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Abstract

In the random coe�cients binary choice model, a binary varia ble equals 1 i� an index
X > � is positive. The vectors X and � are independent and belong to the sphere Sd� 1 in
Rd . We prove lower bounds on the minimax risk for estimation of t he density f � over Besov
bodies where the loss is a power of the Lp (Sd� 1) norm for 1 � p � 1 . We show that a hard
thresholding estimator based on a needlet expansion with data-driven thresholds achieves these
lower bounds up to logarithmic factors.
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1 Introduction

Discrete choice models (see,e.g., [21]) have applications in many areas ranging from planning of
public transportation, economics of industrial organizations, evaluation of public policies, among
others. This paper considers the binary choice model. There, agents (consumer, �rm, country,
etc.) choose between two exclusive alternatives 1 or -1 (e.g., buying a good or not) the one that
yields the highest utility. The utility that an agent i gets from choosing alternative -1 (resp. from
choosing 1) is assumed to have the form

u� 1;i = z>
� 1;i  i + � � 1;i (resp: u1;i = z>

1;i  i + � 1;i ); (1)

where z� 1;i (resp. z1;i ) is a vector of d � 1 characteristics of alternative -1 (resp. 1) for agent
i , d � 2,  i are preferences of agenti for the characteristics, and � � 1;i and � 1;i absorb both the
usual error terms and constants. In (1), the preferences areallowed to vary across individuals;
namely, they are heterogeneous. This translates into a vector of coe�cients  indexed by i that
we assume random. The characteristics of the alternatives are indexed by the agents, for example
they can be characteristics of two goods that a consumer has to choose upon interacted with
individual characteristics like age or distance. We assumethat the random coe�cients and errors
are independent from the characteristics. The statistician observes a sample of characteristics and
choices for agentsi = 1 ; : : : ; n, but  i , u1;i , and u� 1;i are not observed. Observing the choices
corresponds to observing the signyi of the net utility u1;i � u� 1;i . Indeed, agenti prefers 1 (yi = 1)
if and only if the net utility for 1 is positive, i.e.,

u1;i � u� 1;i = � 1;i � � � 1;i + ( z1;i � z� 1;i )>  i > 0; (2)

and prefers -1 (yi = � 1) when
u1;i � u� 1;i < 0:
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We assume that the probability that
�
�(� 1;i � � � 1;i ;  >

i )>
�
� is the 0 and thus that agent i is indi�erent

(i.e., u1;i � u� 1;i = 0) on a set of 0 probability. Hence, the linear random coe�ci ents binary choice
model is

yi = sign
�
x>

i � i
�

; (3)

where, for a real numbera, sign(a) is 1 if a > 0, -1 if a < 0, and is 0 if a = 0,

x i = (1 ; (z1;i � z� 1;i )> )> =
�
�(1; (z1;i � z� 1;i )> )>

�
� ;

� i = ( � 1;i � � � 1;i ;  >
i )> =

�
�(� 1;i � � � 1;i ;  >

i )>
�
� ;

and j�j is the Euclidean norm in Rd. Like in [3, 4, 10, 13] among others, we consider a nonparametric
speci�cation of the joint distribution of � and this model is more general than the Logit, Probit,
and Mixed-Logit models. Note that it is important to avoid re stricting the dependence between the
coordinates of (� 1 � � � 1;  > ) since they can be functions of a deep heterogeneity parameter (e.g.,
the type of a consumer).

We denote by Y , Z1, Z � 1, X , � 1, � � 1,  , and � the population quantities corresponding to the
lower cases letters indexed byi . The random vectorsX and � are elements of the unit sphereSd� 1

of Rd. For the main results of this paper we maintain the following restrictions on the distribution
of (� > ; X > )> .

Assumption 1 (A1.1 ) X and � are independent,

(A1.2 ) X and � have densitiesf X and f � with respect to the spherical measure� .

Assumption 2 (A2.1 ) f � (x)f � (� x) = 0 for a.e. x in Sd� 1,

(A2.2 ) The support of X , denoted bysupp(f X ), is H + = f x 2 Sd� 1 : x1 � 0g,

(A2.3 ) f X is known and we haveAX
def
= kf X kL 1 (H + ) < 1 and BX

def
= k1=f X kL 1 (H + ) < 1 .

Under Assumption 1, f � is solution of the ill-posed inverse problem: for a.e.x 2 H +

E[Y jX = x] =
Z

Sd � 1
sign

�
x> y

�
f � (y)d� (y)

def
= Kf � (x): (4)

The operator K in (4) is a convolution on Sd� 1. Estimation of f � in (4) is thus related to statistical
deconvolution onSd� 1 (see,e.g., [12, 16, 19]). However, the left-hand side of (4) is not a density but
a regression function where the regressors are random. The identi�cation issue in this model stems
from the fact that: (1) the distribution of the observed data only characterizesKf � on supp(f X )
which is a proper subset ofSd� 1 and (2) due to the sign function K has an in�nite dimensional null
space. The support ofX can only be as large asH + because the �rst coordinate ofX is positive.
This is because we allow for the term� 1;i � � � 1;i in (2).

A simple estimator for the density of � in this model is given in [10]. There, rates of convergence
for the Lp-losses for 1� p � 1 over Sobolev ellipsoïds based on the same Lp space (as well as
con�dence intervals for the value of the density at a point, treatment of endogenous regressors,
and of models where some coe�cients are nonrandom) are obtained under similar assumptions for
choices of the smoothing parameters which depend on unknownparameters of the Sobolev ellipsoïds.
It is assumed in [10] that the support of � lies in an (unknown) hemisphere, namely, that there
exists n (unknown) in Sd� 1 such that P(n> � > 0) = 1. This assumption �rst appeared in [13]
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and is stronger than (A2.1). It implies that for some di�eren ce of the characteristics, or taking a
limit of these, everyone chooses the same alternative. In contrast, (A2.1) is much less restrictive
and does not imply "unselected samples". However, everything in [10] also holds under (A2.1).
Assumption (A2.2) requires that the support of Z1 � Z � 1 is Rd and is also made in [10, 13]. [9]
allows for continuous regressors which support is a proper subset at the expense of assuming some
form of unselected samples and relying on integrability assumptions involving f � It is possible to
obtain identi�cation of f � when we relax (A2.2) and the requirement that f X exists (see (A1.2)).
This is done in [8]. The estimation in this case is the subjectof future work. (A2.3) strengthens
(A2.2) and is used to obtain rates of convergence. It could beviewed as an assumption on the tails
of X . It is relaxed in [10] and in this paper at the end of Section 5.Note as well that Assumption
(A1.2) allows for one nonrandom coe�cient in the original scale and that when there are more than
two, one should proceed as in Section 5.2 in [10] with the estimator developed in this paper.

In this paper, we show that the estimator in [10] can be written as a plug-in of a linear needlet
estimator. Needlets are a class of linear combinations of spherical harmonics which form a tight
frame of localized functions on spheres (see [25]). Hard-thresholding of series estimators based
on needlets have been successfully used in statistics for estimation of functions de�ned on spheres
(see [2] for densities, [24] for regression functions, and [17, 18, 19] for some inverse problems) or
compact manifolds (see [15]). This paper proves lower bounds on the minimax risk when the degree
of integrability in the loss - speci�ed by the statistician - can di�er from the degree of integrability
of the Besov body containing the unknownf � , giving rise to sparse and dense regimes. The lower
bounds correspond, up to logarithmic factors, to the upper bounds in [10] over Sobolev ellipsoïds
and matching degrees of integrability. This paper proposesto replace the linear needlet estimator
in [10] by a nonlinear estimator based on hard-thresholdingwith data-driven thresholds and use
the same plug-in strategy as in [10]. The upper bounds on the risk of the estimator also correspond
to the lower bounds up to a logarithmic factor, but over all Besov bodies, including nonmatching
degrees of integrability. Both the upper and lower bounds are also given for the sup-norm loss.
The data-driven thresholds are similar in spirit to [5] for density estimation using the Dantzig
selector (see also [6, 24] for other local thresholding procedures over the sphere), they are based
on sharp concentration inequalities and make the implementation of the estimator feasible as it is
independent of features of the unknown density. Proofs are given in the appendix.

2 Preliminaries

We use the notation x ^ y and x _ y for the minimum and the maximum between x and y. We
write x . y when there existsc such that x � cy, x & y when there existsc such that x � cy, and
x ' y when x . y and x & y. We denote by jAj and 1A the cardinal and indicator of the set A, by
N the nonnegative integers, byN� the positive integers, by a.e. almost every, and by a.s. almost
surely. We denote for 1� p � 1 by k � k` p the `p-norm of a vector, by k � kp the usual norm on
the space Lp(Sd� 1) of p integrable real-valued functions with respect to the spherical measure� .
We write L p

odd (Sd� 1) (resp. Lp
even(Sd� 1)) the closure in Lp(Sd� 1) of continuous functions on Sd� 1

which are odd (i.e., for every x 2 Sd� 1, f (� x) = � f (x)) (resp. even). Every f 2 Lp(Sd� 1) can be
uniquely decomposed as the sum of an odd and even functionf � and f + in L p(Sd� 1). The space
L2(Sd� 1) is a Hilbert space with the scalar product h ; i derived from the norm, there f � and f +

are orthogonal. D is the set of densities and, as it will become clear after Proposition 5, � (d) = d=2
is the degree of ill-posedness of the inverse problem.
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2.1 Harmonic analysis

The basic element is the orthogonal decomposition L2(Sd� 1) =
L

k2 N H k;d , where H k;d are the

eigenspaces of the Laplacian � on Sd� 1, corresponding to the eigenvalues� � k;d , given by � k;d
def
=

k(k + d � 2), of dimension L (k; d)
def
= (2 k + d � 2)(k + d � 2)!=(k!(d � 2)!(k + d � 2)). The space

