
HAL Id: inria-00599694
https://inria.hal.science/inria-00599694

Submitted on 10 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control Architecture Concepts and Properties of an
Ontology Devoted to Exchanges in Mobile Robotics

Saadia Dhouib, Nicolas Du Lac, Jean-Loup Farges, Sébastien Gerard, Miniar
Hemaissia-Jeannin, Juan Lahera-Perez, Stéphane Millet, Bruno Patin, Serge

Stinckwich

To cite this version:
Saadia Dhouib, Nicolas Du Lac, Jean-Loup Farges, Sébastien Gerard, Miniar Hemaissia-Jeannin, et
al.. Control Architecture Concepts and Properties of an Ontology Devoted to Exchanges in Mobile
Robotics. 6th National Conference on Control Architectures of Robots, INRIA Grenoble Rhône-Alpes,
May 2011, Grenoble, France. 24 p. �inria-00599694�

https://inria.hal.science/inria-00599694
https://hal.archives-ouvertes.fr

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Control Architecture Concepts and Properties of an Ontology

Devoted to Exchanges in Mobile Robotics

Saadia Dhouib(1), Nicolas du Lac(2), Jean-Loup Farges(3), Sébastien Gerard(1),

Miniar Hemaissia-Jeannin(4), Juan Lahera-Perez(5) , Stéphane Millet(6), Bruno Patin(6)

and Serge Stinckwich(7)

(1) CEA-LIST, (2) INTEMPORA, (3) ONERA

(4) TRT, (5) INRIA, (6) DASSAULT AVIATION

(7) GREYC

Abstract

A specific ontology is proposed in the scope of the development of a platform devoted to

exchanges between academics and industrials of the robotic domain. This paper presents the

tools used for knowledge elicitation, the concepts and properties linked with control

architecture, the use of the resulting ontology for description of some scenarios and the tracks

for the development of a domain specific language grounded on the ontology. Knowledge

elicitation is performed in web ontology language thanks to Protégé ontology editor. The

ontology is structured as a set of modules organized around a kernel. Modules addressing

systems, information, robot and mission include concepts and properties for control

architecture description. The expressivity of the ontology is demonstrated describing

architectures for a set of scenarios; urban robotic scenario, air-ground scenario, landmark

search scenario and military unmanned aerial vehicles scenario. Finally some tracks for the

use of the ontology for developing a domain specific language are given.

Keywords

Ontology ; Control ; Architecture ; Robot.

1 INTRODUCTION

An ontology is a formal representation of knowledge that describes a given domain [1]. It

organize the knowledge as a set of concepts with relations between them.

Plateforme pour la Robotique Organisant les Transferts Entre Utilisateurs et Scientifiques

(PROTEUS) is a research software platform under development [2] by several french

academics and industrials partners. It aims at facilitating transfer of knowledge of the mobile

robotic domain from the academic world toward the industrial one and problems from the

industrial world toward the academic one. The PROTEUS specification propose the following

use case:

• A first user of the platform provides a problem to the platform,

• A second user gets the problem from the platform and designs a solution for

this problem,

• The second user provides the solution to the platform,

• The first user gets the solution from the platform.

This use case indicates that the second user has to understand the problem given by the first

user and that the first user has to understand the solution given by the second user. Thus they

have to share a common language; they have to agree to use a vocabulary in a way that is

consistent with respect to a theory. Moreover, thanks to a computer science language consistent

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

with the theory, artificial agents that commit to the theory can be designed for the purpose of

simulation or test on the field of the solution developed by the second user. For those reasons

the development of a theory grounding a vocabulary is required for the PROTEUS platform.

Candidates formalisms for specifying this theory are Unified Modelling Language (UML) and

ontologies. Ontologies compliant with description logics are known to offer greater support for

automated reasoning and cleaner solutions for defining complex relationships than UML. Thus

the theory associated to the PROTEUS vocabulary is specified through an ontology. Moreover,

simplifying the ontology into UML structural diagrams is an approach for the development of a

Domain Specific Language (DSL), that may facilitate the exchanges between users, the

configuration of simulation and the projection on actual robots.

2 STATE OF THE ART

Several ontologies have already been proposed in the context of robotics. There is a usually

a distinction between ontologies designed to be used directly by robots during their reasoning

and ontologies suitable to model the robotic domain in every aspect. Even if

the intersection between these approaches is not empty, we are interested here mainly in the

second category.

In the late nineties, two ontologies with concepts in French have been proposed from the

study on test of decisional autonomy of robots: an robotics ontology and an environment

ontology [3]. This robotics ontology is organized in five points of view: agent, component,

flow, control and state. It is relevant for PROTEUS and its organization in points of view

facilitate its presentation but the implementation of this organization through abstract classes

may be a drawback for the development of a computer science language. The ontology

includes some ternary relations that may be difficult to implement. In this ontology, the concept

of state is defined in general terms that are applicable for continuous and discrete processes.

