTURES

The safety of robotic application can be considered either
online or off-line. Online, the safety of the robot behavior is
ensured by monitoring and controlling the robot’s actions.
[1] models the safe behaviors as LTL formulas, and then
checks the validity (i.e. whether the formulas are true or
not) at execution time, using the robot state and the actions
to perform. Similarly, [2] has developed a Request Checker
component that checks the feasibility of actions using state
and resource information, based on constraint satisfaction
techniques. Although these approaches help monitoring and
controlling the behavior of the robot, no guarantee is given
on this behavior before execution.

Guaranteeing a safe behavior of the robot before execution
is addressed in [3] by first specifying the robot controllers as
Petri nets. From these models, classical Petri net algorithms
allow to verify some safety properties, such as boundedness
or liveness. From these models, transformation techniques
allow to generate some embeddable code, that ensures the
safety properties satisfied by the models. The BIP (Behavior
Interaction Priorities) model [4] is a component-based
specification of the architecture, where components are
described by ports (used as inputs or outputs), and a
behavior, modeled as an automaton. Interaction between
components correspond to either synchronization of the
automata, or data exchange between components. From
these models, some model checker tools allow to verify
some properties on the system architecture, such as
deadlock freedom, or reachability of states. Moreover, code
generation consists in synthesizing a controller, that will
schedule the execution of the components and synchronize
their interactions. Nevertheless, these approaches do not
consider real-time schedulability and properties of the
architecture.

Real-time analysis in robotic applications is usually done
empirically. For instance, [5], [6] have compared the real-
time properties of robotic applications built with several
software environments. Formally analyzing the real-time
behavior of the robot architecture has not been studied in
the literature.

Hence, we propose to start this formal validation of real-
time properties of robotic software architecture, by first
modeling the architecture components and their interactions,
and then analyze the worst case execution time of the

functions that are executed by these components.

III. VALIDATION OF REAL-TIME PROPERTIES

Formal analysis of real-time systems is often supported
by specific languages and tools, such as temporal logic,
automata, Petri nets. . . However, using this kind of language
has some drawbacks: (1) the resulting models are often too
detailed, making the modeling task quite complex; (2) each
language is relevant for a specific set of properties, forcing
to use several tools and models to analyze complete system;
and (3) the modeling task must be redone each time a new
system is considered.

To overcome these issues, the general approach is to define
a modeling language for the target domain. This Domain
Specific Language (DSL) is defined in order to model all the
system information that are useful for the analyses. It is then
used as a pivot language for several model transformations,
that will allow to use different tools and methods for the
system analyses.

A. MAUVE: a component-based DSL

In order to analyse robotic systems, we have defined a DSL
called MAUVE (Modeling AUtomatic VEhicles). Mauve
allows to model mono-processor real-time architectures
in which the robotic control architecture is defined by
communicating components.

1) The component model: Mauve allows to model li-
braries of reusable components. A component is described
by several elements (Fig. 1):
• Services: each component can provide a set of services

(called operations) to the other components; it can
also need a specific service (called method); execution
modes are associated to services in order to define
which task will execute the corresponding function;

• Ports: components can exchange data through ports;
a component define its input and output ports, with
the type of the received or sent data; connections
between ports are defined by connectors the specify the
connection policy (buffered or not) and some parameters
(size of the buffer, initial data, . . .); a specific input port,
the event port, wakes up the component when a new
data is received;

• Execution: each instantiated component is described by
a set of dynamic properties: its period, its priority and
its deadlines; these parameters are used for the analysis
and the execution;

• Properties: each component has a set of properties that
define the component parameters;

• Behavior: each component has a specific behavior
defined by a finite state machine (FSM); each state of
the FSM is associated to several pieces of elementary
codes (called codels):

– the entry codel is executed at the step when the
component enters this state;

– the message codel executes the queuing messages;
– the method codel executes the queuing methods;

– the run codel is executed at each step when this
state is active;

– the exit codel is executed at the step when the
component leaves this state.

This component description is consistent with a lot of
component-based middleware classicaly used in robotics [7],
[8], [4], [9].

2) Architecture description: The whole embedded system
on which the analysis is performed is composed of several
components, that interacts either by port connections, or by
service calls. Each component is hosted by a task with the
same execution properties as the component. The tasks are
executed on a preemptive real-time system with a fix priority
scheduler.