H k;d is spanned by an orthonormal basis (hk;l )L (k;d )
l =1 and H 0;d by 1. We also have L2odd (Sd� 1) =L

p2 N H 2p+1 ;d and L2
even(Sd� 1) =

L
p2 N H 2p;d . The projector L k;d onto H k;d is the operator with

kernel

L k;d (x; y) =
L (k;d )X

l =1

hk;l (x)hk;l (y) =
L (k; d)

� (Sd� 1)P � (d)
k (1)

P � (d)
k

�
x> y

�
; (5)

where � (d) = ( d� 1)=2, the surface ofSd� 1 is � (Sd� 1) = 2 � d=2=�( d=2), and C �
k are the Gegenbauer

polynomials. The Gegenbauer polynomials, de�ned for� > � 1=2, are orthogonal in the space of
square integrable functions on [� 1; 1] with measure (1� t2)� � 1=2dt. We haveP �

0 (t) = 1, P �
1 (t) = 2 �t

for � 6= 0, P0
1 (t) = 2 t, and for every k 2 N

(k + 2) P �
k+2 (t) = 2( � + k + 1) tP �

k+1 (t) � (2� + k)P �
k (t): (6)

Clearly, for f 2 L2(Sd� 1), we have f =
P 1

k=0 L k;d f and, due to (5),

8x 2 Sd� 1; kL k;d (x; �)k2
2 =

L (k;d )X

l =1

jhk;l (x)j2 =
L(k; d)
� (Sd� 1)

: (7)

Powers (� �) s f for s 2 R and f in a Banach spaceE1 are de�ned in a Banach spaceE2 when
L k;d f is de�ned in E2 and (� �) s f

def
=

P 1
k=0 � s

k;d L k;d f converges inE2. The best approximation in
L r (Sd� 1) of a function f by harmonics of degree less or equal tom is

Em (f )r = inf
P 2

L m

k =0
H k;d

kf � Pkr :

De�nition 3 For s > 0 and 1 � r � 1 , f belongs to the Sobolev spaceWs
r (Sd� 1) if

kf kr;s = kf kr +


 (� �) s=2 f





r
< 1 :

We denote by Ws
r odd (Sd� 1) the restriction of W s

r (Sd� 1) to odd functions.

De�nition 4 For s > 0, 1 � r � 1 , and 0 < q � 1 , f belongs to the Besov spaceB s
r;q (Sd� 1) if

kf kA
B s

r;q
= kf kr +





�
2js E2j (f )r

�
j 2 N





` q
< 1 :

2.2 The operator

Proposition 5 The operator K satis�es the following properties:

(P1.1) For every f 2 L1(Sd� 1), Kf = K(f � ),
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(P1.2) If Kf = Kg with f; g 2 L1
odd (Sd� 1) then g = f ,

(P1.3) For every 1 � r � 1 ,

W � (d)+ j1=r � 1=2j (d� 2)
r odd (Sd� 1) � K (L r

odd (Sd� 1)) � W � (d) �j 1=r � 1=2j (d� 2)
r odd (Sd� 1);

where the exponents� (d) � j 1=r � 1=2j(d � 2) cannot be improved,

(P1.4) For every 1 � r � 1 , there existsB (d; r) such that

8K 2 N; 8P 2
KM

k=0
k odd

H k;d ; kK � 1Pkr � B (d; r)K � (d) kPkr : (8)

Moreover, K is a self-adjoint and compact operator onL2(Sd� 1) with null spaceL2
even(Sd� 1), nonzero

eigenvalues(� 2p+1 ;d )p2 N corresponding to the eigenspacesH 2p+1 ;d for p 2 N

� 1;d =
2jSd� 2j
d � 1

; 8p 2 N� � 2p+1 ;d =
2(� 1)p jSd� 2j1 � 3 � � � (2p � 1)
(d � 1)(d + 1) � � � (d + 2 p � 1)

:

For every d 2 N n f 1g, for every p 2 N, there existsc� (d); C� (d) > 0 such that

c� 1
� (d)p� � (d) � j � 2p+1 ;d j � C� (d)p� � (d) : (9)

K is a homeomorphism betweenL2
odd (Sd� 1) and W � (d)

2 odd (Sd� 1).

The fact that � (d) is the degree of ill-posedness of the inverse problem follows from (P1.4) and what
follows, in particular (9).

Proposition 5 implies that every R 2 W � (d)
2 odd (Sd� 1) has a unique inverse given by

K � 1 (R) =
X

k odd

1
� k;d

L k;d (R) =
X

k odd

1
� k;d

L (k;d )X

l =1

hR; hk;l i hk;l : (10)

2.3 Needlets

Smoothed projection operators (see [10]) have good approximation properties in all L p(Sd� 1) spaces
and are uniformly bounded from Lp(Sd� 1) to L p(Sd� 1). One such operator, the delayed means, is
the integral operator with kernel

K a;J (x; y)
def
=

1X

k=0

a
�

k
2J

�
L k;d (x; y); (11)

where J is an integer, a is a C1 and decreasing function on [0; 1 ) supported on [0; 2] such that,
for every 0 � t � 2, 0 � a(t) � 1 and, for every 0� t � 1, a(t) = 1. The delayed means operator
exhibits nearly exponential localization (see Theorem 2.2in [25]) and is a building block for the
construction of needlets.
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De�ne b such that b2(t) = a (t) � a(2t) for t � 0. It is nonzero only when 1=2 � t � 2, satis�es
b2(t) + b2(2t) = 1 for 1 =2 � t � 1 and thus for every t � 1,

P 1
j =0 b2

�
t

2j

�
= 1, also b2(t) = a(t) for

1 � t � 2. Take a such that b is bounded away from 0 on 3=5 � t � 5=3.
The second ingredient for the construction of needlets is a quadrature formula (Corollary 2.9 of

[25]) with positive weights
�
! (j; � )2

�
� 2 � j

and nodes� 2 � j which integrates functions in
L 2j

k=0 H k;d

and satisfy, for a constant C� which depends ond,

8j 2 N; 8� 2 � j ; C � 1
� 2j (d� 1) � j � j j � C� 2j (d� 1)

C � 1
� 2� j (d� 1)=2 � ! (j; � ) � C� 2� j (d� 1)=2:

Needlets are de�ned as

 j;� (x)
def
= ! (j; � )

1X

k=0

b
�

k
2j � 1

�
L k;d (�; x ) if j 2 N; � 2 � j ; (12)

 0;� (x)
def
= L 0;d (�; x ): (13)

For j = 0,  0;� (x) is constant and � 0 is a singleton.
The Lp-norms of the needlets satisfy, for a constantCp that can depend ond,

8j 2 N; 8� 2 � j ; C � 1
p 2j (d� 1)(1 =2� 1=p) � k  j;� kp � Cp2j (d� 1)(1 =2� 1=p) : (14)

If f 2 Lp(Sd� 1) for 1 � p � 1 , then f =
P 1

j =0

P
� 2 � j

hf;  j;� i  j;� . The needlets form a tight

frame, with unitary tightness constant, this means that for f 2 L2(Sd� 1)

kf k2
2 =

1X

j =0

X

� 2 � j

jhf;  j;� ij 2 :

Needlets do not form a basis and there is redundancy. Lemma 6 (see [2]) relates Lp(Sd� 1) norms
at level j to `p norms of needlet coe�cients. Constants may depend ond.

Lemma 6 (i ) For every 1 � p � 1 , there exists a constantC0
p such that for every j 2 N and

(� � )� 2 � j 2 R� j







X

� 2 � j

� �  j;�








p

� C0
p2j (d� 1)(1 =2� 1=p)



 (� � )� 2 � j





` p
; (15)

(ii ) There exists constantscA and cp;A and setsA j � � j with jA j j � cA 2j (d� 1) for j 2 N such
that for every 1 � p � 1 , j 2 N, and (� � )� 2 A j 2 RA j ,








X

� 2 A j

� �  j;�








p

� cp;A 2j (d� 1)(1 =2� 1=p)


 (� � )� 2 A j





` p
; (16)

(iii ) For every 1 � p � 1 , there exists a constantC00
p such that for every j 2 N

0

@
X

� 2 � j

jhf;  j;� ij p

1

A

1=p

2j (d� 1)(1 =2� 1=p) � C00
p kf kp: (17)
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Needlets are such that (see [25]), for all functiona in the de�nition of the smoothed projection
operators, the norm k�kA

B s
r;q

de�ning the Besov spaces is equivalent to

kf kB s
r;q

=






�
2j (s+( d� 1)(1 =2� 1=r ))



 (hf;  j;� i ) � 2 � j





` r

�

j 2 N






` q

:

The ball of radius M for this norm is denoted by B s
r;q (M ).

Recall the following consequence of the proof of the continuous embeddings in [2].

Lemma 7 (i ) If p � r � 1 , then we haveB s
r;q (M ) � B s

p;q (C1=p� 1=r
� M ),

(ii ) If s > (d � 1)(1=r � 1=p) and r � p � 1 , then we haveB s
r;q (M ) � B s� (d� 1)(1 =r � 1=p)

p;q (M ),

(iii ) If f 2 B s
r;q (M ) and (� j;� ) � 2 � j ;j 2 N are its needlet coe�cients, then there exists (D j ) j 2 N 2 RN

such that k(D j ) j 2 Nk` q � M and

8z � 1; 8j 2 N;
X

� 2 � j

j� j;� jz � C1� (z^ r )=r
� D z

j 2� jz (s+( d� 1)(1 =2� 1=(z^ r ))) : (18)

Finally recall that, when f 2 B s
r;q with s > (d � 1)=r, then f is continuous.

