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Abstract

After a decade of extensive study of the sparse representation synthesis model,
we can safely say that this is a mature and stable field, with clear theoretical
foundations, and appealing applications. Alongside this approach, there is an
analysis counterpart model, which, despite its similarity to the synthesis alter-
native, is markedly different. Surprisingly, the analysis model did not get a
similar attention, and its understanding today is shallow and partial.

In this paper we take a closer look at the analysis approach, better define
it as a generative model for signals, and contrast it with the synthesis one.
This work proposes effective pursuit methods that aim to solve inverse prob-
lems regularized with the analysis-model prior, accompanied by a preliminary
theoretical study of their performance. We demonstrate the effectiveness of the
analysis model in several experiments, and provide a detailed study of the model
associated with the 2D finite difference analysis operator, a close cousin of the
TV norm.
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1. Introduction

Situated at the heart of signal and image processing, data models are fun-
damental for stabilizing the solution of inverse problems, and enabling various
other tasks, such as compression, detection, separation, sampling, and more.
What are those models? Essentially, a model poses a set of mathematical prop-
erties that the data is believed to satisfy. Choosing these properties (i.e. the
model) carefully and wisely may lead to a highly effective treatment of the
signals in question and consequently to successful applications.

Throughout the years, a long series of models has been proposed and used,
exhibiting an evolution of ideas and improvements. In this context, the past
decade has been certainly the era of sparse and redundant representations, a
novel synthesis model for describing signals [5, 19, 36, 51]. Here is a brief
description of this model:

Assume that we are to model the signal x ∈ R
d. The sparse and redundant

synthesis model suggests that this signal could be described as x = Dz, where
D ∈ R

d×n is a possibly redundant dictionary (n ≥ d), and z ∈ R
n, the signal’s

representation, is assumed to be sparse. Measuring the cardinality of non-zeros
of z using the ‘ℓ0-norm’, such that ‖z‖0 is the count of the non-zeros in z, we
expect ‖z‖0 to be much smaller than n. Thus, the model essentially assumes that
any signal from the family of interest could be described as a linear combination
of few columns from the dictionary D. The name “synthesis” comes from the
relation x = Dz, with the obvious interpretation that the model describes a
way to synthesize a signal.

This model has been the focus of many papers, studying its core theoretical
properties by exploring practical numerical algorithms for using it in practice
(e.g. [9, 10, 11, 37]), evaluating theoretically these algorithms’ performance
guarantees (e.g. [2, 15, 28, 54, 55]), addressing ways to obtain the dictionary
from a bulk of data (e.g. [1, 23, 34, 47]), and beyond all these, attacking
a long series of applications in signal and image processing with this model,
demonstrating often state-of-the-art results (e.g. [20, 22, 32, 42]). Today, after
a decade of an extensive study along the above lines, with nearly 4000 papers1

written on this model and related issues, we can safely say that this is a mature
and stable field, with clear theoretical foundations, and appealing applications.

Interestingly, the synthesis model has a “twin” that takes an analysis point of
view. This alternative assumes that for a signal of interest, the analyzed vector
Ωx is expected to be sparse, where Ω ∈ R

p×d is a possibly redundant analysis
operator (p ≥ d). Thus, we consider a signal as belonging to the analysis model
if ‖Ωx‖0 is small enough. Common examples of analysis operators include:
the shift invariant wavelet transform ΩWT [36]; the finite difference operator
ΩDIF, which concatenates the horizontal and vertical derivatives of an image

1This is a crude estimate, obtained using ISI-Web-of-Science. By first searching
Topic=(sparse and representation and (dictionary or pursuit or sensing)), 240 papers are
obtained. Then we consider all the papers that cite the above-found, and this results with
≈3900 papers.

2



and is closely connected to total variation [45]; the curvelet transform [48], and
more. Empirically, analysis models have been successfully used for a variety of
signal processing tasks [24, 30, 48, 49, 50] such as denoising, deblurring, and
most recently compressed sensing, but this has been done with little theoretical
justification.

It is well known by now [21] that for a square and invertible dictionary, the
synthesis and the analysis models are the same with D = Ω−1. The models
remain similar for more general dictionaries, although then the gap between
them is unexplored. Despite the close-proximity between the two—synthesis
and analysis—models, the first has been studied extensively while the second
has been left aside almost untouched. In this paper we aim to bring justice to
the analysis model by addressing the following set of topics:

1. Cosparsity: In Section 2 we start our discussion with a closer look at the
sparse analysis model in order to better define it as a generative model
for signals. We show that, while the synthesis model puts an emphasis on
the non-zeros of the representation vector z, the analysis model draws its
strength from the zeros in the analysis vector Ωx.