The first step towards the temporal validation of the control
architecture is to evaluate the Worst Case Execution Time
(WCET) of each component codel.

B. WCET Computation

We show in this section that safe WCET can only be
estimated by static analysis for critical embedded system
and how this analysis is performed.

1) Motivation: There are several approaches to obtain a
WCET. The simple one consists in testing the application
with different input sets, to measure the execution time and
to take the worst one. This approach may be improved by
stopping tests when some level of application coverage rate
is reached.

While this approach works well with simple architectures,
it becomes quickly unsafe with more powerful and modern
microprocessors. To achieve power required by more and
more complex embedded applications, statistic mechanisms
like caches, branch predictors and prefetchers are added
to the hardware. These facilities are designed to enhance
performances in the average case but, in some situations,
they may exhibits very long timings, even worse than if they
were not used.

Usually, such a configuration is hard to reach using the
measurement approach because (1) it is hard or almost
impossible to accurately set the state of these facilities and
(2) it is not straight-forward to determine what is the worst
configuration for a given program.

In the opposite, the static analysis approach attempts to
model the whole embedded system, software and hardware,
in order to compute an overestimation of the WCET. Current
software and hardware are so complex that it is specious
to hope to cope with the full system behavior. Yet, the
method used in static analysis ensures that the WCET is
safe, by providing an overestimation of the actual WCET.
The issue is now to reduce as much as possible the difference
between the estimated and the real WCET. Such a difference
is not usually computable; otherwise we can exhibit easily
the real WCET. Yet, we can identify parts of the computation
where overestimation may arise. The more the parts are
overestimated, the more the WCET is inaccurate.

Fig. 1: Mauve component modeling

Let’s take the example of a memory cache, a small fast
memory put between the fast microprocessor and the slow
main memory. It contains a subset of main memory blocks:
when the processor performs a memory access, if the block
is in the cache, we have a hit and a fast access, else a
miss and the block must obtained from main memory (slow
access). Usually, the static analysis assigns a category to each
cache block access. This may be Always Hit, Always Miss or
Persistent (once loaded in the cache, it is no more evicted).
The last category copes with the fact that the cache behavior
is too complex to be modeled, Not Classified. In this case,
the WCET computation is evaluated taking into account both
cases, either a Miss, or a Hit. This is not required [10] but
the computation may consider each Not Classified block as
a Miss. Although such a case is likely not to arise, the
obtained WCET remains safe because we can assert it is
an overestimation, but at the price of loosing precision.

Unfortunately, the main limitation of the static analysis
approach remains that some hardware features does not
exhibit predictable-enough behavior to be efficiently
modeled. Therefore, a tradeoff must be found between
hardware and program complexity to ensure safe WCET
computation.

2) Computation: In this article, the OTAWA frame-
work [11] has been used. It implements the Implicit Path
Enumeration Technique (IPET) that has currently shown the
best results. The execution is modeled by an Integer Linear
Programming (ILP) system whose maximization produces
the WCET. The WCET computation is divided in 3 stages:
• path analysis,
• timing analysis,
• WCET computation.
The first stage extracts the Control Flow Graph (CFG)

from the binary of the application. A CFG provides a way
to represent compactly the execution paths of the program.
Its nodes are blocks of machine instructions and its edges
represent the control flow between the blocks. We have to

work at the machine code level because we need to model
precisely the instruction execution inside the pipeline of the
microprocessor. When the control flow of an application is
too complex to be automatically extracted (for example with
function pointers), the user can help the construction by
providing annotations on the control flow. Figure 2 shows
an illustrative source code (Fig. 2a) and the corresponding
CFG (Fig. 2b).

i n t sum (i n t t [1 0 0]) {
i n t i , s ;
s = 0 ;
f o r (i = 0 ; i < 100 ; i ++)

s += t [i]
re turn s ;

}

(a) Source program

x0

x1

x2

x3

e0,1

e1,2

e1,3

e2,1

(b) CFG

Fig. 2: Example of a CFG corresponding to a source code.

The timing analysis stage is usually split in the global
timing analysis and and the local timing analysis. In the first
phase, different analyses are applied to model behavior of
each long time-effect facilities as memory caches or branch
prediction. In the second phase, the results of the previous
analysis are used to compute the execution time ti of each
block of the CFG. Usually, several times for a block may
be produced to cope with different executions. For example,
block 2 has two timings t2 and tm2 to support, respectively,
hit and miss in the memory cache.