However, the concept is used only in the discrete case. Each instance of the agent concept

manages dynamics. This concept is a quite efficient way to specify a simulator to be generated.

The hierarchical decomposition of the robot with components is an interesting feature with

respect to the ability of generating simulations with different levels of abstraction. This

decomposition could also be applied to functionalities and to states. Finally the robot

components and the spatial objects could be specializations of a common concept.

Ontology based Component Oriented Architecture (OCOA) [4] is a robotic architecture

based on behaviours and ontologies. The OCOA ontology describes a control architecture for a

very specific component model. The generalisation of OCOA to a set of control architectures

and component models could be very useful for PROTEUS.

The Multi-Layered Context Ontology Framework (MLCOF) [5] describes the context of a

robot. MLCOF includes 6 Knowledge Layers (KLayer) : image, 1D geometry, 2D geometry,

3D geometry, object and space. The structure of the ontology of each KLayer is based on

concepts, relations, functions of relations, hierarchies of concepts, relations of hierarchy and

axioms. Each KLayer include a meta-ontology, an ontology and an ontology of instances. The

meta-ontology describes general information about the entities to de modelled while the

ontology describes specific entities. The main propose of MLCOF is to help robots in object

identification tasks.

Ontology-based Multi-layered Robot Knowledge Framework (OMRKF) [6] is an extension

of MLCOF. This robot centred description ontology is organized in knowledge boards with

four knowledge levels: perception, model, context and activity. Each knowledge level is

organized in three layers: high, intermediate and low levels. Each layer includes the same

elements than MLCOF: meta-ontology, ontology and ontology of instances. OMRKF has been

validated by an experiment with actual robots using Prolog to implement reasoning.

An ontology for robotic rescue with 230 classes, 245 attributes and 180 instances is

presented in [8]. This ontology is specific for search and rescue missions.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

RoSta
1
 (Robot Standards and Reference Architectures) is a Coordination Action (CA)

funded under European Union’s Sixth Framework Programme (FP6) from January 2007 to

February 2009. The objective of RoSta was to take initiative to defined formal standards in the

context of advanced service robotics. In this context, they have defined a glossary and

ontology
2
 for mobile manipulation and service robots.

The overview of the state of the art indicates that each ontology is devoted to a purpose.

Thus a specific ontology is developed for PROTEUS. This ontology includes concepts and

properties strongly linked with control architectures that are presented in this paper.

3 CONCEPTS AND PROPERTIES

3.1 Tools for Knowledge Elicitation

3.1.1 Web Ontology Language

The PROTEUS ontology is described using the Web Ontology Language (OWL). Three

elements of OWL are extensively used for the PROTEUS ontology description: namespace,

class and property.

A namespace is container that provide the context for the content of an OWL file. A

namespace prefix can be used for modifying the meaning of the name of a class or a property in

function of the context of the OWL file it belongs to. For instance a property

hasPhysicalCharacteristics, belonging to the kernel.owl file can be written

kernel:hasPhysicalCharacteristics.

A class encapsulates the meaning of a concept. Class hierarchies may be created by making

one or more statements that a class is a subclass of another class. Classes may have instances.

A property describes a kind of association that is possible between classes. Property

hierarchies may also be created by making one or more statements that a property is a

subproperty of one or more other properties. For instance the has property, which is a generic

composition property, can be specialized in hasPhysicalCharacteristics, which is a property

that may apply only to physical objects.

3.1.2 Protégé
Protégé

3
 is an ontology editor that is compatible with OWL. The presentation of the

ontology in this paper is illustrated by graphs generated with Protégé. Nodes of the graphs

correspond to classes or instances and oriented arcs correspond to properties. Class hierarchies

are symbolized on graphs by specific arcs with a isa label. Moreover an arc with an io label

indicates that the upstream instance is an instance of the downstream class.

3.2 Ontology Structure

The ontology is organised in a modular way as a set of specialized modules build over a

general purpose kernel. The kernel, as well as each module, corresponds to one specific OWL

file and to one specific namespace. Moreover a specific PROTEUS file integrates the kernel

and the modules. Namespace prefixes are systematically used for the names in the files. Table

1 indicates the namespace prefixes and the contents of corresponding OWL files.

1
 http://www.robot-standards.eu/

2
 More information about this ontology are available in the deliverables D1.2 “Report on

Requirement Analysis of Glossary/Ontology Standards”, D1.3 “Plan and Recommendations on

Glossary/Ontology Standards” & D 1.4 “Example of modelling and design by using an

ontology-based methodology”.
3
 http://protege.stanford.edu/

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Prefix Contents

proteus Links to all parts of PROTEUS ontology.

kernel General classes and properties.

env Classes and properties devoted to the description of the environment to

be simulated for the verification or validation of a solution through a

numerical experiment.

expe Classes and properties devoted to the description of the use of the

PROTEUS platform: problem, solution, verification and validation in

simulation and by field tests.

information Classes and properties devoted to the description of information

processed or exchanged.

mission Classes and properties devoted to the description of the missions of the

agents involved in a scenario.

robot Classes and properties devoted to the description of the robot elements.

simu Classes and properties devoted to the description of the simulation

framework and the simulation tools used to test solutions.

system Classes and properties devoted to the description of systems.