2. Union of Subspaces: Section 2 is also devoted to a comparison between
the synthesis model and the analysis one. We know that the synthesis
model described above is an instance of a wider family of models, built
as a finite union of subspaces [33]. By choosing all the sub-groups of
columns from D that could be combined linearly to generate signals, we
get an exponentially large family of low-dimensional subspaces that cover
the signals of interest. Adopting this perspective, the analysis model can
obtain a similar interpretation. How are the two related to each other?
Section 2 considers this question and proposes a few answers.

3. Uniqueness: We know that the spark of the dictionary governs the
uniqueness properties of sparse solutions of the underdetermined linear
system Dz = x [15]. Can we derive a similar relation for the analysis
case? As a platform for studying the analysis uniqueness properties, we
consider an inverse problem of the form y = Mx, where M ∈ R

m×d and
m < d, and y ∈ R

m is a measurement vector. Put roughly (and this will
be better defined later on), assuming that x comes from the sparse anal-
ysis model, could we claim that there is only one possible solution x that
can explain the measurement vector y? Section 3 presents this uniqueness
study.

4. Uniqueness: Worked Examples. Based on the study of the analysis
uniqueness properties, we characterize the required number of measure-
ments for the uniqueness of the signal that satisfies the analysis model in
the case of analysis operator Ω in general position and the 2D one-step
finite difference operator ΩDIF.

5. Pursuit Algorithms: Armed with a deeper understanding of the anal-
ysis model, we may ask how to efficiently find x for the above-described
linear inverse problem. As in the synthesis case, we can consider either
relaxation-based methods or greedy ones. In Section 4 we present two
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numerical approximation algorithms: a greedy algorithm termed “Greedy
Analysis Pursuit” (GAP) that resembles the Orthogonal Matching Pur-
suit (OMP) [37]—adapted to the analysis model—, and the previously
considered ℓ1-minimization approach [7, 21, 46]. Section 5 accompanies
the presentation of GAP with a theoretical study of its performance guar-
antee, deriving a condition that resembles the ERC obtained for OMP
[54]. Similarly, we study the terms of success of the ℓ1-minimization ap-
proach for the analysis model, deriving a condition that is similar to the
one obtained for the synthesis sparse model [54].

6. Tests: In Section 6 we demonstrate the effectiveness of the analysis model
and the pursuit algorithms proposed in several experiments, starting from
synthetic ones (involving random analysis operators) and going all the way
to a compressed-sensing test for an image based on the analysis model:
the Shepp Logan phantom.

We believe that with the above set of contributions, the cosparse analysis model
becomes a well-defined and competitive model to the synthesis counterpart,
equipped with all the necessary ingredients for its practical use. Furthermore,
this work leads to a series of new questions that are parallel to those studied for
the synthesis model—developing novel pursuit methods, a theoretical study of
pursuit algorithms for handling other inverse problems, training Ω just as done
for D, and more. We discuss these and other topics in Section 7.

Related Work. Several works exist in the literature that are related to the anal-
ysis model. The work by Elad et. al. [21] was the first to observe the dichotomy
of analysis and synthesis models for signals. Their study, done in the context
of the Maximum-A-Posteriori Probability estimation, presented the two alter-
natives and explored cases of equivalence between the two. They demonstrated
a superiority of the analysis-based approach in signal denoising. Further empir-
ical evidence of the effectiveness of the analysis-based approach for signal and
image restroation can be found in [43] and [46]. In [46] it was noted that the
nonzero coefficients play a different role in the analysis and synthesis forms but
the importance of the zero coefficients for the analysis model—which is reminis-
cent of signal characterizations through the zero-crossings of their undecimated
wavelet transform [35]—was not explicitly identified.

More recently, Candès et al. [7] provided a theoretical study on the error
when the analysis-based ℓ1-minimization is used in the context of compressed
sensing. Our work is closely related to these contributions in various ways, and
we shall return to these papers when diving into the details of our study.

2. A Closer Look at the Cosparse Analysis Model

We start our discussion with the introduction of the sparse analysis model,
and the notion of cosparsity that is fundamental for its definition. We also
describe how to interpret the analysis model as a generative one (just like the
synthesis counterpart). Finally, we consider the interpretation of the sparse
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analysis and synthesis models as two manifestations of union-of-subspaces mod-
els, and show how they are related.