In the last stage, the ILP system is built from the results
of the previous stages. For instance, the ILP system corre-

sponding to Fig. 2 is:

WCET = MAX(t0x0+t1x1+th2x
h
2+tm2 xm

2 +t3x3) (1)
x0 = 1 (2)
x1 = e0,1 = e1,3 + e2,1 (3)
x2 = e1,2 = e2,1 (4)
x3 = e1,3 (5)
e2,1 ≤ 100 (6)
x2 = xh2 + xm2 (7)
xm2 ≤ 1 (8)

The WCET is the sum of the execution time of each block
multiplied by the number of time the block is executed (eq.
(1)). Then constraints are added to the ILP to model the
hardware and software effects on the WCET:
• to model CFG (for example, a block is executed as many

times as the predecessors are executed – eq. (2)-(5)),
• to bound loop iterations (that causes circularity in the

CFG – eq. (6)).
• to take into account global effects (like cache misses

and hits – eq. (7) and (8) for Persistent category),
Passed to an ILP solver, the maximization of the system

returns the WCET and the number of times each block is
executed in the worst case.

C. Schedulability analysis

We propose a methodology to analyze the schedulability
of the architecture, i.e. that each component will respect its
deadlines. This analysis is based on the computation of the
Worst Case Response Time (WCRT) of each component,
i.e. the delay between its waking and the end of its execution.

1) Methodology: Several methods are classically used
to evaluate the WCRT of a task. However, they cannot be
simply used as the Mauve components are communicating
together, creating some interaction between tasks. To
evaluate the WCRT of such complex components, we
will first transform the Mauve models into Periodic State
Machines (PSM), and then approximate these PSM models
into classical tasks, on which classical evaluation methods
can be used (Fig. 3).

2) Mauve to PSM transformation: Each component is
mapped into a periodic state machine. A PSM (Fig. 4) is
a finite state machines in which one transition fires at each
activation (i.e. at each period for periodic components). Each
transition is associated to a computation time, obtained from
the WCET evaluation of the corresponding codel. The PSM
model is not deterministic: at each step, several transitions
may be enabled. The PSM also owns the execution properties
of the component (period, priority, deadline).

The PSM transformation associated one PSM for each
active component. Passive (or non active) components corre-
spond to libraries: they provide services to other components
but are not mapped into a task. The active components that
wake up on data reception (event ports) have specific PSM

Mauve

Periodic State Machine

PSM approximation

Tasks Set

Schedulability Analysis

Fig. 3: Validation process. Model transformations are based
on the rewriting tool Tom [12].

a b

c

2
7

1

10

5

8

Fig. 4: A Periodic State Machine.

models where the activation frequency is upper bounded.
The PSM model takes into account service calls between
component. Data exchange are considered as non blocking
and instantaneous (null duration).

The PSMs generated from the Mauve models have three
interesting properties:
• the PSMs are strongly connected, i.e. each state is

reachable from any other state;
• each state has loop transitions, leading to a possible

infinite stay time;
• for each couple of states (a, b), it exists at most one

transition from a to b.

3) PSM to tasks transformation: The next step consists in
mapping the PSM models to task models. The tasks are built
from the computation of upper bounds of possible execution
run whose length is bounded.

Let consider the PSM of the i-th component. We compute
all the possible runs of length ki = dmaxjDj

Ti
e of the PSM,

where Dj is the deadline of the j-th component and Ti
is the period of component i. ki represents the number of
activation of component i. An execution run (or trace) is a
sequence of execution durations (ej)1≤j≤ki that correspond
to the duration of execution of the transition fired at the j-th
activation of the component. For instance, the PSM of Fig. 4

has abbc as a run of length 3, whose sequence is (7, 1, 10).
Then we define an approximation Ai of the traces Ti of

length ki for component i, according to equations (9) and
(10).

e1(Ai) = maxt∈Ti e1(t) (9)
∀l ∈ J2, kK,

el(Ai) =

maxt∈Ti l∑
j=1

ej(t)

− el−1(Ai) (10)

Figure 5 shows traces abbc = (7, 1, 10), bbca = (1, 10, 8),
ccaa = (5, 8, 2) and their approximation A = (7, 6, 6).

Fig. 5: PSM Approximation.