Table 1 : Namespace prefixes for PROTEUS ontology OWL files

The kernel and all the modules, except the env module, the expe module and the simu

module, include knowledge about control architecture. Next sub-section includes the

description of the system and kernel modules. Both are presented together because kernel is

closely linked and dependent of system. Indeed, system represents the basis of the ontological

architecture. Afterwards, each relevant module is introduced in successive sub-sections.

3.3 System and Kernel

3.3.1 System

The present ontology follows a system-based or system-driven architecture. All the logical

units or logical entities which achieve an interaction (either physical or logical interaction) with

another entity in the ontology, are considered as a system. We can think of a system as a block

which triggers interactions and is impacted by interactions coming from other systems, and

which owns an input/output interface that we will call 'ports'. Thus, this logical entity is the

basic communication unit of the PROTEUS ontology. Consequently, the control architecture of

the final platform will rely and will be inspired somehow on this ontological basis. A clear

evidence of this system-based ontology can be appreciated considering the development of the

PROTEUS DSL; the language will have an important part of its architecture based on block

entities with message passing between them by means of interconnected ports. This schema

answers to the ontological basis of “system”. Hence, the final code generation and control

architecture of the platform will be guided by the DSL and in turn by the ontology.

We can see a schematic example of the ontological idea of System, showing a possible

graphical piece of the DSL in Figure 1.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

 Figure 1: System block diagram as it could be displayed by a graphical DSL

3.3.1.1 System Hierarchy

We can find several classifications of System, organized in a hierarchical way in the

ontology. A first classification level is shown in Figure 2.

 Figure 2: System's first level of classification

A system can be an aggregate of other subsystems (CompositeSystem) or an individual unit

of interaction (AtomicSystem). It can be considered as a logical unit (Software) or as a

physical entity (PhysicalObject). All of these aforementioned systems respond to a point of

view about physical/logical components within the scenario (robotic hardware, robotic

software, environment elements), hence it is a composition guided hierarchy. Nevertheless it is

possible to add to this hierarchy a logical view of the functional part of the Robotic Platform;

this is the RoboticManagementSystem entity. Finally, ControlStationSystem is an entity in

the platform independent from a robotic system. However, this station communicates and

controls a target robot of the specific scenario. There is a property hasEvolutionModel that

links a System to one or several EvolutionModel. This feature can be used not only to

describe the dynamics of any part of the control architecture but also the dynamics and

capabilities of real components.

Figure 3 shows a part of this classification with some of the most important relationships

mentioned above.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

 Figure 3: System classification and relationships

Some of the previous subclasses of System are worth explaining due to their meaning,

subsequent classficiation and relationship with other entities:

CompositeSystem: As aforementioned, this is a composition of other subsystems. In this

classification, our ontology comprehends the following entities: Environment, Robot,

RoboticSubsystem. The latter is classified in turn in: ActuatorSystem,

CommandableDeviceSystem, CommunicationSystem, PowerSystem and SensorSystem.

Except CommandableDeviceSystem which represents commandable units in the system

hierarchy, all the other subclasses of systems are composed by both a driver and a hardware

part. The ontology contains a constraint in order to impose the mixed Driver/Harware

composition of a RoboticSystem.

PhysicalObject: It involves all the physical entities in the scenario. In the corresponding

subclassification it is possible to find Agent (Human and Robot), the different components of

the Environment and Hardware. Hardware contains Clock, ActuatorHw (motorization,

prehension or weapon hardware actuators), CommunicationHw, PowerHw and finally

SensorHw. As part of the sensor classification, the ontology embraces

EnvironmentParametersSensorHw, ImageSensorHw, LocalizationSensorHw,

ObjectDetectionSensorHw, ObjectTrackingSensorHw.

Software: It makes reference to the logical component in a computational unit. It can be a

library, a framework, an object file or an Application (Driver or RoboticMiddleware in the

case of the robotic platform). The drivers represent the software part of all the aforementioned

hardware entities. Thus, parallely it is possible to find a driver for each one of the presented

hardware components: ActuatorDriver, CommunicationDriver, PowerDriver,

SensorDriver and the analogous subclassification for actuators and sensors that can be found

in the hardware as well.

Both parts, hardware and driver, make up the corresponding robotic subsystem for the robotic

platform.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

The link between Software and Hardware is also explicitly expressed by means of the

relationship Software executesOn Hardware.