2.1. Introducing Cosparsity

As described in the introduction, a conceptually simple model for data
would be to assume that each signal we consider can be expressed (i.e., well-
approximated) as a combination of a few building atoms. Once we take this
view, a simple synthesis model can be thought of: First, there is a collection
of the atomic signals {dj}n

j=1 ∈ R
d that we concatenate as the columns of a

dictionary, denoted by D ∈ R
d×n. Here, typically n ≥ d, implying that the

dictionary is redundant. Second, the signal x ∈ R
d can be expressed as a linear

combination of some atoms of D, thus there exists z ∈ R
n such that x = Dz.

Third and most importantly, x must lie in a low dimensional subspace, and in
order to ensure this, very few atoms are used in the expression x = Dz, i.e., the
number of non-zeros ‖z‖0 is very small. By the observation that ‖z‖0 is small,
we say that x has a sparse representation in D. The number k = ‖z‖0 is the
sparsity of the coefficient vector z and, by extension, of the signal x.

Often, the validity of the above described sparse synthesis model is demon-
strated by applying a linear transform to a class of signals to be processed and
observing that most of the coefficients are close to zero, exhibiting sparsity.
In signal and image processing, discrete transforms such as wavelet, Gabor,
curvelet, contourlet, shearlet, and others [14, 31, 36, 48], are of interest, and
this empirical observation seems to give a good support for the sparse syn-
thesis model. Indeed, when aiming to claim optimality of a given transform,
this is exactly the approach taken – show that for a (theoretically-modeled)
class of signals of interest, the transform coefficients tend to exhibit a strong
decay. However, one cannot help but noticing that this approach of validat-
ing the synthesis model seems to actually validate another ‘similar’ model; we
are considering a model where the signals of interest have sparse analysis rep-
resentations. This point is especially pronounced when the transform used is
over-complete or redundant.

Let us now look more carefully at the above mentioned model that seems
to be similar to the sparse synthesis one. First, let Ω ∈ R

p×d be a signal
transformation or an analysis operator. Its rows are the row vectors {ωj}p

j=1

that will be applied to the signals. Applying Ω to x, we obtain the (analysis)
representation Ωx of x. To capture various aspects of the information in x, we
typically have p ≥ d.

For simplicity, unless stated otherwise, we shall assume hereafter that all the
rows of Ω are in general position, i.e., there are no non-trivial linear depen-
dencies among the rows.2 Note that this assumption is used for the purpose of
contrasting the analysis model to the synthesis model, and that we will study
a case when Ω is not in general position in later sections. As a matter of fact,

2Put differently, we assume that the spark of the matrix ΩT is full, implying that every
set of d rows from Ω are linearly independent.
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there is some indication that linear dependecies among the rows of Ω can be a
‘blessing.’ (See, e.g., uniqueness results in Sections 3.3 and 3.4.)

Clearly, unless x = 0, no representation Ωx can be ‘very sparse’, since at
least p − d of the coefficients of Ωx are necessarily non-zeros. We shall put our
emphasis on the number of zeros in the representation, a quantity we will call
cosparsity.

Definition 1. The cosparsity of a signal x ∈ R
d with respect to Ω ∈ R

p×d (or
simply the cosparsity of x) is defined to be:

Cosparsity : ℓ := p − ‖Ωx‖0 (1)

The index set of the zero entries of Ωx is called the cosupport of x. We say that
x has cosparse representation or x is cosparse when the cosparsity of x is large,
where by large we mean that ℓ is close to d. We will see that, while ℓ ≤ d for an
analysis operator in general position, there are specific examples where ℓ may
exceed d.

At first sight the replacement of sparsity by cosparsity might appear to be
mere semantics. However we will see that this is not the case. In the synthesis
model it is the columns dj , j ∈ T associated with the index set T of nonzero
coefficients that define the signal subspace. Removing columns from D not in
T leaves this subspace unchanged. In contrast, it is the rows ωj associated with
the index set Λ such that 〈ωj ,x〉 = 0, j ∈ Λ that define the analysis subspace.
In this case removing rows from Ω for which 〈ωj ,x〉 6= 0 leaves the subspace
unchanged.

From this perspective, the cosparse model is more related to signal charac-
terizations from the zero-crossings of their undecimated wavelet transform [35]
than to sparse wavelet expansions.

