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Adaptive estimation in the nonparametric random coe cgent
binary choice model by needlet thresholding

Eric Gautier¥? and Erwan Le Penneé?
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Abstract

In the random coe cients binary choice model, a binary varia ble equals 1 i an index
X> is positive. The vectors X and are independent and belong to the sphereS* ? in
RY. We prove lower bounds on the minimax risk for estimation of t he density f over Besov
bodies where the loss is a power of the P(S* ) normfor1 p 1 . We show that a hard
thresholding estimator based on a needlet expansion with data-driven thresholds achieves these
lower bounds up to logarithmic factors.
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1 Introduction

Discrete choice models (seeg.g. [21]) have applications in many areas ranging from plannig of
public transportation, economics of industrial organizations, evaluation of public policies, among
others. This paper considers the binary choice model. Thereagents (consumer, rm, country,
etc.) choose between two exclusive alternatives 1 or -le(g., buying a good or not) the one that
yields the highest utility. The utility that an agent i gets from choosing alternative -1 (resp. from
choosing 1) is assumed to have the form

Ui=2 9 i+ 1 (respiugi = zg; i+ 15); 1)

where z 1; (resp. zi;) is a vector of d 1 characteristics of alternative -1 (resp. 1) for agent
i,d 2, ; are preferences of agent for the characteristics, and 1 and i; absorb both the
usual error terms and constants. In [1), the preferences arallowed to vary across individuals;
namely, they are heterogeneous. This translates into a veor of coe cients  indexed by i that
we assume random. The characteristics of the alternativesra indexed by the agents, for example
they can be characteristics of two goods that a consumer hasot choose upon interacted with
individual characteristics like age or distance. We assumehat the random coe cients and errors
are independent from the characteristics. The statistician observes a sample of characteristics and
choices for agentsi = 1;:::;n, but ;, uzj, and u 1, are not observed. Observing the choices
corresponds to observing the sigry; of the net utility u;; u 1. Indeed, agenti prefers 1 {; = 1)

if and only if the net utility for 1 is positive, i.e.,

Ui U 15 = 15 vit(zn z 1) >0 2)

and prefers -1 ¢ = 1) when
Ui U 15 <0



We assume that the probability that ( 1 1i; ) Iisthe 0 and thus that agenti is indi erent
(i.e., uz;i u 1 =0)on a set of 0 probability. Hence, the linear random coe ci ents binary choice
model is

yi =sign X7 i ; ®3)

where, for a real numbera, sign(@) is 1ifa> 0,-1ifa< 0,and is 0 ifa=0,

Xi=@L(zi 2 1)) = Q@u z2 1))

i=( 5 1 1) = (g uis i)

andj j is the Euclidean norm inRY. Like in [3] 4, [10,[13] among others, we consider a nonparant
speci cation of the joint distribution of and this model is more general than the Logit, Probit,
and Mixed-Logit models. Note that it is important to avoid re stricting the dependence between the
coordinates of (1 1; 7)) since they can be functions of a deep heterogeneity paramet (e.g.,
the type of a consumer).

We denote byY, Z;,Z 1, X, 1, 1, ,and the population quantities corresponding to the
lower cases letters indexed by. The random vectorsX and are elements of the unit spheres® 1
of RY. For the main results of this paper we maintain the following restrictions on the distribution
of ( 7;X7).

Assumption 1  (Al.1) X and are independent,

(A1.2) X and have densitiesfx and f with respect to the spherical measure .
Assumption 2 (A2.1) f (x)f ( x)=0 fora.e. x in ¢ 1,

(A2.2) The support of X , denoted bysupp(fx ), is H* = fx2 S 1: x; 0g,

(A2.3) fyx is known and we haveAy < kfx ki: (4+) < 1 and Bx £ kl=fx ko1 (u-)< 1.

Under Assumption[D, f is solution of the ill-posed inverse problem: for a.ex 2 H*
Z
E[YjX = x] = sign x>y f (y)d (y) € Kf (x): (4)
S 1

The operator K in (B) is a convolution on S¢ 1. Estimation of f in (@) is thus related to statistical
deconvolution onS® ! (see,e.g., [12,[16,19]). However, the left-hand side of[{4) is not a desity but
a regression function where the regressors are random. Thdénti cation issue in this model stems
from the fact that: (1) the distribution of the observed data only characterizesKf on supp(fx )
which is a proper subset ofS? ! and (2) due to the sign function K has an in nite dimensional null
space. The support ofX can only be as large adH* because the rst coordinate of X is positive.
This is because we allow for the term 4 i in (B).

A simple estimator for the density of in this model is given in [10]. There, rates of convergence
for the LP-losses for 1 p 1 over Sobolev ellipsoids based on the same’Lspace (as well as
con dence intervals for the value of the density at a point, treatment of endogenous regressors,
and of models where some coe cients are nonrandom) are obtaied under similar assumptions for
choices of the smoothing parameters which depend on unknowparameters of the Sobolev ellipsoids.
It is assumed in [10] that the support of lies in an (unknown) hemisphere, namely, that there
exists n (unknown) in S* 1 such that P(n> > 0) = 1. This assumption rst appeared in [L3]



and is stronger than (A2[D). It implies that for some di eren ce of the characteristics, or taking a
limit of these, everyone chooses the same alternative. In otrast, (A2.L) is much less restrictive
and does not imply "unselected samples”. However, everythg in [I0] also holds under (AZ1).
Assumption (A2.2) requires that the support of Z; Z 1 is RY and is also made in[[ID[13].[]9]
allows for continuous regressors which support is a properubset at the expense of assuming some
form of unselected samples and relying on integrability assmptions involving f It is possible to
obtain identi cation of f when we relax (A2[2) and the requirement thatfx exists (see (ALR)).
This is done in [8]. The estimation in this case is the subjectof future work. (A2.B) strengthens
(A2.2) and is used to obtain rates of convergence. It could b&iewed as an assumption on the tails
of X. It is relaxed in [1I0] and in this paper at the end of Sectior’b.Note as well that Assumption
(A1.2) allows for one nonrandom coe cient in the original scale and that when there are more than
two, one should proceed as in Section 5.2 in[10] with the estiator developed in this paper.

In this paper, we show that the estimator in [10] can be written as a plug-in of a linear needlet
estimator. Needlets are a class of linear combinations of $grical harmonics which form a tight
frame of localized functions on spheres (se&]25]). Hard-tesholding of series estimators based
on needlets have been successfully used in statistics fortiesation of functions de ned on spheres
(see [2] for densities,[T24] for regression functions, an@{, [18,[19] for some inverse problems) or
compact manifolds (see[[I5]). This paper proves lower bourgdon the minimax risk when the degree
of integrability in the loss - speci ed by the statistician - can di er from the degree of integrability
of the Besov body containing the unknownf , giving rise to sparse and dense regimes. The lower
bounds correspond, up to logarithmic factors, to the upper tounds in [10] over Sobolev ellipsoids
and matching degrees of integrability. This paper proposego replace the linear needlet estimator
in [Z0] by a nonlinear estimator based on hard-thresholdingwith data-driven thresholds and use
the same plug-in strategy as in[[10]. The upper bounds on theisk of the estimator also correspond
to the lower bounds up to a logarithmic factor, but over all Besov bodies, including nonmatching
degrees of integrability. Both the upper and lower bounds ae also given for the sup-norm loss.
The data-driven thresholds are similar in spirit to [5] for density estimation using the Dantzig
selector (see alsd[6, 24] for other local thresholding preclures over the sphere), they are based
on sharp concentration inequalities and make the implemersdtion of the estimator feasible as it is
independent of features of the unknown density. Proofs areigen in the appendix.

2 Preliminaries

We use the notation x * y and x _ y for the minimum and the maximum between x and y. We
write X .y when there existsc such that x  cy, x & y when there existsc such that x  cy, and
x' ywhenx. yandx &y. We denote byjAj and 1, the cardinal and indicator of the set A, by
N the nonnegative integers, byN the positive integers, by a.e. almost every, and by a.s. almst
surely. We denote for1 p 1 by k ko the "P-norm of a vector, by k k, the usual norm on
the space [P(S® 1) of p integrable real-valued functions with respect to the spheical measure .
We write LD, (S 1) (resp. LBen(S? 1)) the closure in LP(S? 1) of continuous functions on S 1
which are odd (.e., foreveryx 2 S* 1 f( x)= f(x)) (resp. even). Everyf 2 LP(S? 1) can be
uniquely decomposed as the sum of an odd and even function and f* in LP(S" 1). The space
L2(s? 1) is a Hilbert space with the scalar producth; i derived from the norm, theref andf*

are orthogonal. D is the set of densities and, as it will become clear after Propsition[d, (d) = d=2
is the degree of ill-posedness of the inverse problem.