3 Identi�cation of f �

Let us present the arguments for the identi�cation of f � . Proposition 5 (P1.1) implies that Kf � =
Kf �

� is odd. Thus under (A2.2) we can de�ne the odd function R as

R(x) =
�

E[Y jX = x] for a.e. x 2 H +

� E[Y jX = � x] for a.e. x 2 � H + (19)

and we have, for a.e.x 2 Sd� 1, R(x) = Kf �
� (x). Uniqueness off �

� follows from (P1.2). Using, for
a.e. x 2 Sd� 1 f � (x) � 0 and f �

� (x) = ( f � (x) � f � (� x))=2, and condition (A2.1), yields that, for
a.e. x 2 Sd� 1, we have

f � (x) = 2 f �
� (x)1f �

� (x )> 0: (20)

In this paper we normalize the vectors of random coe�cients and covariates to have unit norm.
Indeed, since only the sign of the net utility (2) matters for choosing between 1 and -1 and the index
is linear, a scale normalization of (� 1 � � � 1;  > ) is in order. Let us compare with the normalization
in [9]. It is based on the following assumption, which is stronger than the condition in [13], that
the support of � is a subset of some (unknown) hemisphere, which itself is stronger than (A2.1).

(H): a.s. there exists j 2 f 1; : : : ; dg, the coordinate  j of  has a sign (excluding 0).

Assumption (H) is likely to hold when Z1j and Z � 1j are cost factors, since consumers dislike an
increase in cost. If (H) holds we can identify for which indexj  j has a sign since it amounts to the
�nding for which coordinate zj of z zj ! E[Y jZ1 � Z � 1 = z] is (globally) monotone. We can identify
the sign of the coe�cient by assessing whether the function is increasing (positive) or decreasing
(negative). If  j > 0 then we normalize the vector of coe�cients by dividing by  j . If  j < 0 we
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change the sign ofZ1j � Z � 1j to make it positive. A potential issue with this normalizati on is
that if � j can take small values then estimators could di�er in �nite samples depending on which
coe�cient is used for normalization. Also, monotonicity in one regressor of the conditional mean
function implies a type of weak monotonicity (in the sense used to identify treatment e�ects, see,
e.g., [9]) at the individual level as we now explain. Assuming that  j > 0, z1i � z� 1i = z for
all i = 1 ; : : : ; n, and that we changezj to z0

j > z j while leaving unchanged (� 1i � � � 1i ;  >
i ) (the

characteristics of the individuals) and the other components of z, then some people do not change
their decision and some choose alternative 1 while originally they had chosen alternative -1, but
no one changes from alternative 1 to alternative -1. Monotonicity of the conditional mean function
implies monotonicity for every individual. This is sometimes not a realistic model of individuals
making choices. Clearly (A2.1) allows both individuals to switch from 1 to -1 and individuals to
switch from -1 to 1 after similar changes inz (or x). On the other hand, if (H) holds then (A2.2)
can be relaxed and we can consider an index which is nonlinearin X (cf. [9]).

4 Lower bounds

We take 1 � p; r � 1 , 0 � q � 1 , z � 1, and s > 0, and consider the minimax risk

R �
n

def
= inf

bf �

sup
f � 2 B s

r;q (M ) \D
E



 cf � � f �





z

p
; (21)

where the in�mum is over all estimators based on the i.i.d. sample of size n. The degree of
integrability r in the smoothness classB s

r;q (M ) is allowed to di�er from the degree of integrability
p in the loss function. We distinguish two zones fors; r; q; d, and p:
(1) the dense zonewhere s � p(� (d) + ( d � 1)=2) (1=r � 1=p) with the restriction q � r if s =
p(� (d) + ( d � 1)=2) (1=r � 1=p), where the rate involves

� dense(d; p; r; s)
def
= s=(s + � (d) + ( d � 1)=2);

(2) the sparse zonewhere (d � 1)=r < s < p (� (d) + ( d � 1)=2) (1=r � 1=p), where the rate involves

� sparse(d; p; r; s)
def
= ( s � (d � 1)(1=r � 1=p))=(s + � (d) � (d � 1)(1=r � 1=2)):

The terminology dense and sparse is justi�ed by the following heuristic. The proofs of the lower
bounds replace the in�mum in (21) by a minimum over a set of functions which are di�cult to
estimate. The functions used to prove the lower bound in the dense zone are functions which could
have many nonzero needlet coe�cients for� 2 A j (see Lemma 6) and a well-chosenj . Those used
to prove the lower bound in the sparse zone only have two nonzeros. In the dense zone, the rate is
the same as for the matched case whenr = p studied in [10].

Theorem 8 (i ) In the dense zone we have

R �
n � cdense(d; M; p; r; s; z )

�
1

p
nA X

� � dense (d;p;r;s )z

; (22)

(ii ) In the sparse zone we have

R �
n � csparse(d; M; p; r; s; z )

0

@

s
ln(nA X )

nA X

1

A

� sparse (d;p;r;s )z

; (23)
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where the constantscdense and csparse depend ond, M , p, r , s and z.

The values of � dense and � sparse depend ond through the dimension of Sd� 1. This is the usual
curse of dimensionality in nonparametric regression or density estimation. They also depend ond
through the degree of ill-posedness� (d) = d=2 of the inverse problem.

5 Adaptive estimation by needlet thresholding

Consider the estimator cf � = 2 cf �
� 1cf �

� > 0
, where cf �

� is an estimator of f �
� .

5.1 Smoothed projections and linear needlet estimators

A smoothed projection estimator of f �
� with kernel (11), window a, and J 2 N, is given for x 2 Sd� 1

by

cf �
�

a;J
(x) =

X

k odd

a
�

k
2J

�

� k;d

\L k;d R(x);

with the unbiased estimator of L k;d R(x) (see Lemma 10): \L k;d R(x) = 0 if k is even, else

\L k;d R(x) =
2
n

nX

i =1

yi L k;d (x i ; x)
f X (x i )

:

Alternatively, we can estimate f �
� using the needlet frame with smoothing windowa. The coe�-

cients � a
j;� = hf �

� ;  j;� i are such that

� a
j;� = ! (j; � )

X

k odd

b
�

k
2j � 1

�
hf �

� ; L k;d (�; �)i

= ! (j; � )
X

k odd

b
�

k
2j � 1

�

� k;d
hL k;d R; L k;d (�; �)i

= ! (j; � )
X

k odd
2j � 2 <k< 2j

b
�

k
2j � 1

�

� k;d
L k;d R(� ):

Using that a
�

k
2j

�
= 1 for k = 0 ; : : : ; 2j and denoting by f �

�
a;J

= E
�

cf �
�

a;J
�
, we obtain that, for

1 � j � J , � a
j;� =

D
f �

�
a;J

;  j;�

E
, which can be estimated without bias by

b� a
j;� = ! (j; � )

X

k odd

b
�

k
2j � 1

�

� k;d

\L k;d R(� )
(4 1 )
=

�
cf �
�

a;J
;  j;�

�
:

Moreover, for x 2 Sd� 1,

b� a
j;�  j;� (x) = ! (j; � )2

 
X

k odd

b
�

k
2j � 1

�

� k;d

\L k;d R(� )

!  
X

k

b
�

k
2j � 1

�
L k;d (�; x )

!
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belongs to
L 2j

k=0 H k;d , thus by the quadrature formula

X

� 2 � j

b� a
j;�  j;� (x) =

X

k odd

b2
�

k
2j � 1

�

� k;d

\L k;d R(x):

This yields
P J

j =0

P
� 2 � j

b� a
j;�  j;� = cf �

�

a;J � 1
, indeed

JX

j =0

X

� 2 � j

b� a
j;�  j;� =

JX

j =1

X

� 2 � j

b� a
j;�  j;� (due to (4 1) and becausecf �

�

a;J
is odd)

(4 2 )
=

X

1� k< 2J � 1

k odd

1
� k;d

\L k;d R +
X

2J � 1 � k � 2J

k odd

b2
�

k
2J � 1

�

� k;d

\L k;d R

(4 3 )
=

X

1� k< 2J � 1

k odd

1
� k;d

\L k;d R +
X

2J � 1 � k � 2J

k odd

a
�

k
2J � 1

�

� k;d

\L k;d R;

where (4 2) uses that for 1=2 � t � 1, b2(t) + b2(2t) = 1, while ( 4 3) that b2(t) = a (t) for 1 � t � 2.
Thus, the smoothed projection and needlet estimators coincide.

5.2 Nonlinear estimator with data-driven thresholds

Consider, for  � 1 and � T j;�; (x) = x1j x j>T j;�;
, the nonlinear estimator of f �

� :

cf �
�

a;�
=

JX

j =0

X

� 2 � j

� T j;�;

�
b� a

j;�

�
 j;� :

It is classical that the optimal choice of J for linear estimators depends on the parameters of
the smoothness ellipsoid. In contrast, using a thresholdedestimator allows to take J large and
independent of the parameters. Thresholding induces additional bias compared to linear estimators
which allows to reduce the variance incurred by takingJ large.

The level of thresholding should depend on the size of the coe�cients relative to their variance.
This variance is proportional to 1=

p
n so that the level of the threshold does not have to depend

on the smoothness of the unknown function. Instead of using aconservative upper bound on their
variance, as is usually the case in estimation using wavelets, we use data-driven levels of thresholding.
These provide better estimators in small samples. Lemma 14 gives a theoretical guarantee that the
performance is almost as good as that of an oracle which wouldknow the variance of the estimators
of the coe�cients. The data-driven thresholding rule uses that b� a

j;� = 1
n

P n
i =1 Gj;� (x i ; yi ) with

Gj;� (x i ; yi )
def
=

2
n

nX

i =1

! (j; � )
yi

f X (x i )

X

k odd

b
�

k
2j � 1

�

� k;d
L k;d (x i ; � ): (24)

De�ne the estimator of the variance by

�̂ j;�
def
=

vu
u
t 1

n(n � 1)

nX

i =2

i � 1X

k=1

(Gj;� (x i ; yi ) � Gj;� (xk ; yk )) 2; (25)
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tn =
p

logn=n, and the data-driven thresholds

Tj;�;
def
= 2

p
2t n b� j;� +

28
3

M j;�
 logn
n � 1

;

where M j;� is an upper bound on the sup-norm overH + � f� 1g of Gj;� (x; y) � E [Gj;� (X; Y )] =
Gj;� (x; y) � � a

j;� (e.g., 2kGj;� k1 ). For example, using (14) and Proposition 5, we get

2kGj;� k1 � 2


 K � 1

�
 �

j;�

� 



1
BX � 2C1 B (d;1 )2j ( � (d)+( d� 1)=2) BX

def
= M j : (26)

The second term inTj;�; controls the error in estimating the threshold.