RoboticManagementSystem: This is the set of functional system entities of the robotic

platform, i.e. the different main group of functions, which embraces different sets of

algorithms, that will be used by the robotic platform in some specific scenarios. It does not

involve the composition of the system as the previous classification, thus it is just another way

to classify the systems without taking into account which software, hardware or physical

objects compose it.

In this general functional set it is possible to find: ControlSystem,

MissionManagementSystem, MotionPlanningSystem, PlatformManagementSystem and

SecuritySystem.

3.3.1.2 Interaction and dynamic aspects

Another important aspect to be described in this system-based architecture is the exchanges

between systems. As shown in figure 4 System hasPort and Port isTheSupport of

Interaction. As aforementioned, Port is our entity to interface the input/output interaction

between systems. For emitting, System triggers Interaction that isEmittedOn Port. For the

reception process, Interaction isReceivedOn Port and impacts System.

The System module of the ontology expands the notion of Interaction in order to embrace

the relationships between the physical and logical components of the platform: Hardware and

Software. Hence, it is considered SoftwareToSoftwareInteraction,

DriverToPhysicDeviceInteraction and PhysicDeviceToDriverInteraction as a classification

of Interaction. Other interactions triggered by some systems are introduced in the

classification; in this way Noise and Bias represent interactions which can impact on

SensorSystem or ActuatorSystem, for example. This hierarchy is shown in figure 5.

It is essential to describe not only the structure of the system architecture but also its

dynamical aspects. The EvolutionModel class is the basis for the description of this dynamic.

Not only System, but also Interaction hasEvolutionModel.

Two specific types of EvolutionModel (Algorithm and StateMachine) and the general

schema of evolution are presented on figure 6. An Algorithm is an effective method for

solving a problem expressed as a sequence of instructions. A StateMachine isDefinedBy

Transitions and Events and, of course, it relies in the entity State to carry out the evolution of

the system.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 4: Interactions and dynamic aspects of a System

Figure 5: Interaction classification of system module.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

 Figure 6: EvolutionModel.class

3.3.2 Information

The Information class that is a central concept in PROTEUS ontology. As shown on figure

7, Information is directly and indirectly linked to Interaction. The direct link indicates that

Interaction transmitInformation. The indirect link indicates that Interaction hasProtocol

and that Protocol constrains Information.

Both Data and Abstraction are Information. Data is directly interpretable by a machine,

for example boolean and bits are Data. Abstraction is not directly interpretable by a machine

but provides some meaning that can be indirectly interpretable, for instance State is an

Abstraction meaning that the Information can be the input or the output of an

EvolutionModel. It is important to note that Abstraction isCodedIn Data. Indeed despite the

fact that objectively speaking a control architecture only processes and transmits Data, the

understanding and analysis of the architecture is grounded on Abstraction.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 7: The Information class

3.4 Information

The main classes of information namespace that are relevant for architecture description are

specializations of kernel:Data. Those classes, shown on figure 8 are:

• Collection contains a possibly modifiable set of kernel:Data with coherent types

and fitted with a data structure (indexation, ad hoc or natural order, father/child

relation, etc).

• PhysicalData represents a mathematical algebraic object with an associated physical

unit.

• TimestampedData is any information combined with a timestamp that may

represent its creation date.

• ComposedData represents any aggregation of heterogenous kernel:Data with no

specific structure (in the computer science meaning) which can be consistently

interpreted in robotics. Of course, this is not exhaustive. This class can be widely

extended depending on application. See messages like defined in JAUS, FIPA,

ADL...

• PrimitiveData is a type of kern:Data which corresponds to the primitives of the

standard computing interpretation: boolean, classical number representation (int,

double, ...), character

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 8: Main relevant classes and properties of information

3.5 Robot

The module Robot of the ontology introduces the definition of the entity Robot as subclass

of Agent and CompositeSystem. A constraint is imposed in the characterization of this entity:

Robot is an aggregation of some RoboticSystems (which are defined by the composition of a

software and a hardware part).

This module introduces a hierarchy based on unmanned/piloted property. It is possible to

find aerial, water surface, ground and underwater vehicles in this classification for both

unmanned and piloted robots. The “Robot” module is presented in figure 9.

Figure 9: Robot Module

3.6 Mission

Figure 10 presents the main classes and properties of mission namespace.

The class OperationalInformation is a specialization of kernel:Information that is

characterized by being related to operations. The ontology includes several specializations of

OperationalInformation. Among those specialisations Mission and Task are presented on

figure 10. Mission is a description of an operational mission that can be used by the

kernel:Agent performing it and that can be used for performance assessment. Task

corresponds to a task as defined in Hierarchical Task Networks.

