Sanitary risk detection for a safer food chain management

Abstract : Nowadays, several risk-attitude elicitation techniques are applied in order to guarantee the highest levels of safety and quality control in the food chain. Here we explore an approach to the risk measurement problem of any multiparameter production framework using precise decision making tools. The application model of artificial neural networks is presented in order to determine the global risk related to a given production. The proposed tool uses a feed-forward network able to treat any set of nonlinearly separable production markers. The risk values obtained with this approach are incorporated into the expedition management system in order to perform smarter deliveries and more accurate sanitary controls.
Type de document :
Communication dans un congrès
Third International Conference on Information Systems, Logistics and Supply Chain - ILS 2010, Apr 2010, Casablanca, Morocco. 2010
Liste complète des métadonnées

https://hal.inria.fr/inria-00601312
Contributeur : Ist Inria Nancy Grand Est <>
Soumis le : vendredi 17 juin 2011 - 12:40:07
Dernière modification le : mardi 1 mai 2018 - 01:15:57

Identifiants

  • HAL Id : inria-00601312, version 1

Citation

Simon Tamayo, Thibaud Monteiro, Nathalie Sauer. Sanitary risk detection for a safer food chain management. Third International Conference on Information Systems, Logistics and Supply Chain - ILS 2010, Apr 2010, Casablanca, Morocco. 2010. 〈inria-00601312〉

Partager

Métriques

Consultations de la notice

128