2.2. Sparse Analysis Model as a Generative Model

In a Bayesian context, one can think of data models as generators for random
signals from a pre-specified probability density function. In that context, the
signals that satisfy the k-sparse synthesis model can be generated as follows:
First, choose k distinct columns of the dictionary D at random (e.g. assuming
a uniform probability). We denote the index set chosen by T , and clearly
|T | = k. Second, form a coefficient vector z that is k-sparse, with zeros outside
the support T . The k non-zeros in z can be chosen at random as well (e.g.
Gaussian iid entries). Finally, the signal is created by multiplying D to the
resulting sparse coefficient vector z.

Could we adopt a similar view for the cosparse analysis model? The answer
is positive. Similar to the above, one can produce an ℓ-cosparse signal in the
following way: First, choose ℓ rows of the analysis operator Ω at random, and
those are denoted by an index set Λ (thus, |Λ| = ℓ). Second, form an arbitrary
signal v in R

d—e.g., a random vector with Gaussian iid entries. Then, project
v onto the orthogonal complement of the subspace generated by the rows of
Ω that are indexed by Λ, this way getting the cosparse signal x. Explicitly,
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x = (Id−ΩT
Λ(ΩΛΩT

Λ)−1ΩΛ)v. Alternatively, one could first find a basis for the
orthogonal complement and then generate a random coefficient vector for the
basis.

This way, both models can be considered as generators of signals that have
a special structure, and clearly, the two signal generators are different. It is now
time to ask how those two families of signals inter-relate. In order to answer
this question, we take the union-of-subspaces point of view.

2.3. Union-of-Subspaces Models

It is well known that the sparse synthesis model is a special instance of a
wider family of models called union-of-subspaces [4, 33]. Given a dictionary D,
a vector z that is exactly k-sparse with support T leads to a signal x = Dz =
DT zT , a linear combination of k columns from D. The notation DT denotes
the sub-matrix of D containing only the columns indexed by T . Denoting
the subspace spanned by these columns by VT := span(dj , j ∈ T ), the sparse
synthesis signals belong to the union of all

(

n
k

)

possible subspaces of dimension
k,

Sparse Synthesis Model: x ∈ ∪T :|T |=k VT . (2)

Similarly, the analysis model is associated to a union of subspaces model
as well. Given an analysis operator Ω, a signal that is exactly ℓ-cosparse with
respect to the rows Λ from Ω is simply in the orthogonal complement to these
ℓ rows. Thus, we have3 ΩΛx = 0, which implies that x ∈ WΛ, where WΛ :=
span(ωj , j ∈ Λ)⊥ = {x, 〈ωj ,x〉 = 0,∀j ∈ Λ}. Put differently, we may write
WΛ = Range(ΩT

Λ)⊥ = Null(ΩΛ). Hence, cosparse analysis signals x belong to
the union of all the

(

p
ℓ

)

possible such subspaces of dimension d − ℓ,

Cosparse Analysis Model: x ∈ ∪Λ:|Λ|=ℓ WΛ. (3)

The following table summarizes these two unions of subspaces, where we recall
that we assume Ω and D in general position.

Model Subspaces No. of Subspaces Subspace dimension
Synthesis VT := span(dj , j ∈ T )

(

n
k

)

k

Analysis WΛ := span(ωj , j ∈ Λ)⊥
(

p
ℓ

)

d − ℓ

What is the relation between these two union of subspaces, as described in
Equations (2) and (3)? In general, the answer is that the two are different. An
interesting way to compare the two models is to consider an ℓ-cosparse analysis
model and a corresponding (d− ℓ)-sparse synthesis model, so that the two have
the same dimension in their subspaces.

3Note that the notation ΩΛ refers to restricting rows from Ω indexed by Λ, whereas in
the synthesis case we have taken the columns. We shall use this convention throughout this
paper, where from the context it should be clear whether rows or columns are extracted.
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Following this guideline, we consider first a special case where ℓ = d − 1. In
such a case, the dimension of the analysis subspaces is d − ℓ = 1, and there are
(

p
ℓ

)

of those. An equivalent synthesis union of subspaces can be created, where

k = 1. We should construct a dictionary D with n =
(

p
ℓ

)

atoms dj , where
each atom is the orthogonal complement to one of the sets of ℓ rows from Ω.
While the two models become equivalent in this case, clearly n ≫ p in general,
implying that the sparse synthesis model becomes intractable since D becomes
too large.