2.1 Harmonic analysis

L
The basic element is the orthogonal decomposition #(S* ) = ~ |, H*4, where HX¢ are the

eigenspaces of the Laplacian onS* 1, corresponding to the eigenvalues g, given by g4 «
k(k + d 2), of dimensionL(k;d) € (2k+ d 2)(k+ d 2)=(ki(d 2)i(k+ d 2)). The space

H*¢ is spanned by an orthonormal basis fi; ) and HO by 1. We also have 12 ,,(S" 1) =

pan HZP 0 and L6 (S 1) = |, H . The projector Lig onto H*? is the operator with
kernel )
Lk
' L(k;d R}
Lia(6y)= N Gohg () = —— 0D p @ oy ©)
1=1 (8* HP (1)

where (d)=(d 1)=2, the surface ofS* 1is (S¢ !)=2 92=( d=2), and C, are the Gegenbauer
polynomials. The Gegenbauer polynomials, de ned for >  1=2, are orthogonal in the space of
square integrable functions on [ 1; 1] with measure (1 t?) 172dt. We haveP, (t) =1, P, (t)=2t
for 60, P2(t)=2t, and for everyk 2 N

(k+2)P, (1)=2( +k+1tP, () (2 + K)P,(1): (6)
P 1
Clearly, for f 2 L2(S? 1), we havef =, Lxaf and, due to @),
Lykid)

8x 2 S 1 KLy (x; )k = jhi (x)j2 =
=1

L(k;d
S "

Powers ( ) °f fors2 Randf inF,al Banach spaceE; are de ned in a Banach spaceE; when
1

Lkaf isdenedin Ex and () Sf & k=0 E;d Lkaf converges inE,. The best approximation in

L"(S® 1) of a function f by harmonics of degree less or equal tm is

Enm(f)r = Linf kf Pk, :
P2 " Hkd

k=0

Deniton 3 Fors>0and1l r 1 ,f belongs to the Sobolev spad&/$(S? 1) if
kfkes = kfk, + () 5%f <1
We denote by W8 4, (S? 1) the restriction of W $(S* 1) to odd functions.
Deniton4 Fors>0,1 r 1 ,and0<q 1 ,f belongs to the Besov spadBy, (¢ 1) if

kf k’gﬁq = kfk + 2Eyu(f), jan o, <L

2.2 The operator

Proposition 5 The operator K satis es the following properties:

(P1.1) Foreveryf 2 LY(S? 1), Kf = K(f ),



(P1.2) If Kf = Kgwith f;g 2 L1, (S %) theng=f,
(P1.3) Foreveryl r 1 |,
A € B (RS B LV e C O F
where the exponents (d) j 1=r 1=2j(d 2) cannot be improved,
(P1.4) Foreveryl r 1 |, there existsB(d;r) such that

M
8K 2 N; 8P 2 Hkd: kK Pk, B(d;r)K Dkpk,: (8)

k=0
k odd

Moreover, K is a self-adjoint and compact operator onL?(S* 1) with null spacel2,.,(S" ), nonzero
eigenvalues( 2p+1:4)p2n COrresponding to the eigenspacebi 2°*? d for p2 N

LSS g oy, 2 20513 @ 1)
S R 24T g 1)(d+1)  (d+2p 1)

For every d 2 Nnflg, for every p2 N, there existsc (d); C (d) > 0 such that
cMdp @ j zpaaf C(dp @ 9)
K is a homeomorphism betweeit 2,,(S* 1) and W,‘%,, (5% 1).

The fact that (d) is the degree of ill-posedness of the inverse problem folie from (P1[d) and what
follows, in particular (8).

Proposition § implies that every R 2 Wz(d)

odd (S 1) has a unique inverse given by

N X 1 X 1 Lykd) )
K *(R)= —Lkd (R) = — hR; hyihy (10)
k odd Kd k odd Kd =1

2.3 Needlets

Smoothed projection operators (se€ [10]) have good appraxiation properties in all LP(S" 1) spaces
and are uniformly bounded from LP(S? 1) to LP(S* 1). One such operator, the delayed means, is
the integral operator with kernel

ad (- def s L \)-
K (X’ y) - a 23 Lk;d (Xr y)! (11)
k=0

where J is an integer,a is a C! and decreasing function on [@1 ) supported on [0; 2] such that,
forevery0 t 2,0 a(t) 1land, forevery0 t 1,a(t)=1. The delayed means operator
exhibits nearly exponential localization (see Theorem 2.2n [25]) and is a building block for the
construction of needlets.



De ne bsuch that b?(t) = a(t) a(2t)fort 0. Itis nopzero only when 22 t 2, satises
R(t)+ KP@t)=1for 1=2 t 1 and thus for everyt 1, 1-1:0 b? 5 =1, also k(t) = a(t) for
1 t 2. Take a such that bis bounded away from0on 35 t 5=3.

The second ingredient for the construction of needlets is awpdrature formula (Corollary 2.9 of

[25]) with positive weights ! (j; )? 2 and nodes 2 ; which integrates functions in ﬁ'zo H kd
and satisfy, for a constantC which depends ond,
82N;8 2 ;; Cc 2@ D j j c2dD

C 12 j(d 1)=2 '(J: ) cC 2 j(d 1)=2:

Needlets are de ned as

def . X k g s
P =10 ) b g Lka(Gx) W 2N 2 (12)
k=0
o; (X) = Loa(;x): (13)

Forj =0, o. (x)is constantand g is a singleton.
The LP-norms of the needlets satisfy, for a constantC, that can depend ond,

8j 2N; 8 2 j; C, 2 D=2 1% ok, Cp2(¢ D=2 1), (14)

P, P , ,
Iff 2 LP(S? Y)forl p 1 ,thenf = i 2, j 1 j . The needlets form a tight

frame, with unitary tightness constant, this means that for f 2 L2(S% 1)
XX )
kf k3 = jhf; g e
i=0 2

Needlets do not form a basis and there is redundancy. Lemmi 6sée [[2]) relates P(S® 1) norms
at level j to “P norms of needlet coe cients. Constants may depend ond.

Lemma6 (i) Foreveryl p 1 , there exists a constantCS such that for everyj 2 N and

()2,2R
X 0oj(d 1)(1=2 1=
i szl( )@ =2 1=p) (), j ‘p; (15)
2 p
ii ere exists constantsca and cpa and setsA; i with jA;j] ca2 or j suc
(i) Th [ dc, d A i with jA;] 20 1 2N h

that foreveryl p 1 ,j2N,and( )2a, 2RM,

X . P
i Cpa 2 VA2 AP (s (16)

P
2Aj P

(ii) Foreveryl p 1 |, there exists a constantcgosuch that for everyj 2 N
0 11,

@ juf; g jjPA 2100 DA=2 2% Ok kp: (17)



Needlets are such that (se€]25]), for all functiora in the de nition of the smoothed projection
operators, the normk kgs de ning the Besov spaces is equivalent to
na

Kk, = 2(s#d DA=2 1=) (. :
Br:q ( L I)2 i i2N g

The ball of radius M for this norm is denoted by B7, (M ).
Recall the following consequence of the proof of the contimus embeddings in[[2].

Lemma7 (i) Ifp r 1 ,thenwe haveB3, (M) B3,(C™ 'M),
(i) If s>(d 1)1=r 1=p andr p 1 ,thenwe haveBi, (M) Bpq" Y™ P (wm),

(i) Iff 2Bgg(M)and( j; ), jon are its needlet coe cients, then there exists (Dj)j2n 2 RN
such thatk(Dj);2nke M and
X
87 1 8J 2 N: J ! jz Cl (Z"f)=I’Dj22 jz (s+(d 1)@1=2 1:(zAr))): (18)
2

Finally recall that, when f 2 Bf, with s> (d 1)=r, then f is continuous.

3 Identi cation of f

Let us present the arguments for the identi cation of f . Proposition[d (P1[) implies that Kf =
Kf is odd. Thus under (A2[2) we can de ne the odd functionR as

E[YjX = X] forae.x2H™

R(X) = E[YjX = x] fora.e.x2 H?

(19)

and we have, for a.e.x 2 S¢ 1, R(x) = Kf (x). Uniqueness off follows from (P1[2). Using, for
ae. x2S tf (x) Oandf (x)=(f (x) f ( x))=2, and condition (A2[I), yields that, for
a.e.x2 s 1, we have

fx)=2f (X)L (4o (20)

In this paper we normalize the vectors of random coe cients and covariates to have unit norm.
Indeed, since only the sign of the net utility () matters for choosing between 1 and -1 and the index
is linear, a scale normalization of (1 1; ~)isin order. Let us compare with the normalization
in [9]. It is based on the following assumption, which is strager than the condition in [13], that
the support of is a subset of some (unknown) hemisphere, which itself is stnger than (A2[D).