Theorem 9 For J such that 2J ( � (d)+( d� 1)=2) B 1=2
X ' t � 1

n , M > 0, and s > (d � 1)=r,

(i ) If z > 1 and  > z= 2 + 1, we have

sup
f � 2 B s

r;q (M ) \D
E



 cf �

a;�
� f �





z

1
� ~c(d;1 ; r; s;  )(log n)z� 1M r (BX tn ) � sparse (d;1 ;r;s )z : (27)

(ii ) If p < 1 and  > p= 2, we have

sup
f � 2 B s

r;q (M ) \D
E



 cf �

a;�
� f �





p

p
� ~c(d; p; r; s;  )(log n)p� 1M $ (BX tn ) � (d;p;r;s )p ; (28)

where � (d; p; r; s) = � dense(d; p; r; s) and $ = r in the dense zone, while� (d; p; r; s) =
� sparse(d; p; r; s) and $ > p � (d)+( d� 1)(1 =2� 1=p)

s+ � (d) � (d� 1)(1 =r � 1=2) is arbitrary in the sparse zone, and~c(d; p; r; s;  )
is a constant which depends ond; p; r; s, and  .

The upper bounds in Theorem 9 match the lower bound in Theorem8 up to logarithmic factors.
Hence, the proposed estimator is minimax adaptive (up to thelog factors).

6 Simulation study

We study the performance of the estimator whend = 3, n = 3000; 5000; 10000, andX is uniform
on H + . We use of the Von Mises-Fisher distribution vMF(�; � ) with density

f (� ; �; � ) =
�

4� sinh �
exp

�
�� > �

�

with respect to � . We take � = ( ~� 1; ~� 2; j ~� 3j) in the cases:

� ~� follows a vMF(�; � ) distribution where � = (0 0 1) > and � = 10.

� ~� follows a mixture � vMF( � 1; � ) + (1 � � )vMF( � 2; � ); where � 1 = (2 � 1=2 0 2� 1=2)> , � 2 =
(� 2� 1=2 0 2� 1=2)> , � = 10 and � = 0 :3.
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We use the cubature de�ned in spherical coordinates as a product of the Gauss-Legendre quadrature
with m nodes and trapezoid rule with 2m subdivisions (see [1]). The resulting cubature has 2m2

nodes and integrates exactly all polynomials on the sphere up to degree 2m � 1. We take the same
function a as in [2].

The threshold is driven by the parameter  . The choice of  slightly depends on the targeted
norm. Here we focus on a simultaneous control of the L1, xL 2, xL 4 and L1 norm. According to
our analysis,  should be chosen stricly larger than 4. We have neverthelesschosen to use = 4
which turns out to be su�cient in practice.

Figure 1 displays the distribution of estimates based on a Monte-Carlo experiments with 100
replications and n = 3000. We plot the Lambert equal-area projection on the diskwhich is de�ned
(see [22])

(sin � cos�; sin � sin �; cos� )> 7! 2 sin
�

�
2

�
(cos�; sin � )> :

Our main contribution is a control of the estimation error fo r all L p norm. Table 1 displays the
expected risk, approximated using Monte-Carlo and 100 replications, for some Lp norms. More pre-

cisely, we have approximated the following renormalized quantities:
�

E
� 

 bf � � f �





p

p

�
=kf � kp

p

� 1=p

for p = f 1; 2; 4g and E
h

 bf � � f �





1

i
=kf � k1 . Figure 2 displays the decay of those error with re-

spect to n in a logarithmic scales. As expected, we observe a simultaneous control over all norm
and the error decays follows the power law given by the upper bounds. The results are similar to
the one obtained in [10] except that our threshold does not depend on the unknown regularity of
the function whereas the level used in [10] depends on it.

Unimodal Mixture
P P P P P P PPRisk

n
1000 2000 3000 5000 10000 1000 2000 3000 5000 10000

E
� 
 bf � � f �




1

�
=kf � k1 0:89 0:64 0:53 0:43 0:32 0:92 0:68 0:57 0:46 0:34

�
E

h
 bf � � f �


 2

2

i
=kf � k2

2

� 1=2
0:6 0:43 0:35 0:29 0:21 0:821 0:6 0:5 0:4 0:29

�
E

h
 bf � � f �


 4

4

i
=kf � k4

4

� 1=4
0:49 0:36 0:29 0:24 0:17 0:8 0:58 0:48 0:38 0:27

E
� 
 bf � � f �




1

�
=kf � k1 0:42 0:32 0:26 0:21 0:17 0:86 0:6 0:51 0:39 0:29

Table 1: Risk.

7 Appendix

7.1 A preliminary lemma

Lemma 10 The following equality holds for everyg 2 L2(Sd� 1),

hR; gi = 2 E
�

Y g� (X )
f X (X )

�
:
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(a) True density (b) Mean of estimates

(c) 5% quantile of estimates (d) 95% quantile of estimates

(e) True density (f) Mean of estimates

(g) 5% quantile of estimates (h) 95% quantile of estimates

Figure 1: True density and distribution of the estimates.
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Unimodal Mixture
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1
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4

Inf

Figure 2: Decay of the risk with n in logarithmic scales.

Proof. The result is based on the following

hR; gi = hR; g� i (becauseR is odd)

= 2
Z

H +

R(x)g� (x)
f X (x)

f X (x)d� (x)

= 2 E
�

R(X )g� (X )
f X (X )

�

= 2 E
�

E[Y jX ]g� (X )
f X (X )

�
: �

7.2 Proof of Proposition 5

The operator K is related to the Hemispherical transform (see [10, 26]) de�ned for f 2 L1(Sd� 1)
and a.e. x 2 Sd� 1 by

H(f )(x)
def
=

Z

Sd � 1
1x > y> 0f (y)d� (y);

through

Kf = 2 H(f ) �
Z

Sd � 1
f (y)d� (y):

(P1.1) is a consequence of the fact thaty ! x> y 2 L1
odd (Sd� 1). (P1.2) follows from Theorem 2

(ii), and (P1.3) follows from Theorem C in [26]. The second part of the proposition together with
(P1.4) are consequences of the properties ofH detailed in [10]. The inequalities (9) correspond to
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Lemma A.2. Note however that there is a typo in the proof and weshould read 1:3 : : : (2p � 1) �
p� 1=22:4 : : : (2p) but the result still holds.

7.3 Proof of Theorem 8

Start by noting that for every j 2 N and � 2 � j ,
Z

Sd � 1
 j;� (x)dx = ! (j; � )b(0) = ! (j; � )(a(0) � a(0)) = 0 :

This implies that the functions f m that we introduce below integrate to 1.

7.3.1 Proof of the lower bound in the dense zone

Consider the family (Pm )M
m =0 , where M 2 N� , of distributions of an i.i.d. sample of (Y; X ) of size

n when f � = f m and the density of X is f X . These probabilities are absolutely continuous with
respect to the product of � 1 + � � 1, where � y denotes the Dirac mass aty and � . Take j 2 N,
f 0 = 1 =� (Sd� 1), and consider the setA j from Lemma 6 (ii). By the Varshamov-Guilbert bound
(Lemma 2.9 in [27]) there exists 
 � f 0; 1gA j containing (0; : : : ; 0) such that j
 j = 2 jA j j =8 and
8(! 1; ! 2) 2 
 2, k! 1 � ! 2k` 1 � j A j j=8. Enumerate the elements of 
 from 0 (corresponding to the
zero vector) to M

def
= j
 j � 1 and de�ne

f m
def
= f 0 + 

X

� 2 A j

! �  j;�

when (! � )� 2 A j is the mth element of 
 and  = cC� 1=r
� M 2� j (s+( d� 1)=2) for 0 < c < 1 such that all

f m are nonnegative. We now use the following result (see Theorem 2.5 in [27]).

Lemma 11 If for 0 < � < 1=8 we have:

(i ) f m 2 B s
r;q (M ) \ D for m = 0 ; : : : ; M ,

(ii ) 8 0 � m < l � M ; kf m � f l kp � 2h > 0,

(iii ) 1
M

P M
m =1 K (Pm ; P0) � � ln(M ),

then for every z � 1

inf
bf �

sup
f � 2 B s

r;q (M ) \D
E



 cf � � f �





z

p
� hz

p
M

1 +
p

M

 

1 � 2� �

s
2�

ln(M )

!