By further assuming that p = d, we get that there are exactly
(

p
ℓ

)

=
(

d
d−1

)

=
d subspaces in the analysis union, and in this case n = p = d as well. Further-
more, it is not hard to see that in this case the synthesis atoms are obtained
directly by a simple inversion, D = Ω−1.

Adopting a similar approach, considering the general case where ℓ is a general
value (and not necessarily d− 1), one could always construct a synthesis model
that is equivalent to the analysis one. We can compose the synthesis dictionary
by simply concatenating all the bases for the orthogonal complements to the
subspaces WΛ. The obtained dictionary will have at most (d − ℓ)

(

p
ℓ

)

atoms.
However, not all supports of size k are allowed in the obtained synthesis model,
since otherwise the new sparse synthesis model will strictly contain the cosparse
analysis one. As such, the cosparse analysis model may be viewed as a sparse
synthesis model with some structure.

Further on the comparison between the two models, it would be of benefit to
consider again the case d− ℓ = k (i.e., having the same dimensionality), assume
that p = n (i.e., having the same overcompleteness, for example with Ω = DT ),
and compare the number of subspaces amalgamated in each model. For the
sake of simplicity we consider a mild overcompleteness of p = n = 2d. Denoting
H(t) := −t log2 t − (1 − t) log2(1 − t), 0 < t < 1, the number of subspaces of
low dimension k ≪ d = n/2 in each data model, from Stirling’s approximation,
roughly satisfies for large d:

Synthesis: log2

(

n

k

)

≈ n · H
(

k

n

)

≈ k · log2

n

k

Analysis: log2

(

p

ℓ

)

≈ n · H
(

d − k

n

)

≈ n · H(0.5) = n.

More generally, unless d/n ≈ 1, there are far fewer low-dimensional synthesis
subspaces than there are analysis subspaces of the same dimension. This is
illustrated on Figure 2.3 when n = p = 2d. This indicates a strong difference
in the structure of the two models: The synthesis model includes very few
low-dimensional subspaces, and an increasingly large number of subspaces of
higher dimension, whereas the analysis model contains a combinatorial number
of low-dimensional subspaces, with fewer high dimensional subspaces.
Comment: One must keep in mind that the huge number of low-dimensional
subspaces, though rich in terms of its descriptive power, makes it very difficult to
recover algorithmically signals that belong to the union of those low-dimensional
subspaces or to efficiently code/sample those signals (see the experimental re-
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Figure 1: Number of subspaces of a given dimension, for n = p = 2d. The solid blue curve
shows the log number of subspaces for the synthesis model as the dimension of subspaces vary,
while the dashed red curve shows that for the analysis model.

sults in Section 6.1). This stems from the fact that, in general, it is not possible
to get cosparsity d ≤ ℓ < p: any vector x that is orthogonal to d linearly inde-
pendent rows of Ω must be the zero vector, leading to an uninformative model.
One may, however, get cosparsities in the range d ≤ ℓ < p when the analysis
operator Ω displays certain linear dependencies. Therefore it appears to be de-
sirable, in the cosparse analysis model, to have analysis operators that exhibit
high linear dependencies among their rows. We will see in Section 3.4 that a
leading example of such operators is the finite difference analysis operator.

Another interesting point of view towards the difference between the two
models is the following: While a synthesis signal is characterized by the support
of the non-zeros in its representation in order to define the subspace it belong
to, a signal from the analysis model is characterized by the locations of the zeros
in its representation Ωx. The fact that this representation may contain many
non-zeroes (and especially so when p ≫ d) should be of no consequence to the
efficiency of the analysis model.

2.4. Comparison with the Traditional Sparse Analysis model

Previous work using analysis representations, both theoretical and algorith-
mic, has focussed on gauging performance in terms of the more traditional
sparsity perspective. For example, in the context of compressed sensing, recent
theoretical work [7] has provided performance guarantees for minimum ℓ1-norm
analysis representations in this light.

The analysis operator is generally viewed as the dual frame for a redundant
synthesis dictionary so that Ω = D†. This means that the analysis coefficients
Ωx provide a consistent synthesis representation for x in terms of the dictionary
D, implying that the representation Ωx is a feasible solution to the linear system
of equations Dz = x.