(H): a.s. there existsj 2 f 1;:::;dg, the coordinate ; of has a sign (excluding 0).

Assumption (H) is likely to hold when Z;; and Z ,; are cost factors, since consumers dislike an
increase in cost. If (H) holds we can identify for which indexj ; has a sign since it amounts to the
nding for which coordinate z; ofzz ! E[YjZ: Z 1= z]is (globally) monotone. We can identify
the sign of the coe cient by assessing whether the function § increasing (positive) or decreasing
(negative). If ; > 0 then we normalize the vector of coe cients by dividing by ;. If ; < 0 we



change the sign ofZ;; Z 3; to make it positive. A potential issue with this normalizati on is
that if ; can take small values then estimators could dier in nite samples depending on which
coe cient is used for normalization. Also, monotonicity in one regressor of the conditional mean
function implies a type of weak monotonicity (in the sense ued to identify treatment e ects, see,
e.g, [9]) at the individual level as we now explain. Assuming tha ; > 0, zy; z 4 = z for
alli =1;:::;n, and that we changez; to zj0 > z; while leaving unchanged (i 1i; ) (the
characteristics of the individuals) and the other componeits of z, then some people do not change
their decision and some choose alternative 1 while origingt they had chosen alternative -1, but
no one changes from alternative 1 to alternative -1. Monotoicity of the conditional mean function
implies monotonicity for every individual. This is sometimes not a realistic model of individuals
making choices. Clearly (AZ1) allows both individuals to swvitch from 1 to -1 and individuals to
switch from -1 to 1 after similar changes inz (or x). On the other hand, if (H) holds then (A2.E)
can be relaxed and we can consider an index which is nonlineam X (cf. [9]).

4 Lower bounds
Wetakel p;r 1 ,0 g 1 ,z 1,ands> 0, and consider the minimax risk

R, €inf sup E £ f “ (21)
b f 285 (M)D p
where the in mum is over all estimators based on the i.i.d. sanple of sizen. The degree of
integrability r in the smoothness clas87, (M) is allowed to di er from the degree of integrability
p in the loss function. We distinguish two zones fors;r; q; d, and p:
(1) the dense zonewheres p( (d)+(d 1)=2)(1=r 1=p) with the restriction q r if s =
p( (d+(d 21)=2)(1=r 1=p), where the rate involves

dense(di P S) E sx(s+ (d)+(d 1)=2);
(2) the sparse zonewhere d 1)=r<s<p ( (d)+(d 1)=2)(1=r 1=p), where the rate involves

sparse (i PiS) 2 (s (d D)(L=r 1=p)=(s+ (d) (d 1)=r 1=2)):
The terminology dense and sparse is justi ed by the followirg heuristic. The proofs of the lower
bounds replace the in mum in (1) by a minimum over a set of functions which are di cult to
estimate. The functions used to prove the lower bound in the @nse zone are functions which could
have many nonzero needlet coe cients for 2 A; (see Lemmée6) and a well-chosej. Those used
to prove the lower bound in the sparse zone only have two nonzes. In the dense zone, the rate is
the same as for the matched case when= p studied in [10].

Theorem 8 (i) In the dense zone we have

dense (d;p;r;s )z

1

Ry Ciense(d;M;p;1;s;2) p== ; (22)

nA x

(it) In the sparse zone we have
0s 1 sparse (dipiNs )z

In(nA
Ry Csparse(d; M;p;1;8;2) @ MA ; (23)

nAx



where the constantstyense and Csparse depend ond, M, p, r, s and z.

The values of gense and sparse depend ond through the dimension of & 1. This is the usual
curse of dimensionality in nonparametric regression or desity estimation. They also depend ond
through the degree of ill-posedness (d) = d=2 of the inverse problem.

5 Adaptive estimation by needlet thresholding

Consider the estimatorf =2 1o wheref is an estimator of f

5.1 Smoothed projections and linear needlet estimators

A smoothed projection estimator off  with kernel (II), window a, and J 2 N, is given forx 2 S% 1
by
aJ X a LJ
£ o= “—LaR(X);
k odd '

with the unbiased estimator of L.q R(x) (see LemmaID): g R(x) = 0 if k is even, else

22Xyl (Xi;X) .

ﬁi:l fx (xi)

I\—k;d R(X) =

Alternatively, we can estimate f  using the needlet frame with smoothing windowa. The coe -

cients # ="t ; j i are such that

_ X k .
2 =1 ) b 51 M Lka( )i
k odd
X p -k
=G )  —Z—HyaRiLka(; )i
k odd '
X b X
=1 ( I LiaR( ):
kodd kid
2l 2<k< 2

. . a;J

Using that a ZL, =1for k=0;:::;2 and denoting by f W ogf , we obtain that, for
D _ E

1 5 J, &2 =f a'J; i, which can be estimated without bias by

) X b _.k_l 44 a;J
b =1 )T S ZEhGROE T
k odd '

Moreover, forx 2 9 1,
! !

. X p _k_l X k
bJa P )=1G )2 —Z = M eaR() b —5 Lka(;:X)
kodd X K

10



L .
belongs to E:O Hkd | thus by the quadrature formula

X X @ k.
ba o (x)= —2Z Mg R(X):
2 k odd d
P P aJ 1
This yields [, , B2 =f , indeed
X] X X] X a;J
ba = ba . (due to (4 1) and becausef s odd)
j=0 2 =1 2
X X _k
(4z) il\-k;dR*' szh_k;dR
1 ke 1 K 21k 2 kid
K odd k odd
X _k_
(49 LR+ AT )R
1 ket 1 K PUREDEPS I
k odd k odd

where (4 ) uses that for 1=2 t 1, B?(t)+ B*(2t) = 1, while (4 3) that b?(t) = a(t)for1 t 2.
Thus, the smoothed projection and needlet estimators coinice.

5.2 Nonlinear estimator with data-driven thresholds

Consider, for land r,. (X)= Xljjs1,. ,the nonlinear estimator of f

a; XJ X
]C = Tii ba .

i
i=0 2

It is classical that the optimal choice of J for linear estimators depends on the parameters of
the smoothness ellipsoid. In contrast, using a thresholdedstimator allows to take J large and
independent of the parameters. Thresholding induces addibnal bias compared to linear estimators
which allows to reduce the variance incurred by takingJ large.

The level of thresholding shoul%depend on the size of the ca@ents relative to their variance.
This variance is proportional to 1=" n so that the level of the threshold does not have to depend
on the smoothness of the unknown function. Instead of using @onservative upper bound on their
variance, as is usually the case in estimation using wavelsf we use data-driven levels of thresholding.
These provide better estimators in small samples. LemmBZ4iges a theoretical guarantee that the
performance is almost as good as that of an oracle which woulkihow thelyariance of the estimators

of the coe cients. The data-driven thresholding rule uses that bja = % ?:1 Gj (xi;yi) with

L 2X . X p ko
G (xiiv) = = (0 ) ?x-) 2 Lya(xi; ) (24)
i=1 XAy odd '
De ne the estimator of the variance by
v
u -
. 1 x X1

ot L Gy (xisyi) Gy (v (25)

LU

11



th = P logn=n, and the data-driven thresholds

p 28 logn

Enbj; + ?MJ' n 11

Tj:; dgz

where M. is an upper bound on the sup-norm oveH™ f 1gof G; (x;y) EI[G; (X;Y)]=

Gj (x1y) ]a (e.g. 2kG;j, ki ). For example, using {14) and Proposition®, we get

kG ki 2 Kt _Bx  2Ci B(d1 )2l (@+(d D=2 gy (26)

The second term inT;;.  controls the error in estimating the threshold.

Theorem 9 For J such that2I( @+ d D=2B1=" t 1 M > 0,ands> (d 1)=r,

(i) f z>1and >z=2+1, we have

. z . o
sup EF£° f &d;1 ;r;s; )(logn)? IMT (Byty) e (1 8)2. (57)
f 2Bg, (M)\D 1

(i) If p<1 and >p=2, we have

sup EfY &d:p;r;s; )(logn)P IM® (Byt,) (@PRSIP. (2g)
f 285, (M)D p

where (d;p;r;s) = dense(d;p;1;s) and $ = r in the dense zone, while (d;p;r;s) =
sparse(d; p;T;8) and $ > p s+(d()d+)( d(dl)i)l(fzzr 1:1”:)2) is arbitrary in the sparse zone, ande(d; p;r;s; )

is a constant which depends om; p;r; s, and

The upper bounds in Theoren{® match the lower bound in TheorenB up to logarithmic factors.
Hence, the proposed estimator is minimax adaptive (up to thelog factors).