4) Worst Case Response Time: From the approximation
of the component PSMs, each element of the approximation
traces are considered as individual instantiated tasks. We can
then perform a classical schedulability analysis on this set of
tasks.

The computation of the WCRT consists in considering
that all tasks wake up at the same time, that correspond
to the worst case . Then we incrementally consider the
interactions (preemption and delays) coming from tasks with
a higher priority. The computation ends when either no more
interaction is possible with higher-priority tasks or if the
deadline is exceeded. The process then follows a fix point
computation.

Let Ri be the WCRT of task τi. hpi represents the set of
tasks whose priority is higher than task τi. rij is the waking
time of the j-th instance of task τi (rij = j.Ti). The fix point
computation is defined by the following process:

1) R0
i = Ci,1

2) Rn+1
i = Ci,1 +

∑
(j,l),j∈hp(i),l=1..kj/rj,l≤Rn

i
Cj,l

3) If Rn+1
i ≥ Di, the deadline is exceeded;

4) If Rn+1
i = Rn

i then Ri = Rn
i

5) Otherwise, Rn
i := Rn+1

i and go back to step 2.

IV. EVALUATION OF THE CONTROL ARCHITECTURE OF A
MOBILE ROBOT

A. The robot architecture

We consider a custom tracked robot, built on a TTRK-
KT base (Fig. 6). The architecture of the robot is made of
two processors: an ARM7 processor is used as an interface
towards the TTRK base (direct control of motors, odomerty);
an ARM9 processor is used to embed all the processing
(sensor management, control laws, . . .). In this study, we
are only considering the latter processor, whose frequency is
200MHz, and that runs a Linux Ubuntu distribution with the
real-time Xenomai patch.

Fig. 6: The TTRK tracked base.

B. The Orocos middleware

The software architecture of our robot is developed on
top of the Orocos middleware [8]. Orocos has some specific
elements that match quite well with the Mauve DSL: the
software architecture is described by components, that are
defined by ports, services, state machines, hooks (that cor-
respond to codels), port connections, and execution engines
(that own the execution parameters – period and priority).

Each component’s behavior is described by a Finite State
Machine (FSM). The default FSM is shown in Fig. 7; where
each transition corresponds to a codel call. It is also possible

PreOp

Stopped

Running

configure cleanup

start

configure

stop

update

Fig. 7: Orocos standard FSM.

to define a custom FSM, while attaching codel calls to either
transition, or specific state functions (entry, run, exit).

C. Architecture components

The robot software architecture is represented on Fig. 8.
It is composed of six components: IG500 acquires position
data from a GPS sensor; CHR-6dm acquires attitude data

from an IMU sensor; CICAS sends control command to the
robot tracks; StateFusion agregates position and attitude
information and provides the robot state vector; Command
computes the track command from the system state and the
target pose.

CHR-6dm

IG500

StateF. Command

CICAS

Fig. 8: Robot control architecture. Plain lines are data flows
between components. Dashed lines represent operation calls.

IG500, CHR-6dm and StateFusion are defined by the
default Orocos FSM. These components are periodic, with
a period of 10ms for IG500 and StateFusion and 1ms
for CHR-6dm.
CICAS has no FSM and only provides a send service

that sends the track command frame to the TTRK control
processor.
Command has a specific FSM, defined by two control

modes: Rotating when the control command consists in a
rotation, and Reaching when the control command consists
in reaching a given point. In each mode, a specific codel is
called to compute the control command to apply, then the
send service of component CICAS is called. The Command
component is periodic with a period of 10ms.

D. Real-time evaluation

The scedulability analysis of the robot software architec-
ture is then performed on the Orocos components (modeled
with the Mauve DSL). The WCET computation is made
on the codels, while the WCRT computation is made on
the component models. As defined in [9], the codels are
independent of the middleware, allowing more flexibility of
the design.

This approaches induces that no analysis is performed on
the Orocos code itself: we make the assumption that Orocos-
specific execution time is null. This assumptions allows to
make some schedulability analysis on the architecture, and
will be discussed in the conclusion.

Moreover, as neither priority nor deadlines are defined
for the Orocos component, we allocate them in a classical
way for real-time systems: shortest period has the higher
priority, and the deadline are defined equal to the periods.

Table I summarizes the Orocos components, their execu-
tion parameters, the WCET of the codels, and the resulting
WCRT. The results of this analysis are that the system is

schedulable, and that the processor load is 0, 67. It means
that all the component will always satisfy their deadline.