: (29)

Start by checking (i) in Lemma 11. It is enough to show that f m 2 B s
r;q (M ). Indeed, for r � 1 and

! 2 
, we have


 (! � )� 2 A j





` r
�



 (! � )� 2 A j





1=r

` 1
� C1=r

� 2j (d� 1)=r , we obtain

 2j (s+( d� 1)(1 =2� 1=r ))


 (! � ) � 2 A j





` r
� C 1=r

� 2j (s+( d� 1)=2) � M:

Lemma 6 (ii) now yields that for every 1 � p � 1 and 0 � m < l � M

kf m � f l kp � c p;A 2j (d� 1)(1 =2� 1=p)
� cA

8
2j (d� 1)

� 1=p
= 2 h:
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Thus (ii) in Lemma 11 follows with h = cp;A
�

cA
8

� 1=p
cC� 1=r

� M 2� js � 1.
By independence, the Kullback-Leibler divergence betweenPm and P0 is given by

K (Pm ; P0) = nE
�
H(f m )(X ) ln

�
H (f m )(X )
H(f 0)(X )

�
+ (1 � H (f m )(X )) ln

�
1 � H (f m )(X )
1 � H (f 0)(X )

��
:

Using that, for x > 0, ln(x) � x � 1, we obtain

K (Pm ; P0) � nE
�

H(f m � f 0)(X )2

H(f 0)(X ) (1 � H (f 0)(X ))

�
;

and thus

K (Pm ; P0) � 4nA X kH(f m � f 0)k2
2

� 4nA X � 2
2j +1 ;d kf m � f 0k2

2 ;

where the last display comes from the fact thatf m � f 0 2
L

2j +1 � k � 2j +2 � 1 H k;d . From (9) we get

K (Pm ; P0) � 4C� (d)2nA X 2� 2j� (d) kf m � f 0k2
2 ;

which yields using Lemma 6 (i)

K (Pm ; P0) � (2C� (d)C0
2 )2 nA X 2� 2j� (d)



 (! � )� 2 A j





2

` 2

� (2C� (d)C0
2 )2 nA X 2� 2j� (d)



 (! � )� 2 A j





` 1

� (2C� (d)C0
2 )2 C� nA X 2j (d� 1� 2� (d))

� (2C� (d)C0
2cM )2 C1� 2=r

� nA X 2� 2j (s+ � (d)) :

Condition (iii) of Lemma 11 is satis�ed once

25 (C� (d)C0
2cM )2

ln(2)
C � 2=r

� nA X 2� 2j (s+ � (d)+( d� 1)=2) � � <
1
8

: (30)

For � < 1=8, the lower bound (29) yields that

inf
bf �

sup
f � 2 B s

r;q (M )
E



 cf � � f �





z

p
�

�
cp;A

� cA

8

� 1=p
cC� 1=r

� M 2� js � 1
� z

 
3
4

�
1

2
p

ln(M )

!

�
1
2

�
cp;A

� cA

8

� 1=p
cC� 1=r

�
M
2

� z

2� jsz ;

where the inequality leading to the second display holds when ln(M ) � 4, for example forj (d� 1) �
ln(5=cA ln(2)) =ln(2). Now (30) is satis�ed for

j � j 0
def
= 1 +

ln
�

28 (C� (d)C0
2cM )2 C � 2=r

� nA X =ln(2)
�

2 ln(2)(s + � (d) + ( d � 1)=2)
;
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which implies the lower bound

inf
bf �

sup
f � 2 B s

r;q (M )
E



 cf � � f �





z

p

�
1
2

�
cp;A

� cA

8

� 1=p
cC� 1=r

� M 2� s� 1
� z

 
28 (C� (d)C0

2cM )2 C � 2=r
� nA X

ln(2)

! � � dense (d;p;r;s )z=2

:

7.3.2 Proof of the lower bound in the sparse zone

In this proof we consider asymptotic orders for simplicity. The various constants can be obtained
like in Section 7.3.1. Consider the hypotheses

f m =
1

� (Sd� 1)
+  j;� m ;

where� m 2 A j and j j . 2� j (d� 1)=2 to ensure the functions are positive. The constant is adjusted so
that for one of the f m that we denote f 0, 8x 2 H + ;

�
�H (f �

0 )(x)
�
� � cb with cb 2 (0; 1

2 ). The function
f m also integrate to 1. We denote byM the cardinality of A j (M ' 2j (d� 1) ), Pm the distributions
of an i.i.d. sample of (Y; X ) of sizen when f � = f m and for a givenf X , and �( Pm ; P0) the likelihood
ratio. Recall that K (Pm ; P0) = EPm [�( Pm ; P0)]. We make use of the following Lemma from [20].

Lemma 12 If for � 0 > 0 and M 2 N� the following three condition hold

(i ) f m 2 B s
r;q (M ) \ D for m = 1 ; : : : ; M ,

(ii ) 8m 6= l; kf m � f l kp � 2h > 0,

(iii ) 8m = 1 ; : : : ; M , �( P0; Pm ) = exp( zm
n � vm

n ), wherezm
n are random variables andvm

n constants
such that P(zm

n > 0) � � 0 and exp
�
supm =1 ;:::; M vm

n

�
� M ,

then

8z � 1; inf
bf �

sup
f � 2 B s

r;q (M ) \D
E



 cf � � f �





z

p
�

h� z � 0

2
:

Item (i) is satis�ed when j j � M 2� j (s� (d� 1)(1 =r � 1=2) . This is more restrictive than the con-
dition to ensure positivity because we assume thats � (d � 1)=r. Thus, now we take  =
2cM 2� j (s� (d� 1)(1 =r � 1=2) for a well-chosen constantc.
The constant h in (ii) is obtained as follows, if m 6= m0,

kf m � f m 0kp =  k j;� m �  j;� m 0kp

� c p;A 2j (d� 1)(1 =2� 1=p)

� 2cM 2� j (s� (d� 1)(1 =r � 1=p)) :

Let us now consider item (iii), we obtain

Pm (log (�( P0; Pm )) � � j (d � 1) log 2) � 1 � Pm (jlog (�( P0; Pm )) j � j (d � 1) log 2)

� 1 �
EPm [jlog (�( P0; Pm )) j]

j (d � 1) log 2
:
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Thus, condition (iii) is satis�ed when

EPm [jlog (�( P0; Pm )) j] � �j (d � 1) log 2;

for � 2 (0; 1). The same computations as in the beginning of Section 5.1 yield that we need to
imposen2� 2j� (d)  2 . j , thus

AX n2� 2j (s+ � (d) � (d� 1)(1 =r � 1=2)) . j:

The desired rate is obtained by taking

2j '
�

nA X

log (nA X )

� 1
2( s + � ( d ) � ( d � 1)(1 =r � 1= 2))

:

7.4 Comparison between Besov ellipsoids of a function and it s odd part

Lemma 13 For 0 < s; q � 1 and 1 � r � 1 , there exists a constantceq that can depend ond
such that, for every f 2 B s

r;q , kf � kB s
r;q

� ceqkf kB s
r;q

.

Proof. In De�nition 4 every f 2 B s
r;q (Sd� 1) has same norm asx ! f (� x), thus by the triangle

inequality kf � kA
B s

r;q
� k f kA

B s
r;q

. We conclude by equivalence of the norms. �

7.5 A general inequality

We make use of the constantsc1;z and c2;z such that
Z

R+
z� z� 1e� �� d� � c1;z � � z (31)

Z

R+
z� z� 1e� �� 2

d� � c2;z � � z=2: (32)

Lemma 14 For every �; ; z > 1 and

T s;++
j;�; � 3

p
2t n b� j;� + 26M j;�

 logn
n � 1

def
= T s;+

j;�; ;

the two following inequalities hold:
when p = 1 ,

1
2z� 1 E

h

 cf �

a;�
� f �





z

1

i

�


 f �

�
a;J

� f �
�





z

1
+ ( J + 1) z� 1C0z

1

n

an; 1 ;z;J

JX

j =0

2j (d� 1)z=2

 

sup
� 2 � j

�
� � a

j;�

�
�z

1j � a
j;� j � T s; ++

j;�;
+ E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T s; ++

j;�;

#!

+
4C�

n

JX

j =0

2j (d� 1)( z=2+1) sup
� 2 � j

�
� � a

j;�

�
�z

+
�

C� 4
n

� 1� 1=� �
1

p
n

B 1=2
X 2Jz ( � (d)+( d� 1)=2)

� z

2J (d� 1)(1 � 1=� )bn; 1 ;z;J;�

o
;
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where

an; 1 ;z;J = 1 +
�

2
p

 logn

� z �
2 +

�
log

�
C� 2J (d� 1) c2;z

�� z=2
�

+
�

4
 logn

� z �
2 +

�
log

�
C� 2J (d� 1) c1;z

�� z �

bn; 1 ;z;J;� =

�
2
p

2C2B (d;2)
� z

�
21=� +

�
log

�
C� 2J (d� 1) c2;z�

�� z=2
�

1 � 2� (z� (d)+( d� 1)( z=2+1 � 1=� ))

+
(8C1 B (d;1 )=3)z

�
21=� +

�
log

�
C� 2J (d� 1) c1;z

�� z
�

1 � 2� (z� (d)+( d� 1)( z+1 � 1=� ))

�
2J (d� 1)

n
BX

� z=2

;

while, when1 � p � 1 ,

1
2z� 1 E

� 

 cf �

a;�
� f �





z

p

�

�


 f �

�
a;J

� f �
�





z

p
+ ( J + 1) z� 1C0z

p Cz=(p^ z) � 1
�

n

an;p;z;J

JX

j =0

2j (d� 1)( z=2� z=(p_ z))
X

� 2 � j

� �
� � a

j;�

�
�z

1j � a
j;� j � T s; ++

j;�;
+ E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T s; ++

j;�;

�

+
4

n

JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))
X

� 2 � j

�
� � a

j;�

�
�z

+
22� 1=�

n (1 � 1
� )

C�

�
1

p
n

B 1=2
X 2J ( � (d)+( d� 1)=2)

� z

2J (d� 1)(1 � z=(p_ z)) bn;p;z;J;�

o
;

where

an;p;z;J = 1 + 2

  p
2c1=z

2;zp
 logn

! z

+

 
2c1=z

1;z

 logn

! z !

bn;p;z;J;� =

�
2c1=(z� )

2;z� C2B (d;2)
� z

1 � 2� (z� (d)+( d� 1)( z=2+1 � z=(p_ z)))
+

�
4
3 c1=(z� )

1;z� C1 B (d;1 )
� z

1 � 2� (z� (d)+( d� 1)( z+1 � z=(p_ z)))

�
2J (d� 1)

n
BX

� z=2

:

The inequalities of Lemma 14 are similar to oracle inequalities, for a well-chosenJ depending on
n (see Theorem 9), where the oracle estimates� a

j;� if and only if the error made by estimating
this coe�cient is smaller than the one made by discarding it. This oracle strategy would lead to a
quantity of the form

�
�� a

j;�

�
�z

1
j � a

j;� j �
�

E
� ��b� a

j;� � � a
j;�

�
� z �� 1=z + E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1
j� a

j;� j>
�

E
� ��b� a

j;� � � a
j;�

�
� z �� 1=z :

Proving such an oracle inequality would require to lower bound
�

E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i� 1=z

. In the

inequalities of Lemma 14 the ideal quantity
�

E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i� 1=z

is replaced by T s;++
j;�; , called
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quasi-oracle. The remaining terms can be made as small as we want by taking large enough. The
last term corresponds to the approximation error. Upper bounds of these types, uniform on Besov
ellipsoids, yield an approximation error which can be expressed in terms of the regularity of the
Besov class and is uniformly small forJ large enough and allows to treat the bias/variance trade-o�
in the quasi-oracle term uniformly over the ellipsoid.