6 Simulation study

We study the performance of the estimator whend = 3, n = 3000; 5000 10000, andX is uniform
on H*. We use of the Von Mises-Fisher distribution vMF(; ) with density

- - >
AR )_4sinh exp

with respectto . We take = ( 71; 2;j 3j) in the cases:
~ follows a vMF( ; ) distribution where =(001)> and =10.

~ follows a mixture VMF( 1; )+ (1 WMF( 2; );where ;=(2 202 172>, ,=
(212021%2)> =10and =0:3.

12



We use the cubature de ned in spherical coordinates as a pragct of the Gauss-Legendre quadrature
with m nodes and trapezoid rule with 2n subdivisions (see[[l]). The resulting cubature has 1?2
nodes and integrates exactly all polynomials on the sphereputo degree 2n 1. We take the same
function a as in [2].

The threshold is driven by the parameter . The choice of slightly depends on the targeted
norm. Here we focus on a simultaneous control of the 1, xL 2, xL“4 and L' norm. According to
our analysis, should be chosen stricly larger than 4. We have neverthelesshosen to use =4
which turns out to be su cient in practice.

Figure [ displays the distribution of estimates based on a Mate-Carlo experiments with 100
replications and n = 3000. We plot the Lambert equal-area projection on the diskwhich is de ned

(see [22])

(sin cos; sin sin; cos )~ 7! 2sin > (cos; sin )7
Our main contribution is a control of the estimation error for all LP norm. Table [1 displays the

expected risk, approximated using Monte-Carlo and 100 reptations, for some P norms. More pre-
1=p

P

cisely, we have approximated the following renormalized gantities: E o f =kf kP
i P

forp=f1;2;4gand E o f . =kf ky . Figure [2 displays the decay of those error with re-
spect to n in a logarithmic scales. As expected, we observe a simultanes control over all norm
and the error decays follows the power law given by the upper bunds. The results are similar to
the one obtained in [10] except that our threshold does not dpend on the unknown regularity of
the function whereas the level used in[[10] depends on it.

o Unimodal Mixture
P
RisII: P:» 1000 2000 3000 5000 1000“) 1000 2000 3000 5000 10000
E bt " =kf ki 0:89 064 053 043 (032 092 068 057 046 034
1=2
Eh O f 2 =kf k3 06 043 035 029 021 0:821 Q6 05 04 0:29
I 1=4
E O f i:kf K3 049 036 029 024 Q17 0:8 058 048 038 027
E DO f L Kk 042 032 026 021 Q17 0:86 06 051 039 (@29
Table 1: Risk.
7 Appendix

7.1 A preliminary lemma
Lemma 10 The following equality holds for everyg 2 L?(S? 1),

Yg (X) |

R;gi =2E
g fx (X)

13



(a) True density (b) Mean of estimates

(c) 5% quantile of estimates (d) 95% quantile of estimates

(e) True density (f) Mean of estimates

(9) 5% quantile of estimates (h) 95% quantile of estimates

Figure 1: True density and distribution of the estimates.
14



Unimodal Mixture

l -
T p
8 —1
7]
g N\ B
v N\
o Inf
1 1 1 1
1000 10000 1000 10000

n (log scale)

Figure 2: Decay of the risk with n in logarithmic scales.

Proof. The result is based on the following
hR;gi = R;g i (becauseR is odd)
R(X)g (x)
————fx (x)d (x
T T
R(X)g (X)
fx (X)
E[YjX]g (X) .
fx (X)

=2
=2E

=2E

7.2 Proof of Proposition 5 [

The operator K is related to the Hemispherical transform (see[[10,26]) dened forf 2 L(S® 1)
andae.x2 S 1y 7

H(f)(x) = o  Leysof (Nd ()

through 7
Kf =2H(f) o 1f(y)d (y):

(P1[D) is a consequence of the fact thaty | x”y 2 L2, (s 1. (P1P) follows from Theorem 2

(i), and (P1.B) follows from Theorem C in [26]. The second pat of the proposition together with
(P1M) are consequences of the properties ¢f detailed in [L0]. The inequalities [3) correspond to

15



Lemma A.2. Note however that there is a typo in the proof and weshould read 13:::(2p 1)
p 1722:4:::(2p) but the result still holds.

7.3 Proof of Theorem 8[]

Start by noting that for every j 2 Nand 2 ;,
z

g (dx =15 )b0) =13 )a0) a0)=0:

ol 1

This implies that the functions f, that we introduce below integrate to 1.

7.3.1 Proof of the lower bound in the dense zone

Consider the family (Pm)M_,, whereM 2 N , of distributions of an i.i.d. sample of (Y; X) of size
n whenf = f and the density of X is fx. These probabilities are absolutely continuous with
respect to the product of 1 + 1, where y denotes the Dirac mass aty and . Takej 2 N,
fo=1= (" 1), and consider the setA; from Lemmal[8 (1). By the Varshamov-Guilbert bound
(Lemma 2.9 in [27]) there exists  f 0;1g* containing (0;:::;0) such that j j = 2i41i=8 and
8(!1;'2)2 2, kly !k j Ajj=8. Enumerate the elements of from O (corresponding to the
zero vector)toM £ j j 1 anddene

X
fn & fo+ L
2A;
when (! ) 24, is the mth elementof and = cC =M 2 i(s#(d 1D=2) for 0 < ¢ < 1 such that all

fm are nonnegative. We now use the following result (see Theone 2.5 in [Z27]).
Lemma 11 Iffor 0< < 1=8 we have:

(i) fm 2B (M)\D for m=0;:::;M,

(i) 80 m<Il M ; kfn fikp 2h>0,

P

(i) & M_ K(Pm;Po) In(M ),

then for everyz 1

S !
inf  sup EE f hz—p—pV 1 2 (29)
D f 2B (M)D p 1+ M In(M )

Start by checking @ in Lemma [LT. It is enough to show thatfm 2 B2, (M). Indeed, forr 1 and

1=r .
(1) oa, c'™2i(d D= e obtain

' 2 ,wehave (! )2A,- .

cr

2](S+( d 1)1=2 1=r)) (| ) ) A C 1=r 2](S+( d 1)=2) M:
i

Lemmal8 () now yields that foreveryl p 1 and0 m<I| M

Con2@ D02 1) o n P ooy

kKfm fik 5

p

16



Thus (i) in Lemma LI follows with h = cpa % Pec M2 s 1
By independence, the Kullback-Leibler divergence betwee®,, and Py is given by

H(fm)(X)
H(fo)(X)

Using that, for x> 0, In(x) x 1, we obtain

1 H (fm)X)

K (Pm;Po) = nE H(fm)(X)In 1 H (fo)(X)

+(1 H (fm)(X))In

H(fm  fo)(X)?

K(Pm:Po) nE Hfo)(X)@ H (fo)(X)

and thus
K(PmiPo) 4nAx kH(fm fo)k3
40AX 3 gkfm  fok3;
where the last display comes from the fact thatf,  fo2 ;.  x H%9. From (B) we get
K(Pm;Po) 4C (d)2nAx2 3 @Dkf,  fok;

which yields using Lemmal® [)

K(Pm;Po) (2C (d)CJ )®nAx2 2 @ (1)

]2

(2C (CE )*nAx2 2 @ (1),

(2C (d)CY )°C nAy 2@ 1 2 ()
(2C (d)Cch)2 Cl Fnay 2 2t (@),

Condition ([m) of Lemma LTlis satis ed once

[

25(C (d)CIM)® | ooy Zi(s+ (A d 1)=2) _
in) C “"nAx2 < 3 (30)

For < 1=8, the lower bound (29) yields that

. z Cca 1°p 1=r is 1 £ 3 1
infF sup E £ f A — cC M2 s D B
D f 2B (M) P A g 4 2 In(M)

1 ca 1°p =M Z_
- X el C _ 2 Jsz .
2 %A g ¢ 2 :

where the inequality leading to the second display holds wheIn(M ) 4, for example forj (d 1)
In(5=c In(2)) =In(2). Now (BO) is satis ed for

In 28(C (d)C%M)?>C *"nAx =In(2)
2In@2)(s+ (d)+(d 1)=2)

def

j Jo=1+

17



which implies the lower bound

z
infF sup E £ f
Dt 285 (M) p
!
ca 1°P Z 28(C (d)C¥kM)?’C *nAy

1 dense (dip;ris )z=2
S G & cC M2 st
2 * g © @)

7.3.2 Proof of the lower bound in the sparse zone

In this proof we consider asymptotic orders for simplicity. The various constants can be obtained
like in Section[Z.3]1. Consider the hypotheses

1

fm:m+ ioms

where , 2 Aj andj j. 2 1@ D=21tg ensure the functions are positive. The constant is adjuséd so
that for one of the f , that we denotefo, 8x 2 H*; H(f, )(X) ¢ with ¢, 2 (O; %). The function
fm also integrate to 1. We denote byM the cardinality of A; (M' 2/(¢ D) P, the distributions
of ani.i.d. sample of (Y; X) of sizen whenf = f, and for a givenfyx , and ( Pn;Po) the likelihood
ratio. Recall that K (Pm;Po) = Ep, [ ( Pm;Po)]l. We make use of the following Lemma from[[2D].

