D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems, SIAM Journal on Numerical Analysis, vol.39, issue.5, pp.1749-1779, 2002.
DOI : 10.1137/S0036142901384162

X. [. Cohen, S. Ferrieres, and . Pernet, A spatial high-order hexahedral discontinuous Galerkin method to solve Maxwell???s equations in time domain, Journal of Computational Physics, vol.217, issue.2, pp.340-363, 2006.
DOI : 10.1016/j.jcp.2006.01.004

J. [. Cockburn, R. Gopalakrishnan, and . Lazarov, Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.47-1319, 2009.
DOI : 10.1137/070706616

C. [. Cockburn and . Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comp, vol.52, pp.411-435, 1989.

H. [. Dolean, S. Fol, R. Lanteri, and . Perrussel, Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods, Journal of Computational and Applied Mathematics, vol.218, issue.2, pp.435-445, 2008.
DOI : 10.1016/j.cam.2007.05.026

URL : https://hal.archives-ouvertes.fr/hal-00106201

]. H. Fah10 and . Fahs, Discontinuous Galerkin method for time-domain electromagnetics on curvilinear domains, Appl. Math. Sci, vol.4, issue.19, pp.943-958, 2010.

S. [. Fezoui, S. Lanteri, S. Lohrengel, and . Piperno, Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, vol.39, issue.6, pp.1149-1176, 2005.
DOI : 10.1051/m2an:2005049

URL : https://hal.archives-ouvertes.fr/hal-00210500

H. [. Feng and . Wu, Discontinuous Galerkin Methods for the Helmholtz Equation with Large Wave Number, SIAM Journal on Numerical Analysis, vol.47, issue.4, pp.2872-2896, 2009.
DOI : 10.1137/080737538

Y. [. Feng and . Xing, Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number, Mathematics of Computation, vol.82, issue.283, 2011.
DOI : 10.1090/S0025-5718-2012-02652-4

P. [. Griesmaier and . Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, DOI: 10, 2011.

I. [. Houston, A. Perugia, and . Schotzau, Mixed Discontinuous Galerkin Approximation of the Maxwell Operator, SIAM Journal on Numerical Analysis, vol.42, issue.1, pp.434-459, 2004.
DOI : 10.1137/S003614290241790X

I. [. Houston, A. Perugia, A. Schneebeli, and . Schotzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numerische Mathematik, vol.169, issue.3, pp.485-518, 2005.
DOI : 10.1007/s00211-005-0604-7

T. [. Hesthaven and . Warburton, Nodal High-Order Methods on Unstructured Grids, Journal of Computational Physics, vol.181, issue.1, pp.186-221, 2002.
DOI : 10.1006/jcph.2002.7118

S. [. Kirby, B. Sherwin, and . Cockburn, Nodal discontinuous Galerkin methods -algorithms, analysis, and applications, 2008.