The class FiniteStateMachine is a specialization of kernel:StateMachine that is

characterized by having a finite number of kernel:AutomataState. The specialization

MissionStateMachine indicates that the FiniteStateMachine is the range of the property

hasMissionStateMachine whose scope is Mission.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

A Mission instance isDescribedBy its MissionStateMachine instances, its Constraint

instances and its Task instances. The Workflow of the Mission isDescribedBy the same

MissionStateMachine instances.

Finally the hasRessource property allows the enumeration of kernel:Agent instances

participating to a Mission instance.

Figure 10: Main classes and properties of mission

4 APPLICATION TO SCENARIOS

4.1 Scenarios

The validation of the PROTEUS platform is based on a set of robotic challenges. The

problem associated with each challenge is provided to challengers through the PROTEUS

platform and the challengers provide their solution to the problem through the PROTEUS

platform. Each robotic challenge is a part of a more global scope corresponding to a scenario.

For this reason, before developing a computer science language consistent with the ontology a

set of scenarios are used for verifying it. The verification is based on four scenarios; three of

them are directly issued for challenges and a fourth is issued from a different robotic domain.

The scenarios linked to challenges are:

• The urban scenario is an implementation of a robotized taxi service as a non

segregated mode in the streets of a city. This scenario will conduct to a challenge on

the Pavin test site in Clermont-Ferrand.

• The air ground scenario is an implementation of the use of unmanned aerial vehicles

and unmanned ground vehicles for an area surveillance aiming at searching and

tracking intruders. This scenario will conduct to a challenge on the military camp of

Caylus.

• The landmark search scenario is an academic scenario for the pedagogic use of

problem based learning in the institutions teaching robotics. This scenario will

conduct to a challenge in the DGA site of Bourges.

The fourth scenario is a strike in the depth performed by a package of unmanned aerial

combat vehicles. This military unmanned vehicle scenario is an implementation of the use of

robotized aircraft for very dangerous war missions.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

4.2 Urban robotic

Taxi is an instance of both robot:UGV and kernel:CompositeSystem that is considered in

the urban scenario. Taxi kernel:aggregates a set of instances related to its control architecture.

Those instances and their classes are shown on Table 2.

Instance(s) Classe(s)

LIDARSensor system:EnvironementParameterSensor

StereoVisionSensor VisonSensor system:ImageSensorHardware

MetricGPSSensor OdometerSensor

RTKGPSIMUSensor

system:LocalizationSensorHardware

LIDARDriver system:EnvironementParameterSensorDriver

StereoVisionDriver VisonDriver system:ImageSensorDriver

MetricGPSDriver OdometerDriver

RTKGPSIMUDriver

system:LocalizationSensorDriver

Control Servoing system:ControlSystem kernel:Software

Mapping TrajectoryPlanning system:MotionPlanningSystem

kernel:Software

Localisation system:PlatformManagemenetSystem

kernel:Software

ObstacleDetection

MonitoringAndIntegrity

system:SecuritySystem kernel:Software

BrakesDriver MotorDriver

SteeringWheelDriver

system:MotorizationDriver

Brakes Motor SteeringWheel system:MotorizationHardware

Table 2. Instances related to control architecture and aggregated by Taxi

All instances belonging to Taxi are instances of classes specializing kernel:System. Thus

those instances can kernel:triggers kernel:Interaction. Moreover kernel:Interaction can

kernel:impacts them. A set of instances of specializations of kernel:Interaction are used for

describing the exchanges. system:PhysicDeviceToDriverInteraction instances are:

- LIDARInput

- MetricGPSInput

- OdometerInput

- RTKGPSIMUInput

- StereoVisionInput

- VisionInput

system:SoftwareToSoftwareInteraction instances perform exchanges, abbreviated by Ex,

in the software part of the control architecture:

- ExLIDARMeasurement

- ExMetricGPSMeasurement

- ExOdometerMeasurement

- ExRTKGPSIMUMeasurement

- ExStereoVisionMeasurement

- ExVisionMeasurement

- ExDetectedObstacle

- ExEstimatedPosition

- ExBeliefAboutEnvironement
- ExTrajectory

- ExCommands

- ExBrakesCommand

- ExMotorCommand

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

- ExSteeringWheelCommand

system:CommandOutput instances are:

- BrakesCommandOutput

- MotorCommandOutput

- SteeringWheelCommandOutput

The kernel:triggers of the instances of specialisations of kernel:System and

kernel:impacts of the instances of specialisations of kernel:Interaction are set in order to

describe the control architecture of Taxi. The result is shown on figures 10, 11 and 12.

Figure 11: Sensing part of control architecture of Taxi

.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 12: Functional part of control architecture of Taxi

Figure 13: Actuation part of control architecture of Taxi

In the urban scenario Taxi has to perform a mission which consists in picking and dropping

passengers. The evolution of this mission is described by TaxiMissionEvolution instance of

mission:MissionStateMachine. TaxiMissionEvolution kernel:isDefinedBy seven

kernel:Transition instances and five kernel:AutomataState instances. Figure 13 illustrates

the use of the relations kernel:from and kernel:to for describing the evolution constraints.