Lemma 12 Iffor o> 0and M2 N the following three condition hold

(i) 8m6 I; ki fik, 20> 0,

(i) 8Bm=1;:::;M, ( Po;Pm)=exp(zy vi'), wherez]' are random variables andv' constants
such thatP(z' > 0) o andexp supp=1..m Vi' M ,
then
. z h ? 0
8z 1, inf sup EFf f :
H f 285 (M)D P 2

ltem ([ is satised when j j M2 i(s (d DA= 12) = This js more restrictive than the con-
dition to ensure positivity because we assume thats (d 1)=r. Thus, now we take =
2cM 2 (s (d DA= 1=2) for g well-chosen constantc.

The constant h in (I is obtained as follows, if m 6 m©

kfm fmokp= k i m i mokp
Cpn 2 (@ D=2 12p)

2cM2 (s (@ HiE=r 1=p).
Let us now consider item [i1), we obtain

Pm (log(( Po;Pm))  j(d 1)log2) 1 P (jlog(( Po;Pm))j j(d 1)log2)

. Ee lilog (( Po; Pm))jl.
j(d 1)log2

18



Thus, condition ([} is satis ed when

Ep,, [log(( Po;Pm))i] | (d 1)log2;

for 2 (0;1). The same computations as in the beginning of Sectiol 9.1igld that we need to
imposen2 2 () 2 j thus

Ay n2 At (d) (d H=r 1=2)) i:

The desired rate is obtained by taking

j nAx 2(s+ (d) (d 11)(1 = 1=2) .
log (NAx)
7.4 Comparison between Besov ellipsoids of a function and it s odd part

Lemma 13 For 0<s;qg 1 andl1 r 1 , there exists a constantceq that can depend ond
such that, for everyf 2 Brs;q, kf kB;“;q Ceqkf kB;“;q .

Proof. In De nition 4every f 2 BF, (S 1) has same norm asx ! f( x), thus by the triangle
inequality kf kAquq k f kgf_q . We conclude by equivalence of the norms.

7.5 A general inequality

We make use of the constants;; and ¢, such that
Z

z z le d Cl;z z (31)
zk®
z%% d o, #Z (32)
R+
Lemma 14 For every ; ; z> 1and
s+ P 3t.p, +26M, 29N @ s
i b bk 1 i
the two following inequalities hold:
whenp=1,
1 h . .
—E f f
2z 1 1 n
. z
£ +(J+1)% ¢
1 " I
5 #!
’ _ z
an;1 ;z;J 2 Hz= SUF’ jE:1 le ajors +E S“F’ blEl jE:1 1j a j>T St
i=0 2 i i 2 I3 i
X
+ ac 2 D(z=2+) gyp 2
n . 2 . ]v
J:O J
C 4 1 1= 1 _ ~ z ~ 0
+ — p—ﬁB)l( 2002( (H(d 1=2) I(d 1@ 1= Mt 2

19



where

2 z z=2
an;1 ;2,3 =1+ p?gn 2+ Iog C ZJ(d l)CZ;Z
4 z
2+ |Og C 2J(d 1)Cl;z
logn
P 3C,B(d2) 7 2 + log C 2 Vg, P
b1z = 1 2 z (0 d D(z=2+1 1= )
. (8C1 B(d;1)=3)" 2= + log C 22(@ D¢y, * sy v =2
1 2 (z (d+(d D(z+L 1=)) n X '
while, whenl p 1 |,
1 a z
FE £ f ;
EW z 1~ ~2=(p"2) 1n
f f +(J+1)* "CyC
P
X X h |
j (d 1)(z=2 z=(p_z)) a Zq. . ba a e
ey C i PERT Yy
= ]

X X
+ A7 i nza=2 1=(p_2) a ?
n

j=0 2
221: 1 1=2,J d dl—ZZJdll— °
+ = 5C  p=BX72 ((@Hd D=2) P DA =G
where
Py, ! e, 2!
Anpzy = 1+2 972(‘2;22 + 201;22
Pzl “Togn logn
— z _ z
26" )C,B(d; 2) fet)Cy B(d;1) I
brpiz:s = 1 2 G @Hd D24 =(p_2) | 1 2 @ @« d )z 2=(p_2)) n Bx '

The inequalities of Lemmall4 are similar to oracle inequalies, for a well-chosenJ depending on
n (see TheoremD®), where the oracle estimates? if and only if the error made by estimating
this coe cient is smaller than the one made by discarding it. This oracle strategy would lead to a
quantity of the form

) h b 2l
a 1 . z =z + E a a 1 . z =Z:
. irioeb ' g g iripeEblR '
h Zi 1=z
Proving such an oracle inequality would require to lower bound E bJa Ja . In the
zi 1=z .
inequalities of LemmalI4 the ideal quantity E bja 2 is replaced byij';H , called

20



quasi-oracle The remaining terms can be made as small as we want by taking large enough. The
last term corresponds to the approximation error. Upper bounds of these types, uniform on Besov
ellipsoids, yield an approximation error which can be exprased in terms of the regularity of the
Besov class and is uniformly small forJ large enough and allows to treat the bias/variance trade-o
in the quasi-oracle term uniformly over the ellipsoid.

7.6 Proof of Lemma 141
7.6.1 Preliminaries
Recall from the proof of Theorem 4.1 in[[10] that forevery 1 p 1

a:

£ f 21Ca; f :

p p
and that, forl z< 1, we have
a, z a, . z . V4
£ f 2z 1 £ T S : (33)
p p p

The rst term corresponds to the error in the high dimensional space while the second term corre-
sponds to the approximation error. Let us start by studying the rst term.
Lemmal@ () yields

a; J z X X
P f 2 b (‘]+1)Z ! Ti; bﬁ iéil J
=0 2 o
1XJ ®oj(d 1)z(1=2 1= ba z
(J+1)? Cy2(@ bze= 1) o f P .
j=0
Thus, for p= 1 , we have
a; . z XJ ) z
1,: f a;J 3 +1)z 1 C%Z'(d 1)z=2 sup T, b]a Ja :
P j=0 2
while, for p< 1 , we have
. a
1(; & f ad ‘ (J +1)z 1C‘()kcz:(P"Z) 1X Ji(d 1)z(1=2 1=(p_z)) X T bja j(?l z.
I ) )
p .
i=0 2

The last inequality is obtained by using that, when p  z, we have
0 1,

X X
@ jpbjPA jibj’;
2 2

and by the Hdélder inequality, when p  z, we have
0 1,5

X X
@ jbjPA c®t jpbjr:
2 2
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7.6.2 Coe cientwise analysis

For the simplicity of the notations we sometimes drop the degndence on in the sets of indices.
We rst consider the term

e & on, B P K
By construction we have
Bz = f Zlbﬁ T +bJa i Zlbjj- >T
= max i th{* T bJa P Zlbﬁx ST
We introduce two phantom random thresholds TP, = =T, i and Ts =T, +

forsome j;. tobe de ned later. They are used to 'de ne b|g and small or|g|nal needlet coe cients.
We also useT';b; for a deterministic lower bound onTb TS* and T. for deterministic upper
bounds onij; and . . These bounds will hold W|th hlgh probab|I|ty We obtain alm ost surely

i, = a ? . . : . . :
)2 max h max 1 t? Tii: 1J jE;l J Tj;s: 1 t? Ti; 1J jE;l T i:S: '
ba a ’

T ;o max 1 t? N

>T g 1] |a J Tj?: ;1 t? >T 1] jE;l j>Tj?:

a .
max i  max 1JJ j T 01 be . ;
I3 I8 i
ba a z 1 . 1 )
b ki max b,a A TR I Il j:b

max a “max 1.