Furthermore, if ‖Ωx‖0 = p− ℓ, then Ωx must be an element of the k-sparse
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synthesis model,
⋃

T :|T |=k VT , with k = p − ℓ. Hence:

{0} ⊆
⋃

Λ:|Λ|=p−k

WΛ ⊆
⋃

T :|T |=k

VT ⊆ R
d. (4)

Of course, Ωx is not guaranteed to be the sparsest representation of x in terms
of D. Hence the two subspace models are not equivalent.

Note that while in Section 2.3 the sparsity k was matched to d − ℓ, here it
is matched to p − ℓ. The former was used to get the same dimensions in the
resulting subspaces, while the match discussed here considers the vector Ωx as
a candidate k-sparse representation.

Such a perspective treats the analysis operator as a poor man’s sparse syn-
thesis representation. That is, for certain signals x, the representation Ωx may
be reasonably sparse but is unlikely to be as sparse as, for example, the minimum
ℓ1-norm synthesis representation4.

In the context of linear inverse problems, it is tempting to try to exploit
the nesting property (4) in order to derive identifiability guarantees in terms of
the sparsity of the analysis coefficients Ωx. For example, in [7], the compressed
sensing recovery guarantees exploit the nesting property (4) by assuming a suffi-
cient number of observations to achieve a stable embedding (restricted isometry
property) for the k-sparse synthesis union of subspaces, which in turn implies a
stable embedding of the (p − k)-cosparse analysis union of subspaces.

While such an approach is of course valid, it misses a crucial difference
between the analysis and synthesis representations: they do not correspond to
equivalent signal models. Treating the two models as equivalent hides the fact
that they may be composed of subspaces with markedly different dimensions.
The difference between these models is highlighted in the following examples.

2.4.1. Example: generic analysis operators, p = 2d

Assuming the rows of Ω are in general position, then when p ≥ 2d the
nesting property (4) is trivial but rather useless! Indeed, if k < d, then the only
analysis signal for which ‖Ωx‖0 = k = p − ℓ is x = 0. Alternatively, if k ≥ d,
the synthesis model is trivially the full space:

⋃

T :|T |=k VT = R
d.

2.4.2. Example: shift invariant wavelet transform

The shift invariant wavelet transform is a popular analysis transform in
signal processing. It is particularly good for processing piecewise smooth signals.
Its inverse transform has a synthesis interpretation as the redundant wavelet
dictionary consisting of wavelet atoms with all possible shifts.

The shift invariant wavelet transform [36] provides a nice example of an
analysis operator that has significant dependencies due to the finite support of

4When measuring sparsity with an ℓp norm, 0 < p ≤ 1, rather than with p = 0, it has been
shown [29] that for so-called localized frames the analysis coefficients Ωx obtained with Ω =
D† the canonical dual frame of D are near optimally sparse: ‖Ωx‖p ≤ Cp minz|Dz=x ‖z‖p,
where the constant Cp does not depend on x.
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the individual wavelets. Such nontrivial dependencies within the rows of ΩWT

mean that the dimensions of the (analysis or synthesis) signal subspaces are not
easily characterised by either the sparsity k or the cosparsity ℓ. However the
behaviour of the model is still driven by the zero coefficients not the nonzero
ones, i.e., by the zero-crossings of the wavelet transform [35]. By considering
a particular support set of an analysis representation ΩWTx with the shift
invariant wavelet transform we can illustrate the dramatic difference between
the analysis and synthesis interpretations of the coefficients.

20 40 60 80 100 120

1

2

3

4

Figure 2: Top: a piecewise quadratic signal. Bottom: the support set (white region) for
the wavelet coefficients of the signal using a J = 4 level shift invariant Daubechies wavelet
transform with s = 3 vanishing moments. Scaling coefficients are not shown. The support set
contains 122 coefficients out of a possible 512, yet the analysis subspace has a dimension of
only 3.

Figure 2 shows the support set of the nonzero analysis coefficients (white re-
gion), associated with the cone of influence around a discontinuity in a piecewise
polynomial signal of length 128-samples [18], using a shift-invariant Daubechies
wavelet transform with s = 3 vanishing moments [36]. For such a signal, the
cone of influence at level J in a shift invariant wavelet transform contains Lj −1
nonzero coefficients where Lj is the length of the wavelet filter at level j. Note
though, the nonzero coefficients are not linearly independent and can be ele-
gantly described through the notion of wavelet footprints [18].