Figure 14: Mission of Taxi

In order to be able to perform a mission, the previously described architecture has to be

complemented with a mission management function. Figure 14 presents some aspects of this

integration. TaxiMissionManager is an instance of system:MissionManagementSystem and

kernel:Software. It kernel:hasEvolutionModel TaxiMissionEvolution.

ExDesiredDestination is an instance of system:SoftwareToSoftwareInteraction aiming at

giving a destination to TrajectoryPlanning. ExDestinationReachedSignal is an instance of

and kernel:Event. The relation kernel:on of the kernel:Transition instances

StartPickingAfterEmpty and StartDroping are set to ExDestinationReachedSignal in order

to indicate that the event fire the transitions.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 15: Integration of a mission manager in the Taxi architecture

4.3 Air-Ground

RTrooper is an instance of both robot:UGV and kernel:CompositeSystem. Rmax is an

instance of both robot:UAV and kernel:CompositeSystem. Both are considered in the air

ground scenario and kernel:aggregates a set of instances related to its control architecture. For

example, as illustrated in figure 16, RTroper kernel:aggregates GPSSensorOfRTrooper that

is an instance of system:LocalizationSensorHardware. The multi-robot architecture of the

scenario is defined with RobotTeam that is an instance of kernel:CompositeSystem that

kernel:aggregates RTrooper and Rmax. RobotTeamMission is mission:Mission instance

that is performed by both robots. This is indicated by configuring the range of its

mission:hasRessource property with RTrooper and Rmax. RobotTeamMission

mission:isDescribed by Surveillance and Detection that are instances of mission:Task,

indicating that some hierarchical planning has to be performed by the multi-robot architecture

to fulfil its mission.

Figure 16: Multi-robot architecture of RobotTeam

4.4 Landmark Search

WifiBot is an instance of both robot:UGV and kernel:CompositeSystem. It

kernel:aggregates a set of instances related to its control architecture. Among those instances:

- WheelMotor1, WheelMotor2, WheelMotor3 and WheelMotor4 are instances of

system:MotorizationHardware.

- Camera is an instance of system:ImageSensorHardware.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

- Odometer1, Odometer2, Odometer3, Odometer4, GPS, IMU and

MagneticCompas are instances of system:LocalizationSensorHardware.

- Proxymeter1, Proxymeter2, Proxymeter3, Proxymeter4 and LaserRanging are

instances of system:ObjectDetectionSensorHardware.

- WifiLink is an instance of system:CommunicationHardware.

- WheelControl is an instance of system:Closed-Loop_ControlSystem and

kernel:Software.

- Localisation and Navigator are instances of system:PlatformManagemenetSystem

and kernel:Software.

- Servoing is an instance of system:ControlSystem and kernel:Software.

- ProximityMapping is an instance of system:SecuritySystem and kernel:Software.

- GlobalPlanning is an instance of system:MissionManagementSystem and

kernel:Software.

- LocalMapping and PathPlanning are instances of system:MotionPlanningSystem

and kernel:Software.

The kernel:Software instances exchange information through an instance of

system:CommandOrder, ExCommands, and through a set of

system:SoftwareToSoftwareInteraction instances: ExEstimatedPosition, ExLocalMapInfo,

ExLongTermObjective, ExPath, ExProximityMapInfo and ExShortTermTarget.

Figure 17 presents the description of the functional part of the WifiBot architecture with

ontology instances. It is more complex than the functional part of the architecture of Taxi. It is

interesting to observe the loop ExEstimatedPosition – LocalMapping – ExLocalMapInfo –

Localization that indicates a Simultaneous Localization And Mapping (SLAM) problematic

embedded in the landmark search scenario. An alternative architectural solution for WifiBoot

could be to substitute LocalMapping and Localization by an kernel:AtomicSystem SLAM

system.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 17: Functional part of architecture of WifiBot

4.5 Military Unmanned Aerial Vehicles

In the following figure, we have an instance of kernel:CompositeSystem named FCAS, it

aggregates of an instance of system:ControlStationSystem named GroundControlStation

and two instances of robot:UAV named UAV7 and UAV8.

These 3 last instances are kernel:PhysicalObject which are part of an instance of

kernel:Environment named Environment. UAV7 and UAV8 can move in this Environment.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

The GroundControlStation can interact with UAV7 and UAV8 using an instance of

kernel:Interaction named RobotControl.

Figure 18: High level system decomposition

In the following figure, we detail the different parts of UAV7 from the Hardware point of

view. It has an instance of kernel:CompositeSystem based UcavPlatform. This platform

aggregates two other kernel:CompositeSystem, one named UcavPayload, the other named

UcavEquipments.