I Jj J TS+ ;1Ts+ <T® ’1tp a > ;

i I i i
b a ®
b o max 1tf‘ AT ’1j Pty ’1Tf§ T3

Sorting the terms according to the number of random terms we btain

a 2 . a z .
max & "1 . cs+; & “max lis- 1
ji iz oo T <TH ‘

b ] P '
z z
ba a T ¢ a -
i i 1J 2T i max 1blf} [ ’1ij’ >T P
7.6.3 Scalewise analysis
De ning
def ba a °_
MJZ =sup T, j is =Ssup iz
2 2
X z
def ba a —
sz - T; I3 i - 5z
2 J 2 J
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we obtain

7 z
Mj,  max szup 2 1 @ T i SUP 2 " max 1-|—j;s;;+ s 1 o s ;
J A
ba a ’ ba a *
SZUFJ_) f Py a T h 'Szu? i o max 1ij’§ ST o '1bla @ s
=4 max( Mj;SZO; Mj;szl; Mjl;azl; Mjl,azz
M+ Mt + ME+ M2
S X 2
Sz P ajoree t g max ]'Tj;si+ Ty 1 By
2 2 ' ‘
z X z
R R Yy B R Ml il
2 2 ‘
def .
=S+ s+ sty B
We bound the expectatiqns of the random terms as follows
S1 a < .
EME g [ OE swemax gy ly o
I O O I 1 O 1 1
LN, 0 [ " o
sup @@ T <TP A+P@ R > g ARG
2"j 2 # 2
B1 ba a ’ . . .
EME Eoswp B F Ly
" #oo" #1 1=
z
B2 ;
E M E SZUp bJa i . SzuD max 1Ti;b§ T '1bf‘ R &
j ] ‘ ‘
. #_0 0 10
E sup B 7 @@ T >Tp A+P@ BooR >
2 2 2
E S3' = X ‘E 1 1
iz = i MO Drprare o2 2o
2 B
X' n_. o n ©
ORI STE +P B>
2 h
X z|
ESE = BB Yy
2
X z
B2 _ a :
E Sj;Z - E bla i max 1le >T P 1 bﬁ Y
2 ‘
X h S0 1= n o] n 0 1 1=
E k7 POTY >TR +P B>
2
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The constant > 1 in the Holder inequality will be speci ed later.

7.6.4 Bernstein inequality and the term bJa i
Let denote variance ofG;; (X;Y)

2 def h a 2i

i E G (XiY) |
Lemma 15 We have

h Zi 2 z 4 z
E bJa : 2 Gy P Oz %Mj;
Proof. The Bernstein inequality yields
n o

P B 7

Using now E[jX j?] =
h i Z
z

R*
Z

R
&+ zU? 'Pfj Xj > ugdu, we obtain

n [0}

zu? p ba a u du

i )

nu 2

3nu

7 N2
202 12 e ‘(i) +e ™ du

R*

hence the inequality from the lemma follows from [31) and [32.

LemmalI3 is used to obtain a uniform upper bound of the power othe ratio between bJa jf;‘
and a threshold c P log(n)=n j; + oy log(n)=(n 1)M; :
20 b s 1.3 0 0O . 1,
E4@p_— A5 z@cz.z@z _ A
¢ log(n)=nj + cm log(n)=(n 1)M; ' W"’ v rr1]og nM;
J
+ C ﬂ- Nn_nNn 1
" 3c "ﬁplog_nﬁ+ cw 10g(n) 27
2 Gy 2 Col A1
2z —F’Tgn 1,z 3oy logn

(34)

The following similar lemma is useful to handle the casgp= 1 .
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Lemma 16 Forany { ;, we have
2 0 ba . 1.3 zpi | I,
Edsup@ L " A5 5 Lsupt- 2+ log o, 0 P
20 uj; n 2oG .
s wm
+ %szueq—‘ 2+ log ¢z (35)
o G
Proof. A uniform union bound yields
8 9
< b7 =
P sup— :
0 0 , 11
min @1; ,'OZ@e4ln LR 2+e%n "W AA
0 , 1 I
n i L 2 3n Yji
min @1' ]O 2 zn inf , Io i A +min 1, JO 2 an inf JOMJ':
This yields
2 ob_é'1 _?1232 0 o 0L221
Edsupp@ L " A5 zZ2ilmin@1; 02 ° L Ad
20 uj; R !
I
z 3n inf , o ok
+  z%'min 1, P2 ° S d;
R+
and thus, forany ; Oand , 0, we get
2 ob_é'1 _?123 . ot
E4suyp@ L " A5 z, z?1 02 ° R d
2 0 uj; , .
z 3n inf , o ok
+ I+ zle-OZe4 Mg
1
Take q
8 |09 C1;z JO d 2p§ |Og C2:z JO
= - . - u. a.n = n— -
17 3n |nfzio,\‘,‘|“ 27 Ty inf 5 o ——
Hence, by construction, we have:
3n Ui 3n i Yji
iz
1 Yvj 2 2 1 Yj ? 2
Ln inf — 2 ipn inf s L
8 2; ]-O 2 20T o ¢ 2§
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This implies

2 0 123
ba a
E4 sup @ LA
29 |

0 q 1: |
@2p§ log ¢z | A 4o P2 1 ’

n - + —p—_ P TE— T

"nooinf , o 9 ninfgjou%

I3 | , !J ,

8 log ¢, jO P 8 1 .

3n inf 5 o - 3ninf o og—

which allows to establish the claimed result.
LemmalId allows to obtain the upper bounds[[3F) and[(3B) below

Foru; = j , we obtain
2 0 ba . 123
E45up@¥A 5
2 10 IS
!
P35 o 22 8 M, .
p— 2+ log co; + — sup—— 2+ log c1.;
n - 3n 20 e

For future use, note that we can also use the uniform bounddvl; (see [28)) and

i CaB(d;2)By 2 ()« (36)
instead ofM;; and ; , and obtain
" #
z
E sup bj‘"‘ 2
2 9
P~ z z
2 2 =2 8
= 2+ dog ¢y [T 4 oMy 24 log o [T (37)
Along the same lines, withu; = c¢ P log(n)=n j; + cw log(n)=(n 1)M; , we obtain
2 0 ba . 1.3
Edsp@ p ' A
20 ¢ logne=+ ¢y lognis
P~ = z
2 2 0 z=2 8 0 z .
W 2+ log ¢z, i + W 2+ log ci; i ; (38)
o caw

recall that when 7=,
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7.6.5 Empirical Bernstein and the probabilities

We take
P 14 logn
i = tab; + ?Mj; n 1’
Tio =2 g Tj;b; = gyos TSO=3 g
P — 26 logn P — 2
b; s+ +
Tl T and Tj;: =3 i
Lemma 17 The following upper bounds hold:
n__ ) o] 1
P T >T, n_;
N s _-s 0 1
P T <Ty 0
n o]
3
P be A -
0 1 n
[ n_. 0 X n__ 0 . 1
P@ T]-;s’;+ <-|—JS A P TJ’S"+ <T]5 C 2](d 1) —
0 2 1 2
[, o X n_ 0 T
P@ Ti:'; >Tj?: A P Tj;; >Tj;b; C Zl(d 1)—;
0% 2y
[ n o] X n o]
P@ bla P> A P bja a >
2 2

Proof. Using the results of [23], we get:

p ; < bj; ZDE al\r/:j; = e u;
P —b; 14 u ]
P bﬁ ﬁ > ZU‘p]ﬁ + ?M]' ﬁ Be u,

which yields the rst inequalities. The others follow from t he union bound.