7.6 Proof of Lemma 14

7.6.1 Preliminaries

Recall from the proof of Theorem 4.1 in [10] that for every 1� p � 1


 cf �

a;�
� f �





p
� 2



 cf �

�

a;�
� f �

�





p
;

and that, for 1 � z < 1 , we have


 cf �

�

a;�
� f �

�





z

p
� 2z� 1

� 

 cf �

�

a;�
� f �

�
a;J





z

p
+



 f �

�
a;J

� f �
�





z

p

�
: (33)

The �rst term corresponds to the error in the high dimensional space while the second term corre-
sponds to the approximation error. Let us start by studying the �rst term.
Lemma 6 (i) yields



 cf �

�

a;�
� f �

�
a;J





z

p
� (J + 1) z� 1

JX

j =0








X

� 2 � j

�
� T j;�;

�
b� a

j;�

�
� � a

j;�

�
 j;�








z

p

� (J + 1) z� 1
JX

j =0

C0z
p 2j (d� 1)z(1=2� 1=p)



 � T j;�;

�
b� a

j;�

�
� � a

j;�





z

p
:

Thus, for p = 1 , we have



 cf �

�

a;�
� f �

�
a;J





z

p
� (J + 1) z� 1

JX

j =0

C0z
1 2j (d� 1)z=2 sup

� 2 � j

�
�
� � T j;�;

�
b� a

j;�

�
� � a

j;�

�
�
�
z

;

while, for p < 1 , we have



 cf �

�

a;�
� f �

�
a;J





z

p
� (J + 1) z� 1C0z

p Cz=(p^ z) � 1
�

JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))
X

� 2 � j

�
�
� � T j;�;

�
b� a

j;�

�
� � a

j;�

�
�
�
z

:

The last inequality is obtained by using that, when p � z, we have
0

@
X

� 2 � j

jb� jp

1

A

z=p

�
X

� 2 � j

jb� jz ;

and by the Hölder inequality, when p � z, we have
0

@
X

� 2 � j

jb� jp

1

A

z=p

� Cz=p� 1
�

X

� 2 � j

jb� jz :
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7.6.2 Coe�cientwise analysis

For the simplicity of the notations we sometimes drop the dependence on in the sets of indices.
We �rst consider the term

� j;�;z
def
=

�
�
� � T j;�;

�
b� a

j;�

�
� � a

j;�

�
�
�
z

:

By construction we have

� j;�;z =
�
�� a

j;�

�
�z

1�
�b� a

j;�

�
� � T j;�;

+
�
�
� b� a

j;� � � a
j;�

�
�
�
z

1�
�b� a

j;�

�
�>T j;�;

= max
� �

�� a
j;�

�
�z

1�
�b� a

j;�

�
� � T j;�;

;
�
�
� b� a

j;� � � a
j;�

�
�
�
z

1�
�b� a

j;�

�
�>T j;�;

�
:

We introduce two �phantom� random thresholds T b
j;�; = Tj;�; � � j;�; and T s

j;�; = Tj;�; + � j;�;

for some � j;�; to be de�ned later. They are used to de�ne big and small original needlet coe�cients.
We also useT b;�

j;�; for a deterministic lower bound on T b
j;�; , T s;+

j;�; and � +
j;�; for deterministic upper

bounds onT s
j;�; and � j;�; . These bounds will hold with high probability. We obtain alm ost surely

� j;�;z = max
� �

� � a
j;�

�
�z

max
�

1�
�b� a

j;�

�
� � T j;�;

1j � a
j;� j � T s

j;�;
; 1�

�b� a
j;�

�
� � T j;�;

1j � a
j;� j>T s

j;�;

�
;

�
�
� b� a

j;� � � a
j;�

�
�
�
z

max
�

1�
�b� a

j;�

�
�>T j;�;

1j � a
j;� j � T b

j;�;
; 1�

�b� a
j;�

�
�>T j;�;

1j� a
j;� j>T b

j;�;

� �

� max
� �

� � a
j;�

�
�z

max
�

1j � a
j;� j � T s

j;�;
; 1�

�b� a
j;� � � a

j;�

�
�> � j;�;

�
;

�
�
� b� a

j;� � � a
j;�

�
�
�
z

max
�

1�
�b� a

j;� � � a
j;�

�
�> � j;�;

; 1j � a
j;� j>T b

j;�;

� �

� max
� �

� � a
j;�

�
�z

max
�

1j � a
j;� j � T s; +

j;�;
; 1T s; +

j;�; <T s
j;�;

; 1�
�b� a

j;� � � a
j;�

�
�> � j;�;

�
;

�
�
� b� a

j;� � � a
j;�

�
�
�
z

max
�

1�
�b� a

j;� � � a
j;�

�
�> � j;�;

; 1j � a
j;� j>T b; �

j;�;
; 1T b; �

j;�; >T b
j;�;

� �
:

Sorting the terms according to the number of random terms we obtain

� j;�;z � max
� �

�� a
j;�

�
�z

1j � a
j;� j � T s; +

j;�;
;
�
� � a

j;�

�
�z

max
�

1T s; +
j;�; <T s

j;�;
; 1�

�b� a
j;� � � a

j;�

�
�> � j;�;

�
;

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T b; �

j;�;
;
�
�
� b� a

j;� � � a
j;�

�
�
�
z

max
�

1�
�b� a

j;� � � a
j;�

�
�> � j;�;

; 1T b; �
j;�; >T b

j;�;

� �
:

7.6.3 Scalewise analysis

De�ning

M j;z
def
= sup

� 2 � j

�
�
� � T j;�;

�
b� a

j;�

�
� � a

j;�

�
�
�
z

= sup
� 2 � j

� j;�;z

Sj;z
def
=

X

� 2 � j

�
�
� � T j;�;

�
b� a

j;�

�
� � a

j;�

�
�
�
z

=
X

� 2 � j

� j;�;z ;
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we obtain

M j;z � max
�

sup
� 2 � j

�
� � a

j;�

�
�z

1j � a
j;� j � T s; +

j;�;
; sup

� 2 � j

�
� � a

j;�

�
�z

max
�

1T s; +
j;�; <T s

j;�;
; 1�

�b� a
j;� � � a

j;�

�
�> � j;�;

�
;

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T b; �

j;�;
; sup

� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

max
�

1T b; �
j;�; >T b

j;�;
; 1�

�b� a
j;� � � a

j;�

�
�> � j;�;

� �

def
= max( M S0

j;z ; M S1
j;z ; M B 1
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The constant � > 1 in the Hölder inequality will be speci�ed later.

7.6.4 Bernstein inequality and the term
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hence the inequality from the lemma follows from (31) and (32). �
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(34)

The following similar lemma is useful to handle the casep = 1 .

24



Lemma 16 For any � 0
j � � j , we have
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Proof. A uniform union bound yields
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and thus, for any � 1 � 0 and � 2 � 0, we get
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This implies
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which allows to establish the claimed result. �

Lemma 16 allows to obtain the upper bounds (37) and (38) below.
For uj;� = � j;� , we obtain
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Along the same lines, with uj;� = c�
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recall that when � 0
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7.6.5 Empirical Bernstein and the probabilities
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which yields the �rst inequalities. The others follow from t he union bound. �

7.6.6 The case p = 1

Let us consider the various terms one by one.
Error in the high dimensional space.
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M j;� , namely, (26) and (36), and j� j j � j � J j to obtain
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� z �
21=� + (log ( c1;z� j� J j)) z

� 2J (� (d)z+( d� 1)( z+1 � 1=� ))

1 � 2� ( � (d)z+( d� 1)( z+1 � 1=� ))

�
:

The term O0
1 ;z . Denote by

O0
z;j = sup

� 2 � j

�
� � a

j;�

�
�z

1j � a
j;� j � T s; +

j;�;
+ E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T b; �

j;�;

#

:

BecauseT s;++
j;�; � T s;+

j;�; , we get

E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j� a
j;� j>T b; �

j;�;

#

= E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T s; ++

j;�;

#

+ E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1T s; ++
j;�; � j � a

j;� j>T b; �
j;�;

#

� E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T s; ++

j;�;

#

+ E

2

4 sup
� 2 � j

0

@

�
�
� b� a

j;� � � a
j;�

�
�
�

T b;�
j;�;

1T s; ++
j;�; � j � a

j;� j>T b; �
j;�;

1

A

z 3

5 sup
� 2 � j

n�
�� a

j;�

�
�z

1T s; ++
j;�; � j � a

j;� j>T b; �
j;�;

o
;
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thus

O0
z;j �

0

@1 + E

2

4 sup
� 2 � j

0

@

�
�
� b� a

j;� � � a
j;�

�
�
�

T b;�
j;�;

1

A

z3

5

1

A sup
� 2 � j

n�
�� a

j;�

�
�z

1j � a
j;� j � T s; ++

j;�;

o

+ E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T s; ++

j;�;

#

:

Using now (38), with c0
� =

p
2 and c0

M = 2
3  , and j� j j � C� 2j (d� 1) , we get the upper bound in

Theorem 14.