The payload is composed of two system:WeaponHardware named BGL1000-1 and

BGL1000-2.

The defined pieces of equipment are a system:ObjectDetectionSensorHardware

RadarHarware, a system:MotorizationHardware, a system:CommunicationHardware

and a kernel:Hardware OnBoardComputer.

Figure 19: System decomposition of UAV7

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

As can be seen below, the OnBoardComputer hosts several instances of

system:RoboticManagementSystem named: MissionManagementSystem, a

WeaponManagementSystem, a SensorManagementSystem and

NavigationManagementSystem. The OnBoardComputer interacts with the UcavPlatform7

using a kernel:Interaction named PlatformManagement.

Figure 20: Software hosted in computer of UAV7

In the following, we introduce an instance of mission:Mission named

UAVPackageMission. The resources for this mission are UAV7 and UAV8, this mission

defines a mission:MissionStateMachine which is used as a kernel:EvolutionModel by the

MissionManagementSystem of the UAVs. This MissionStateMachine has a

kernel:AutomataInitialState TakeOffPhase, a kernel:AutomataEndState LandingPhase

and several kernel:AutomataStates (DommesticPhase, FebaCrossingPhase,

TacticalNavigationPhase, AttackPhase).

Figure 21: Mission for MissionManagementSystem of UAV7

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

5 TOWARDS A DOMAIN SPECIFIC LANGUAGE

In the PROTEUS project, the usage of models in the context of the robotics domain is

investigated into two forms: ontologies that have been presented in the previous sections and

domain specific languages.

Coming from the Artificial Intelligence (AI) and Semantic Web (SW) circles, ontologies are

used mainly to represent domains. The Model Driven Engineering (MDE) field gave birth to

Domain Specific Languages (DSLs) to represent a particular technical domain. Several works

have used ontologies for their semantic or structural synergy with DSLs. Those works are

combining the ontologies with DSL at a meta-level to extend the coverage of a DSL [11] or to

integrate a variability viewpoint straightforwardly in a DSML [12].

In the context of the PROTEUS project, the ontology is firstly used to represent the domain,

i.e. inferring information from a Knowledge Base that complements with the DSL and then to

develop the DSLs, i.e. as a representation of experts’ knowledge. The methodology we

followed in PROTEUS is described in figure 17. We show the DSL design process that

integrates the ontology. The design process consists in four steps:

1. The requirements of the DSL are gathered from both following sources: in the one hand

from the ontology and in the other hand from the state-of-the-art on DSL for robotics

systems.

2. Building the domain model of the DSL: The purpose of the domain model is to describe

formally the concepts of the domain. The domain model is described by the means of

one or more class diagrams, as well as in the form of textual descriptions.

3. Domain model verification: this step is intended to verify that the aforementioned

domain model is covering all the requirements expressed in the first step. This step can

lead to adding some concepts that have been integrated in the domain model of the DSL,

and that are not belonging to the ontology.

4. UML/textual representation: An alternative for the specification of a DSL is the use of

UML, which is a widely known modelling language that has a lot of support tools [13].

Another alternative is a textual representation of the DSL.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Figure 22: Methodology of the development of the PROTEUS DSL

The ontology is involved in the steps 1 and 2 of the DSL design process. Indeed, the first

requirement of the DSL is to correspond to domain concepts defined in the ontology. The other

requirements, coming from the ontology, are derived from this one. From the ontology, we

extract all the concepts that are specific to the domain. Those concepts are then filtered to retain

only the relevant ones for the DSL. On the other hand, if some concepts are missing in the

ontology, they are added to the domain model of the DSL.

Ontology (OWL) Domain model (UML class diagram)

Concept Class

subClassOf Inheritance

Property Association, Attribute

Property:IsA Inheritance

Property:HasA Composition

Cardinality Multiplicity

 Table 3. Mapping the ontology to the DSL domain model

The Table 3 shows the transition from the ontology, written in OWL DL language, to the

DSL domain model specified as a UML class diagram. OMG also proposes the ODM

(Ontology Definition Metamodel) which defines a set of QVT mappings from UML to OWL

[14]. Only the automatic transformation from UML to OWL is implemented, the

transformation from OWL to UML is not implemented yet. So we have not taken advantage of

the ODM project to make the transition from OWL to UML.

6 CONCLUSION

The PROTEUS ontology devoted to the description of mobile robotic scenarios in view of

their numerical simulation or test field is described using OWL. The kernel and the system,

information, mission and robot modules include classes and properties allowing control

architecture description. The main useful features provided by the ontology are:

• Basic concepts such as software, types of data, hardware, sensor, actuators and types

of mobile robots,

• Hierarchical static system description suited as well for isolated robots than for

groups of robots with a ground station,

• Dynamical system description grounded on interactions between systems and

evolution models such as state machines,

• Decisional system description on the basis of tasks and mission.