This result points out the safety of our control architecture,
as far as the real-time properties are concerned.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an approach for the vali-
dation of the real-time properties of a software architecture.
This approach is based on the Mauve DSL, that allows to
model the architecture as communicating components. A first
step consists in computing the WCET of the component
codels, and then deduce the component’s WCRT from the
WCET and the component model. These WCRT lead to a
conclusion on the schedulability of the architecture.

We have also shown an application of this approach on
a robot control architecture developed and deployed using
the Orocos middleware. The architecture, that only contains
basic components for navigation control, has been proved
to be schedulable on a 200MHz ARM9 platform.

This case study is being extended to consider more
components, including more consuming processing, such as
mapping and obstacle avoidance from laser data, and onboard
decision making. The schedulability analysis, even if it fails
at the beginning, will force to better define the architecture,
by optimizing the codel code, or adjusting priorities or
periods.

Another step of the validation process will be to
investigate, first, an analysis of the Orocos code, for
instance by evaluating the WCET of the data exchange
(writing/reading on ports), or the service call, and second to
evaluate our approach on another target middleware.

Finally, the objective will be to provide an environment
for the development of a robotic architecture, that will allow
to specify the components and the architecture, to write the
associated codels and evaluate their WCET, and finally to
generate the target code (either Orocos, another middleware,
or bare C code) while verifying the schedulability of the
resulting embedded architecture.

REFERENCES

[1] P. Doherty, J. Kvarnström, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS), vol. 19, no. 3, pp. 332–377, 2009.

[2] F. Py and F. Ingrand, “Dependable execution control for autonomous
robots,” in International Conference on Intelligent Robots and Systems
(IROS), Sendai, Japan, 2004.

[3] L. Montano, F. Garcia, and J. Villarroel, “Using the time Petri net
formalism for specification, validation, and code generation in robot-
control applications,” International Journal of Robotics Research
(IJRR), vol. 19, no. 1, pp. 59–76, 2000.

[4] A. Basu, M. Gallien, C. Lesire, T.-H. Nguyen, S. Bensalem, F. In-
grand, and J. Sifakis, “Incremental component-based construction and
verification of a robotic system,” in European Conference on Artificial
Intelligence (ECAI), Patras, Greece, 2008.

[5] A. McKenzie, D. Gay, R. Nori, J. Davis, and M. Anderson, “Com-
paring temporally aware mobile robot controllers built with Sun’s
Java Real-Time System, Orocos’ Real-Time Toolkit and Player,” in
International Conference on Intelligent Robots and Systems (IROS),
Taipei, Taiwan, 2010.

Component Period (ms) Priority Codel WCET WCRT (µs)Cycles Time (µs)
CICAS - - send 1′030′335 5′512 -
CHR-6dm 1 1 update 28′846 145 145
IG500 10 2 update 168 1 146

StateFusion 10 3 update 267 2 413

Command 10 4
update 1′064′752 5′324

6′607Rotating 13′782 69
Reaching 34′417 173

TABLE I: Component description and WCRT results.

[6] A. Shakhimardanov and E. Prassler, “Comparative evaluation of
robotic software integration systems: a case study,” in International
Conference on Intelligent Robots and Systems (IROS), San Diego, CA,
USA, 2007.

[7] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand, “An Ar-
chitecture for Autonomy ,” International Journal of Robotics Research,
vol. 17, no. 4, 1998.

[8] P. Soetens and H. Bruyninckx, “Realtime Hybrid Task-Based Control
for Robots and Machine Tools,” in International Conference on
Robotics and Automation (ICRA), Barcelona, Spain, 2005.

[9] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“GenoM3: Building middleware-independent robotic components,”
in International Conference on Robotics and Automation (ICRA),
Anchorage, AK, USA, 2010.

[10] T. Lundqvist and P. Stenström, “Timing anomalies in dynamically
scheduled microprocessors,” in IEEE Real-Time Systems Symposium
(RTSS), Washington, DC, USA, 1999.

[11] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an
Open Toolbox for Adaptive WCET Analysis,” in IFIP Workshop on
Software Technologies for Future Embedded and Ubiquitous Systems
(SEUS), 2010.

[12] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles,
“Tom: Piggybacking rewriting on java,” in Conference on Rewriting
Techniques and Applications (RTA), Paris, France , 2007.