7.6.7 The case p < 1

Let us consider the various terms one by one.
Error in the high dimensional space. We obtain

E [Sj;z ] = E
�
SS0

j;z

�
+ E

�
SS1

j;z

�
+ E

�
SB 1

j;z

�
+ E

�
SB 2

j;z

�
:

with

E
�
SS0

j;z

�
=

X

� 2 � j

�
� � a

j;�

�
�z

1j � a
j;� j � T s; +

j;�;
;

E
�
SS1

j;z

�
�

4
n

X

� 2 � j

�
� � a

j;�

�
�z

;

E
�
SB 1

j;z

�
�

X

� 2 � j

E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j� a
j;� j>T b; �

j;�;
;

E
�
SB 2

j;z

�
�

41� 1=�

n (1 � 1=� )

X

� 2 � j

21=�
��

2c1=(z� )
2;z�

� j;�p
n

� z

+
�

4
3

c1=(z� )
1;z�

M j;�

n

� z �
;
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where we have used (a + b)1=� �
�
a1=� + b1=�

�
. This yields

E
� 

 cf �

�

a;�
� f �

�
a;J





z

p

�

(J + 1) z� 1C0z
p Cz=(p^ z) � 1

�

�
JX

j =0

2j (d� 1)z(1=2� 1=(p_ z)) E [Sj;z ]

�
JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))
X

� 2 � j

� �
� � a

j;�

�
�z

1j � a
j;� j � T s; +

j;�;
+ E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T b; �

j;�;

�

+
4

n

JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))
X

� 2 � j

�
� � a

j;�

�
�z

+
22� 1=�

n (1 � 1=� )

JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))
X

� 2 � j

��
2c1=(z� )

2;z�
� j;�p

n

� z

+
�

4
3

c1=(z� )
1;z�

M j;�

n

� z �

def
= Op;z + R1;p;z + R2;p;z :

The terms R1;p;z and R2;p;z . The term R1;p;z appears as is in Lemma 14. To bound the termR2;p;z ,
we rely on (26). We obtain

X

� 2 � j

21=�
��

2c1=(z� )
2;z�

� jp
n

� z

+
�

4
3

c1=(z� )
1;z�

M j

n

� z �

�
X

� 2 � j

21=�
�

2c1=(z� )
2;z� C2B (d;2)2j� (d) B 1=2

X
1

p
n

� z

+
X

� 2 � j

21=�
�

4
3

c1=(z� )
1;z� C1 B (d;1 )2j ( � (d)+( d� 1)=2) BX

1
n

� z

� C� 21=�
�

2c1=(z� )
2;z� C2B (d;2)

� z
B z=2

X
1

nz=2
2j (( d� 1)+ z� (d))

+ C� 21=�
�

4
3

c1=(z� )
1;z� C1 B (d;1 )

� z

B z
X

1
nz 2j (( d� 1)+ z( � (d)+( d� 1)=2)) ;
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this yields

JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))
X

� 2 � j

21=�
��

2c1=(z� )
2;z�

� jp
n

� z

+
�

4
3

c1=(z� )
1;z�

M j

n

� z �

�
JX

j =0

2j (d� 1)z(1=2� 1=(p_ z)) C� 21=�
�

2c1=(z� )
2;z� C2B (d;2)

� z
B z=2

X
1

nz=2
2j (( d� 1)+ z� (d))

+
JX

j =0

2j (d� 1)z(1=2� 1=(p_ z)) C� 21=�
�

4
3

c1=(z� )
1;z� C1 B (d;1 )

� z

B z
X

1
nz 2j (( d� 1)+ z( � (d)+( d� 1)=2))

� C� 21=�
�

2c1=(z� )
2;z� C2B (d;2)

� z
B z=2

X
1

nz=2

JX

j =0

2jz ( � (d)+( d� 1)=z+( d� 1)(1 =2� 1=(p_ z)))

+ C� 21=�
�

4
3

c1=(z� )
1;z� C1 B (d;1 )

� z

B z
X

1
nz

JX

j =0

2jz ( � (d)+( d� 1)=z+( d� 1)(1 � 1=(p_ z))

�
C� 21=�

�
2c1=(z� )

2;z� C2B (d;2)
� z

1 � 2� z( � (d)+( d� 1)=z+( d� 1)(1 =2� 1=(p_ z)))
B z=2

X
1

nz=2
2Jz ( � (d)+( d� 1)=z+( d� 1)(1 =2� 1=(p_ z)))

+
C� 21=�

�
4
3 c1=(z� )

1;z� C1 B (d;1 )
� z

1 � 2� z( � (d)+( d� 1)=z+( d� 1)(1 � 1=(p_ z))
B z

X
1

nz 2Jz ( � (d)+( d� 1)=z+( d� 1)(1 � 1=(p_ z)) :

The term Op;z . Denote by

Oz;j;� =
�
�� a

j;�

�
�z

1j � a
j;� j � T s; +

j;�;
+ E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T b; �

j;�;
:

BecauseT s;++
j;�; � T s;+

j;�; , we get

E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T b; �

j;�;

= E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T s; ++

j;�;
+ E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1T s; ++
j;�; � j � a

j;� j>T b; �
j;�;

� E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T s; ++

j;�;
+

E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

�
T b;�

j;�;

� z

�
� � a

j;�

�
�z

1T s; ++
j;�; � j � a

j;� j>T b; �
j;�;

;

Oz;j;� �

0

@1 +
E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

�
T b;�

j;�;

� z

1

A
�
�� a

j;�

�
�z

1j� a
j;� j � T s; ++

j;�;
+ E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j � a
j;� j>T s; ++

j;�;
:
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Now using the results of Section 7.6.4, withT b;�
j;�; =

p
2t n � j;� + 2

3  log n
n � 1 M j;� , we obtain

sup
j;�

E
h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

�
T b;�

j;�;

� z � 2
�

c2;z

�
2

1
p

2
p

logn

� z

+ c1;z

�
4
3

1
(2=3) logn

� z �

� 2

  p
2c1=z

2;zp
 logn

! z

+

 
2c1=z

1;z

 logn

! z !

:

This yields

Op;z �

 

1 + 2

  p
2c1=z

2;zp
 logn

! z

+

 
2c1=z

1;z

 logn

! z !!
JX

j =0

2j (d� 1)z(1=2� 1=(p_ z))

X

� 2 � j

� �
� � a

j;�

�
�z

1j� a
j;� j � T s; ++

j;�;
+ E

h�
�
� b� a

j;� � � a
j;�

�
�
�
z i

1j� a
j;� j>T s; ++

j;�;

�
:

7.7 Proof of Theorem 9

This proof requires an upper bound on: the approximation error, R1;p;z , R1;p;z , and Op;z . We use
that becausef � 2 B s

r;q (M ), we have, by Lemma 13,f �
� 2 B s

r;q (ceqM ).

7.7.1 The case 1 � p < 1

Let us consider the terms one by one.
The approximation error. Start with



 f �

�
a;J

� f �
�





p
=








X

j>J

X

� 2 � j

� a
j;�  j;�








p

:

From Lemma 6 (i) and the de�nition of the Besov spaces as a sequence space, with 1=q+ 1 =~q = 1,
we obtain 







X

j>J

X

� 2 � j

� a
j;�  j;�








p

� C0
p

X

j>J

2� js 2j (s+( d� 1)(1 =2� 1=p))



�
� a

j;�

�
� 2 � j





` p
;

which yields







X

j>J

X

� 2 � j

� a
j;�  j;�








p

� C0
p2� Js (2s~q � 1)� 1=~q



 f �

�





B s
p;q

�

8
><

>:

C0
pceqMC 1=p� 1=r

� (2s~q � 1)� 1=~q


 f �

�





B s
p;q

2� Js if r � p

C0
pceqM (2s~q � 1)� 1=~q



 f �

�





B s
p;q

2� J (s� (d� 1)(1 =r � 1=p)) if r � p.
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It is enough to consider the worst case wherer � p and to check that s� (d� 1)(1 =r � 1=p)
� (d)+( d� 1)=2 � � in the

two zones.
In the dense zone, we have

s + � (d) +
d � 1

2
�

�
� (d) +

d � 1
2

�
p
r

;

which yields
s

s + � (d) + d� 1
2

�
s

�
� (d) + d� 1

2

� p
r

:

Becauses > (d � 1)=r and p � r , we have

s �
d � 1

r
+

d � 1
p

�
sr
p

= ( d � 1)
�

sr
d � 1

� 1
� �

1
r

�
1
p

�
� 0;

which yields s � (d � 1)(1=r � 1=p) � sr
p and gives the result.

In the sparse zone, becauses > (d � 1)=r, we have

s � (d � 1)(1=r � 1=p)
� (d) + ( d � 1)=2

�
s � (d � 1)(1=r � 1=p)

s + � (d) � (d � 1)(1=r � 1=2)
:

The terms R1;p;p and R2;p;p . Using Lemma 7 (iii) we obtain

R1;p;p �
4

n (ceqM )pC1� (p^ r )=r
�

JX

j =0

2� jp (s+( d� 1)(1 =p� 1=(p^ r ))) ;

where the exponent is nonpositive becauses > (d � 1)=r, thus

R1;p;p �
4(ceqM )pC1� (p^ r )=r

�

n
�
1 � 2� p(s+( d� 1)(1 =p� 1=(p^ r )))

� :

With  > p= 2, R1;p;p is of lower order than tp
n .

We also have

R2;p;p �
22� 1=�

n (1 � 1=� )
C� bn;p;p;J;� :

With the aforementioned choice ofJ ,

1
p

n
2J ( � (d)+( d� 1)=2) B 1=2

X . 1;

2J (d� 1)

n
BX . 1:

Together, these yield that bn;p;p;J;� is of the order of a constant.
This term is also of lower order than tp

n for � large enough such that (1 � 1=� ) > p=2.