7.6.6 Thecase p=1

Let us consider the various terms one by one.
Error in the high dimensional space

E[M;,] E Mf'zo +E Mf'zl +E Mj?zl +E Mj?zz :
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with

SO0 _ a Zq. Do
EME s f Ty

_ 4 ,
E MJ,Szl C Zl(d l)n_ sup ]'::1 :
" 2
#
z
B1 .
E M, E SZUFJ) b'a j? 1j 2Ty ’
= P~ z
) 4 11 2" 2 ~ q — z
E Mjl:BZ2 c 20 l)n_ —pﬁ j 2+ log(j jjiciz )
8 z 1= . H z .
+ §Mj 2 +(log(j jiciz )) ;
where we have usedd + b= a* + b= for 1.
This yields
a; . z
E £ f oo
1
z 1CcQ
J(\]*'1) Ct " #
. z
@ Dz=2 gyp A f1. .. +E sup P22 1,
- A T 2P ey
4 a
+ 2c oA D(z=211) g a
n . 2 )
j=0 )
4 112X
+ c 2 oi(d 1)(z=2+1 1= )
n _
j=0 |
2p§ z q 2 8 z .
P= i 2¥ + log(j jiciz ) + §Mj 2% +(log(j jjciz )*

def 0 0 0 .
- O1 iz + Rl;l iz + R2;1 izt

The termsRY, , andRY, ,. The term RY.; ., is the term which appears in Theoren{I# and thus
we only need to boundR9., ,. As in the casep < 1 , we can use the uniform bounds on j; and
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M. , namely, (Z8) and (38), andj jj j ,]j to obtain

Rg;l Z
1 1= dl
ac X ol (d 1)(z=2+41 1=)
n i=0
2p§ ) zZ
PCB(d:2)2 B 27 +(og(cre | 21D
8 ) z
+ 5-C1B(di1)2 @d DB, 2 +(log(crz | )
2
4C 1= 2p§ 1=2 ‘ = . . z=2 ¢ i d d = =
- 4 PoCoB(di2By” 2 +(log(f sic )T 2 ( (@zr(d Nz=2vt 1= )
j=0
3
8 ’ X
+ 3-CiB(d1)Bx 27 +(og(j sjerz ) 20 @ NE =S
" ]:0
- p_ z _ _
ac L1 ) . 1o - e 23 ( (d)yz+(d 1)(z=2+¢1 1=))
n— ‘pﬁCZB(duz)Bx 2 +(|Og(c2;z J JJ)) 1 2 ( (d)yz+(d 1)(z=2+1 1=))

8 ’ 1= Lz 2 ( (d)z+(d 1)(z+1 1=))
* 3G B(A1)Bx 27 +(og(ciz | 9i)* T @ o =

The term Of .,. Denote by

" #
0 - a Zq. ba a g
Oz Szupj b 1] P +E SZUFJ) b b 1] 2Ty
BecauseT;"™" T, we get
" #
ba a ’ 1. b
E SZUFJ’ i i e Ty
" # " #
= ba .azl... + E sup be ,azl....
- E Szu? . g [ L 2 I,D g g LS I
" #
ba a * 1. - o
E Szul? I 5 jppTeT
2 0 1.3
ba & n 0
tE4sp@ P 4 .. A5 a g .
E Szul? To 1Ti;’; jepTy SZUFJ) b 1Tj;'; jepTy '
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thus

0 2 0 1:31
ba a

2 e n
00 @ +Edsup@_ T ABAgp &t .
“ ZU? T]b’ ZU? k JE) T
: #
+E sup ba a Z1- T s
> I,) i s jepTe

Using now (38), with ® = P5= and cy =% ,andj jj C 2@ D we getthe upper bound in
Theorem[I4.

7.6.7 Thecase p<1

Let us consider the various terms one by one.
Error in the high dimensional space. We obtain

E[S:]1=E S +E S5 +E S;' +E Si* ¢

with
S0 _ z .
E Sj;Z - f‘ 1J j?j Tj;;;+ I}
2 jX
4 z
s1 .
E Sj;z n la ’
2 .
X h ] i
a a .
E Sz ES 0 LT
2
41 1= X _ B N z 4 . M: z
B2 1= 1=(z ) s 1=(z ) Vj; .
ESy gamy 2T T Ry fogan o

i
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where we have usedd + b)'~ al® + b'® . This yields
E£°7
p
(3 +1)z tcgcr ) *
4l

2 DzA=2 1=p_2) E[g;, |

j=0
J X h 1
j(d 1)z(1=2 1=(p_z)) a Zq. .4 ba a L !
. 2 k J j J TJZ; E ! L 1] Ja J>T Jb
i=0 2
X X
+ A7 S pza=2 1=(p_2) @
: j=0 2
22 1= X d 1z(1=2 1= X ) 4 1 )MJ ’
¥ n @ 1=) 2@ v ¢>-2) 2C22Z pl: * 3 1zZ n
j=0 2

The terms Ry;p;; and Royp;; . The term Ry, appears as is in Lemm&4. To bound the ternRap; ,
we rely on (Z8). We obtain

z z
3 4 M;
ol= 2 =(z ) + 1 (z )M}
(‘2 n 3 lZ n
2
1 z
2 257 )CyB(d;2)2 B Zp—n
2

X z
+ e Ageig Bgi1 )2 @ v, L
3 n
2

= =2 1 :
c 2t 2(‘222 )CZB(d 2) B; Ezj((d 1)+ z (d)
4 4 z

_ 1. _
+C 21— §C1 (z )Cl B(d,l ) B)Z( n_zzj ((d 1)+ z( (d)+(d 1)—2));
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this yields

d
“2)pl oy AgseMi

_ X
Ji(d 1)z(1=2 1=(p_z)) 21= 3Lz n

202

j=0 2

X j(d 1)z(1=2 1=(p_z)) 1= (z ) z=2 1 j((d 1)+ z (d)

2 == =2 c 2= 2(:22 C,B(d;2) BX EZI

j=0
X z

" ol (d 1z(1=2 1=(p_2)) ¢ pl= ilc =(z )Cl B(d:1) B2 izj((d )+ z( (d)+( d 1)=2))
3 1,z ’ X nz
j=0

1= 1=(z ) oy “pz2_ 1 x jz ((d)+(d 1)=z+(d 1)(1=2 1=(p_z)))
Cc2 2c,," 'CoB(d;2) By =z 2 -
i=0

z X
+C 21= ﬂ.C =(z )Cl B(dl ) B2 i 2jz( (d)+(d 1)=z+(d 1)1 1=(p_z))

317 ' *nz
J:

1= (z )
c2 2C2 C2B(d; 2) z 2 1 2Jz( (dy+(d 1)=z+(d 1)(1=2 1=(p_z)))
1 2 z( (d+(d D=z+d 1A=2 1= (p 7)) nz=

c 2= ‘¢ ¢y B(d; 1)
1 2 z( (d)+( d 1)=z+(d 1)1 1=(p_z))

_2JZ( (d)+(d 1)=z+(d 1)1 1=(p_ Z))

The term Op,. Denote by

h i
Opf = 2 71,40 +E B 2 T q |
#l J J J&:1 J TJ J s J Ja J>Ti:;
BecauseT"™  T7" , we get
h e 2l
E 5 P 1J T
Ehba a © g +EhIOa azll
- j jEpTET h Ji i R I B
i
h i E b]a ]a z
’ ) z
E b]a f‘ 1J j>T j;s; w + Tb; - Ja 1-|—s 4+ j j>T b y
i
0 " ba a 2! 1 h ;
O @1 + E j; : A a z s; ++ + E ba a ZI s; ++
zl Tb; z J J i J TJ I ] j Ik

32



Now using the results of Sectiof 7.6 14, WithT]-;b:; =Py n i+ 2 %98M; , we obtain

n 1
h 5 /i
< ER 7 5 o op U S S
ji P Tbhi ‘ 2 2 Togn Lz 3(2=3) logn
5
p— 1= ' 1= ' Z!
5 2c,, 2.,
“Togn logn
This yields
Py ! I
X
Op: 1+2 2(‘2_2 217 2l (d 1z(1=2 1=(p_2))
P logn logn =0
X h S

H H H N ba a H H S; ++

o i FES 0 Yy

7.7 Proof of Theorem 9]

This proof requires an upper bound on: the approximation eror, Ry, R1;p:z, and Op,. We use
that becausef 2 Bf, (M), we have, by LemmalIBf 2 Bp, (CeqM ).

771 Thecase 1 p<l1

Let us consider the terms one by one.
The approximation error. Start with

From Lemmal[@ () and the de nition of the Besov spaces as a seqnce space, with g+ 1=g=1,
we obtain

X X X
a CO” 2 iepiterd v 1) A ,
P12, . 3 bt
which yields
X X .
o Cp2 =t 1) i
=12 pia
p 8 ) .
2 CleeqMC '™ (2%t 1) 1 f o Is ifr p
pa
> CleeqM (25 1) 7% f 2 (s (d pa= =) jfr p,

S
B piq
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It is enough to consider the worst case where p and to check that % in the
two zones.
In the dense zone, we have
d 1 d 1 p
+ + + =
st (d+ — @+ ==
which yields
S S ]
st @r @ E
Becauses > (d 1)=randp r, we have
d 1 d 1 sr sr 1 1
- — - = — — .
r p p (d 1) d 1 1 rp 0

which yieldss (d 1)(1=r 1=p % and gives the result.
In the sparse zone, because > (d 1)=r, we have

s (d 1D(@=r 1=p s (d 1)(1=r 1=p )
(d+(d 1)=2 s+ (d) (d 1)(1=r 1=2)

The terms Ry;p;p and Rayp;p. Using Lemmald (i) we obtain

4 X
1 (prr)= j = 1=(pr
Ripp n—(CeqM)pC (PAO= T o dp(sH(d D@ =p 1=(p 1)) .

i=0
where the exponent is nonpositive because > (d  1)=r, thus

4(CeqM )pcl (prr)=r
1 2 p(s+(d 1)(L=p 1=(p"r))

Rl;p;p

With > p= 2, Ry is of lower order thanth.