None of those features is new. The contribution of the work is to gather them in a common

framework understandable and sharable by a large majority of people involved in the

development of control architecture of mobile robots. The use of the ontology for describing

some aspects of several different scenario ranking from academic landmark search to military

strike indicates that the ontology is able to gather information for different types of control

architectures and is not devoted to a specific architectural approach. Finally the development of

a DSL on the basis of the PROTEUS ontology open the way to automatic code generation for

simulation and projection to a target robotic middleware.

However, the work on an ontology seem to be an endless work. Indeed:

• DSL developers are the first users of the ontology and their feedback may lead to

some improvements.

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

• Then challenge providers and challengers, who will use the DSL to describe their

problems and solutions, will probably have some feedback on the DSL. It is likely

that this feedback will impact the ontology.

7 REFERENCES

[1] T. Gruber. Toward principles for the design of ontologies used for knowledge sharing.

International Journal of Human-Computer Studies, 43(5-6):907–928, 1995.

[2] P. Martinet and B. Patin. PROTEUS: A platform to organize transfer inside french robotic

community. In Proceedings of the 3rd National Conference on Control Architectures of

Robots, CAR 2008, May 29-30 2008.

[3] P. Deplanques. Vers le test de l’autonomie des robots: une ontologie de la robotique. PhD

thesis, Université de Montpellier 2, 1996.

[4] F. M. Casas and L. A. Garcìa. OCOA: An open, modular, ontology based autonomous

robotic agent architectures. In D. Scott, editor, Artificial Intelligence: Methodology,

Systems, and Applications, 10th International Conference, AIMSA 2002, volume 2443 of

Lecture Notes in Computer Science, pages 173–182, 2002.

[5] W. Hwang, J. Park, H. Suh, H. Kim, and I. H. Suh. Ontology-based framework of robot

context modeling and reasoning for object recognition. In L. Wang, L. Jiao, G. Shi, X. Li,

and J. Liu, editors, Fuzzy Systems and Knowledge Discovery, Third International

Conference, FSKD 2006, volume 4223 of Lectures Notes in Artificial Intelligence, pages

596–606. Springer-Verlag, 2006.

[6] I. H. Suh, G. H. Lim, W. Hwang, H. Suh, J.-H. Choi, and Y.-T. Park. Ontology-based

multi-layered robot knowledge framework (OMRKF) for robot intelligence. In IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 429–436. IEEE, 2007.

[7] J. Hallam and H. Bruyninckx. An ontology of robotics science. In H. Christensen, editor,

European Robotics Symposium 2006, volume 22 of STAR (Springer Tracts in Advanced

Robotics), pages 1–14. Springer-Verlag, 2006.

[8] C. Schlenoff and E. Messina. A robot ontology for urban search and rescue. In Proceedings

of the 2005 ACM workshop on Research in knowledge representation for autonomous

systems, KRAS 2005, pages 27–34. ACM, 2005.

[9] J. Bateman and S. Farrar. Modelling models of robot navigation using formal spatial

ontology. In C. Freksa, M. Knauff, B. Krieg-Brückner, B. Nebel, and T. Barkowsky,

editors, Spatial Cognition IV, volume 3343 of Lecture Notes in Artificial Intelligence,

pages 366–389. Springer-Verlag, 2005.

[10] A. Chella, M. Cossentino, R. Pirrone, and A. Ruisi. Modeling ontologies for robotic

environments. In Proceedings of the 14th international conference on Software engineering

and knowledge engineering, SEKE 2002, pages 77–80. ACM, 2002.

[11] T. Walter and J. Ebert. Combining dsls and ontologies using metamodel integration. In

W. Taha, editor, Proceedings of the IFIP TC 2 Working Conference on Domain-Specific

Languages, number 5658 in Lecture Notes in Computer Science, pages 148–169. Springer-

Verlag, 2009.

[12] B. Morin, G. Perrouin, P. Lahire, O. Barais, G. Vanwormhoudt, and J.-M. Jézéquel.

Weaving variability into domain metamodels. In 12th International Conference on Model

Driven Engineering Languages and Systems (MODELS 2009), volume 5795 of Lecture

Notes in Computer Science, pages 690–705, Denver, Colorado, USA, Oct. 2009. Springer-

Verlag.

[13] G. Giachetti, B. Martin, and O. Pastor. Using uml as a domain-specific modeling

language: A proposal for automatic generation of uml profiles. In Advanced Information

 6
th
 National Conference on “Control Architectures of Robots” Grenoble, May 24-25, 2011

Systems Engineering, volume 5565 of Lecture Notes in Computer Science, pages 110–124,

2009.

[14] IBM and Object Management Group and Sandpiper Software. Ontology Definition

Metamodel (ODM). Available at: http://www.omg.org/spec/ODM/1.0/, 2009.