34



The term Op;p . First note that an;p;p;J = 1 + o(1).
We take T s;++

j;�; uniform in � :

T s;++
j;�; = 3

p
2t n C2B (d;2)2j� (d) B 1=2

X

+ 52C1 B (d;1 )2j ( � (d)+( d� 1)=2) BX
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n � 1

� 2j� (d) p t n B 1=2
X

�
3
p

2C2B (d;2) + 52C1 B (d;1 )
n

p


n � 1

�
;

where the last display uses the upper bound onJ , this yields, for n � 2,
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j;�; � 2j� (d) p t n B 1=2

X

�
3
p

2C2B (d;2) + 104C1 B (d;1 )
�
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As a consequence of Lemma 15, we get
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�
�
�
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��

2c1=p
2;p

� jp
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4
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�
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X
1

p
n
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�

8
3
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1
n
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B p=2
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�
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4
3
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�

�
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� p

( logn)p=2
2

 

2
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3
p
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�
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�

�
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2

3
c1=p
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! p

:

Let C = 3
p

2C2B (d;2) + 104C1 B (d;1 )
p

 and C�;p = 2 1=p
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2

3
c1=p

2;p +
c1=p

1;p
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!

:

For any 0 < z < p , we have
X

� 2 � j

� �
� � a

j;�

�
�p

1j� a
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�
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�
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�
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�
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+

�
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�
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�
� � a
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�
�z

�
�
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� � p
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X C
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2j� (d)( p� z)

X
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�
� � a

j;�

�
�z

:
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We need to sum overj and take two di�erent values for z, one that we denotez1 for j � j 0 and
one that we denotez2 for j 0 < j � J . The values ofz1, z2, j 0 will be speci�ed later, depending on
the value of the parametersr; q; s and p such that we are in the dense or sparse zone. Up to a
multiplying constant, we thus need to control

A + B =
�

B 1=2
X tn

� p� z1
j 0X

j =0

2j [� (d)( p� z1 )+( d� 1)( p=2� 1)]
X

� 2 � j

�
� � a

j;�

�
�z1

+
�

B 1=2
X tn

� p� z2
JX

j = j 0 +1

2j [� (d)( p� z2 )+( d� 1)( p=2� 1)]
X

� 2 � j

�
� � a

j;�

�
�z2 ;

where we choose adequatelyz1, z2 and j 0 in the two zones. Because of Lemma 7 (i), we only
considerp � r .
Let us �rst consider the dense zone. We de�ne

~r =
p(� (d) + ( d � 1)=2)
s + � (d) + ( d � 1)=2

:

In the dense zone, ~r � r , p > ~r and

s =
�

� (d) +
d � 1

2

� � p
~r

� 1
�

: (39)

With z2 = r , we get

B �
�
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X tn

� p� r JX
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�
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�
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:

Lemma 7 (iii) gives that X

� 2 � j

j� j;� jr � D r
j 2� jr (s+( d� 1)(1 =2� 1=r )) ;

where 8j 2 N; D j � 0, (D j ) j 2 N 2 `q. Note that
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�

1
2

�
1
r

�
=
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2~r

�
d � 1

r
+ � (d)

� p
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�
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thus
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X tn

� p� r JX
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2jp (1� r
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2 )D r
j
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�
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for q � 1 if r > ~r and for q � r if r = ~r (i.e., s = p
�
� (d) + d� 1

2

� �
1
r � 1

p

�
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p
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2 ) '
�
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X tn
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, we get

B . M r
�
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X tn
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;
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which is the rate that we expect in that zone.
As for A, we take z1 = r < ~r � r , this yields, using Lemma 7 (iii),

A �
�

B 1=2
X tn

� p� r j 0X
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. M r
�

B 1=2
X tn

� p� r j 0X

j =0

2jp ( � (d)+( d� 1)=2)(1 � r= ~r ) (using (39))

. M r
�

B 1=2
X tn

� p� r
2j 0 p( � (d)+( d� 1)=2)(1 � r= ~r )

. M r
�

B 1=2
X tn

� p� ~r
(from the de�nition of j 0):

Let us now consider the sparse zone. We de�ne by

~r = p
� (d) + ( d � 1)(1=2 � 1=p)

s + � (d) � (d � 1)(1=r � 1=2)
;

in a such a way that

p � ~r = p
s � (d � 1)(1=r � 1=p)

s + � (d) � (d � 1)(1=r � 1=2)
;

~r � r =
(p � r )(( d � 1)=2 + � (d)) � rs
s + � (d) � (d � 1)(1=r � 1=2)

> 0;

s + ( d � 1)
�

1
2

�
1
r

�
=

(d � 1)p
2~r

�
d � 1

~r
+ � (d)

� p
~r

� 1
�

: (41)

For the term A, we take z1 = r and obtain

A �
�

B 1=2
X tn

� p� r j 0X

j =0

2j [� (d)( p� r )+( d� 1)( p=2� 1)]
X

� 2 � j

�
� � a

j;�

�
� r

�
�

B 1=2
X tn

� p� r j 0X

j =0

2j [� (d)+( d� 1)(1 =2� 1=p) p
~r (~r � r )]D r

j (using (41))

.
�

B 1=2
X tn

� p� r
2j 0 [( � (d)+( d� 1)(1 =2� 1=p) p

~r (~r � r )]M r ;

the last inequality holds because� (d) + ( d � 1)=2 � (d � 1)=p > 0, indeed, because we are in
the sparse zone� (d) + ( d � 1)=2 � s=(p=r � 1) = sr=(p � r ) � 2=(p � r ) � (d � 1)=p. Taking

2j 0 ( � (d)+( d� 1)(1 =2� 1=p)) p
~r '

�
B 1=2

X tn

� � 1
, yields

A . M r
�

B 1=2
X tn

� p� ~r
:
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For the term B , we take z2 = r > ~r > r and obtain

B �
�

B 1=2
X tn

� p� r JX

j = j 0 +1

2j [� (d)( p� r )+( d� 1)( p=2� 1)]
X

� 2 � j

�
� � a

j;�

�
� r

.
�

B 1=2
X tn

� p� r JX

j = j 0 +1

2j ( � (d)+( d� 1)(1 =2� 1=p)) p( r � r )=~r D r
j (using (41))

.
�

B 1=2
X tn

� p� r
2j 0 ( � (d)+( d� 1)(1 =2� 1=p)) p( r � r )=~r M r

.
�

B 1=2
X tn

� p� ~r
M r :

7.7.2 The case p = 1

Consider r = 1 . The general case follows by Lemma 7 (ii).
The approximation error. Becausef � 2 B s

1 ;q(M ), we have by Lemma 6 (i)








X

j>J

X

� 2 � j

� a
j;�  j;�








1

�
X

j>J








X

� 2 � j

� a
j;�  j;�








1

� C0
1 ceqM

X

j>J

2j (d� 1)=22� j (s+( d� 1)=2) D j (where k(D j ) j 2 Nkq � ceqM )

� C0
1 ceqM 2� Js (2s~q � 1)� 1=~q:

From the choice ofJ , we get







X

j>J

X

� 2 � j

� a
j;�  j;�








1

. C0
1 ceqM (2s~q � 1)� 1=~q

�
tn B 1=2

X

� s=( � (d)+( d� 1)=2)
:

This term is negligible becauses=(� (d) + ( d � 1)=2) � s=(s� (d) + ( d � 1)=2).

The terms R0
1;1 ;z and R0

2;1 ;z . Using the de�nition of the Besov norm, we obtain

R0
1;1 ;z �

4
n (ceqM )zC�

JX

j =0

2� jzs 2j (d� 1)

.
4

n 2J (d� 1) M z :

With  > z= 2 + 1, which holds if 2( � 1)(1 � 1=� ) > z , R1;1 ;z is of lower order than tz
n .

Due to the choice ofJ , the term in bracket in the expression ofR0
2;1 ;z in Theorem 14 is less than

1. The second term in the expression ofbn; 1 ;z;J;� is of smaller order than the �rst term. The order
of bn; 1 ;z;J;� is �nally (log n)z=2. Thus, we have

R0
2;1 ;z .

�
n�  2J (d� 1)

� 1� 1=�
(log n)z=2:
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This term is also of lower order than tz
n when � is such that 2( � 1)(1 � 1=� ) > z .

The term O0
1 ;z . Note that here an; 1 ;z;J is of the order of a constant. We now proceed like for the

term Op;p . Using (37), we obtain for arbitrary z 2 [0; z]

sup
� 2 � j

�
� � a

j;�

�
�z

1j� a
j;� j � T s; ++

j;�;
+ E

"

sup
� 2 � j

�
�
� b� a

j;� � � a
j;�

�
�
�
z

1j � a
j;� j>T s; ++

j;�;

#

.
� p

t n B 1=2
X

� z� z
2j� (d)( z� z) sup

� 2 � j

�
� � a

j;�

�
�z

:

We use an upper bound onA + B , where:

A =
�

B 1=2
X tn

� z� z1
j 0X

j =0

2j [� (d)( z� z1 )+( d� 1)z=2] sup
� 2 � j

�
� � a

j;�

�
�z1 ;

B =
�

B 1=2
X tn

� z� z2
JX

j = j 0 +1

2j [� (d)( z� z2 )+( d� 1)z=2] sup
� 2 � j

�
� � a

j;�

�
�z2 ;

for well-chosen 0� j 0 � J , z1 and z2. Becausef 2 B s
1 ;q(M ), we have

8z � 1; sup
� 2 � j

�
� � a

j;�

�
�z

� (ceqM )z2� j (s+( d� 1)=2)z :

The result follows taking z1 = 0, j 0 such that 2j 0 ' t � 1=(s+ � (d)+( d� 1)=2)
n , and z2 = z.
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