We also have
22 1=
Roipip mc Bh:pip;a;

With the aforementioned choice ofJ,

1 50 @+d D=2)g1=2 4.
19_ﬁ2<()+( =pl2 g

23(d 1)
n

Bx . 1

Together, these yield that byp,p,5;  is of the order of a constant.
This term is also of lower order thantP for large enough such that (1 1=) >p=2.
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The term Opy. First note that anp;p,y =1+ 0(1).
We take T uniform in
P

TS =37 21,CoB(d;2)2 DBy

logn

n 1

P~ nP -
2C,B(d;2) +52C; B(d;1 )n—l ;

+52C; B(d;1 )2J( @+ d H=2p,
2l (d)p_tnB>1<22 3

where the last display uses the upper bound od, this yields, for n 2,

T 2 0P B2 Pace(@2) 1040, Be1) ¥ T
As a consequence of Lemm@aTl5, we get

h i p

p 1=o i 4 oM P
E B 2 2ppps toFCp
- i = 1
2 26,,7C,B(d;2)2 <d>B}(219—ﬁ
4o 8 15D~ B(g-1 )2l @+ d D=2)p 1P
§C]_;p 1 ( ’ ) X H
jp () 1 gp2opun o oy, 41 P
2P (D BY 2P G 'CoB(di2) + 5o Cr B(di1)
|
. = = P
T P P CoB(d;2) + 46,,7Cs B(di1)
( logn)P2~ “3"2C,B(d;2) +104C, B(d;1) ©
|
T-.S;++ p pi ~ 1-=p © P
) 2 _= 1'—p+ 1|§
( logn)p=2 3 20 g
p p C1=p

Let C =3' 2C,B(d;2)+104C; B(d;1)°~ and C, =22 ?Zc;pr?—gﬁe

Forany 0<z <p, we have

X h pl
a Pq ba a C e
, ] 1J )T +E 5 i 1J 2Ty
J o '
X T-S;++
‘a p 1 1 S, ++ J’i p H 1 S, ++
, 4 gt ( Iogn)P=ZC'p 4 PP
]
CF;)p s;++ P Z X a Z
=2 I} s
("logn)? .
p X
s Sp Py plc P o @k o a z.
( logn)pr=2 b
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We need to sum overj and take two di erent values for z, one that we denotez; forj jo and
one that we denotez;, for jo <j J. The values ofzy, z, jo will be speci ed later, depending on
the value of the parametersr; q; s and p such that we are in the dense or sparse zone. Up to a
multiplying constant, we thus need to control

Mo X
A+ B = B)l(zztn P 2L (d)(p z1)+(d 1)(p=2 1)] ]_5_1 =
j=0 2
X X
+ B>l(:2'[n Pz 2i[ (d)(p z2)+(d 1)(p=2 1) j‘? 22;
i=jo+l 2

where we choose adequately;, z, and jo in the two zones. Because of Lemm&l7(i), we only
considerp r.
Let us rst consider the dense zone. We de ne

pC (d)+(d 1)=2)

T s+ @+(d D=
In the dense zonef~ r, p> rand
d 1 p
= d) + = 1 39
s= )+ —— (39)
With z, = r, we get
X X
B B2, | oIl (d)(p r)+(d 1)(p=2 1] a .
j=jo+l 2
Lemmal7 () gives that X
j i jr Djr2 jr (s+(d 1)(1=2 1:r));
2
where8j 2 N; D; 0, (Dj)j2n 2 . Note that
1 1 (d p d 1 p
+(d 1) = = = + (d = 1 ; 40
s¥(d 1) 5 ° S ——+ (0 (40)
thus
B B, | e (1 F)( @+ )y
j=jo+l

. (cgM)T BEZt, | 2iop(t B)( (@ &),

forq 1ifr> randforq rifr=+(e,s=p (d+ &L 1 =)

. _ 1
Taking 210F( (@* %5) B2t 7 e get
o P
B. M" By ’t,
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which is the rate that we expect in that zone.
As for A, we takez; = T< ~ r, this yields, using LemmalT [1),
FX° X —
A Blzztn ' 2 (d)(p N+(d 1)(p=2 1)] a '
j=0 2
_ p rXo _ _
M B)l(_ztn 2 (d)(p N+(d 1)(p=2 1) F(s+(d 1)(1=2 1=T))]
j=0

- p X0 _ -
MBI, oip ( (d)+(d =)0 =r)
j=0

(using (39))
MT B2y, T 2o (@+(d D= =)
ropl=2, P T . .
M" By t, (from the de nition of jo):
Let us now consider the sparse zone. We de ne by

(d+(d 1)(1=2 1=p
s+ (d) (d DL=r 1=2)'

in a such a way that

s (d D= 1=p
s+ (d) (d DL(A=r 1=2)
A (p n((d 1)=2+ (d) rs

s+ (d) (d D=r 1=2)

s+(d 1) % Fl :(dz:)p dF1+ (d) E 1 (41)

p F=D

> 0;

For the term A, we take z; = r and obtain

. o
A BN, P S e rr(d 1)(p=2 1) a
j=0 2
1=2. P r Xe ji[ (d)+(d 1)@=2 1=p)2(+ r)]nr ;
B “tn 2 - Dj (using (@)
j=0

BL, P T ool (@rd D=2 =R D]yr.

the last inequality holds because (d) +(d 1)=2 (d 1)=p > 0, indeed, because we are in
the sparse zone (d)+(d 1)=2 s=p=r 1)=sr=(p r) 2=p r) (d 1)=p Taking
Dio (+(d D=2 1=pNE . gl 1, yields

p F

A. M" B t,
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For the term B, we takez, = 7> ~>r and obtain

- X X _
B B2, " DIl (d)(p N+ d (p=2 1) ar
j=jo+l 2
2, PT X @ vas o N=rpT i
BL 2, 2 (@+(d D=2 =R NPT (ysing @)
j=jo+l

B)l(:ztn P r_21'0( (d+(d =2 1=p)p(r T)=r\T

p

— g —
By th MT:

7.72 Thecase p=1

Considerr = 1 . The general case follows by Lemmal 7{ii).
The approximation error. Becausef 2 B} .,(M), we have by Lemmal® [J)

X X X X

>3 2 > 2

X _
C) cegM 2@ D=2 i(s+d D=2)p, (where k(Dj)j2nkq  CeqM)

>3
CP cegM 2 75(25% 1)
From the choice ofJ, we get
xx 8. ClegM (25 1) ¥ By e D=
1
This term is negligible becauses=( (d)+(d 1)=2) s=s (d)+(d 1)=2).
The terms RY.; ., and R2.; ,. Using the de nition of the Besov norm, we obtain

4l
4 o
ROy —-(cegM)?C 275200
=0

iz.](d l)M z.
n .

With > z= 2+ 1, which holds if 2( 1)1 1=)>z, Ry1  is of lower order than t3.

Due to the choice ofJ, the term in bracket in the expression ofR3.; ., in Theorem[I3 is less than
1. The second term in the expression ob,.1 z;3. is of smaller order than the rstterm. The order
of by.1 223 is nally (log n)?=2. Thus, we have

1 1=
Ry, ,. n 220D (log n)#=2:
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This term is also of lower order thant? when issuchthat2( 1)(1 1=)>z.

The term Of .,. Note that here a1 ;7,3 is of the order of a constant. We now proceed like for the
term Op,p. Using (314), we obtain for arbitrary z 2 [0; z]

" "
sup 2 ‘1. rse +E sup P2 a Z1- s
2 k Jla\J Ti:'; 2 b b J?J>Ti:';
p_tan(:2 ’ f2j Az 2) gyp 2 z
b
We use an upper bound orA + B, where:
_ z 7, X0
A= Bi?t, 0 21 wd =2 gyp 8 By
j=0 2
— zZ 7z X] . _
B = B>l(_2tn 2l (d)(z z2)+(d 1)z=2] sup jf?l 22;
j=jo+l 2
for well-chosen 0 jo J, z; and z,. Becausef 2 B} ;q(M ), we have
8z 1, szup g ’ (CegM )72 1(s+(d 1=2)Z;
i
The result follows taking z; = 0, jo such that 20 ' t, =" @4 D=2 ganq 7, = 2.
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