Synthesis perspective. Interpreting the support set within the synthesis
model implies that the signal is not particularly sparse and needs a significant
number of wavelet atoms to describe it: in Figure 2 the size of the support
set, excluding coefficients of scaling functions, is 122. Could the support set
be significantly reduced by using a better support selection strategy such as ℓ1
minimization? In practice, using ℓ1 minimization, a support set of 30 can be
obtained, again ignoring scaling coefficients.

Analysis perspective. The analysis interpretation of the shift invariant
wavelet representation relies on the examination of the size of the analysis sub-
space associated with the cosupport set. From the theory of wavelet footprints,
the dimension of this subspace is equal to the number of vanishing moments of
the wavelet filter, which in this example is only . . . 3, providing a much lower
dimensional signal model.

We therefore see that the analysis model has a much lower number of degrees
of freedom for this support set, leading to a significantly more parsimonious
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model.

2.5. Hybrid Analysis/Synthesis models?

In this section we have demonstrated that while both the cosparse analysis
model and the sparse synthesis model can be described by a union of subspaces
these models are typically very different. We do not argue that one is inevitably
better than the other. The value of the model will very much depend on the
problem instance. Indeed the intrinsic difference between the models also sug-
gests that it might be fruitful to explore building other union of subspace models
from hybrid compositions of analysis and synthesis operators. For example, one
could imagine a signal model where x = Dz through a redundant synthesis
dictionary but instead of imposing sparsity on z we restrict z through an ad-
ditional analysis operator: ‖Ωz‖0 ≤ k. In such a case there will still be an
underlying union of subspace model but with the subspaces defined by a combi-
nation of atoms and analysis operator constraints. A special case of this is the
split analysis model suggested in [7].

3. Uniqueness Properties

In the synthesis model, if a dictionary D is redundant, then a given signal x

can admit many synthesis representations z̃, i.e., z̃ with Dz̃ = x. This makes the
following type of problem interesting in the context of the sparse signal recovery:
When a signal has a sparse representation z, can there be another representation
that is equally sparse or sparser? This problem is well-understood in terms of
the so-called spark of D [15], the smallest number of columns from D that are
linearly dependent.

Unlike in the synthesis model, if the signal is known, then its analysis repre-
sentation Ωx with respect to an analysis operator Ω is completely determined.
Hence, there is no inherent question of uniqueness for the cosparse analysis
model. The uniqueness question we want to consider in this paper is in the
context of the noiseless linear inverse problem,

y = Mx, (5)

where M ∈ R
m×d, and m < d, implying that the measurement vector y ∈ R

m is
not sufficient to fully characterize the original signal x ∈ R

d. For this problem we
ask: when can we assert that a solution x with cosparsity ℓ is the only solution
with that cosparsity or more? The problem (5) (especially, with additive noise)
arises ubiquitously in many applications, and we shall focus on this problem
throughout this paper as a platform for introducing the cosparse analysis model,
its properties and behavior. Not to complicate matters unnecessarily, we assume
that all the rows of M are linearly independent, and we omit noise, leaving
robustness analysis to further work.

For completeness of our discussion, let us return for a moment to the synthe-
sis model and consider the uniqueness property for the inverse problem posed in
Equation (5). Assuming that the signal’s sparse representation satisfies x = Dz,
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we have that y = Mx = MDz. Had we known the support T of z, this linear
system would have reduced to y = MDT zT , a system of m equations with k
unknowns. Thus, recovery of x from y is possible only if k ≤ m.

When the support of z is unknown, it is the spark of the compound ma-
trix MD that governs whether the cardinality of zT is sufficient to ensure
uniqueness—if k = ‖z‖0 is smaller than half the spark of MD, then neces-
sarily z is the signal’s sparsest representation. At best, Spark(MD) = m + 1,
and then we require that the number of measurements is at least twice the
cardinality k. Put formally, we require

k = ‖z‖0 <
1

2
Spark(MD) ≤ m + 1

2
. (6)

It will be interesting to contrast this requirement with the one we will derive
hereafter for the analysis model.

3.1. Uniqueness When the Cosupport is Known

Before we tackle the uniqueness problem for the analysis model, let us con-
sider an easier question: Given the observations y obtained via a measurement
matrix M, and assuming that the cosupport Λ of the signal x is known, what
are the sufficient conditions for the recovery of x? The answer to this question
is straightforward since x satisfies the linear equation

[

y

0

]

=

[

M

ΩΛ

]

x = Ax. (7)

To be able to uniquely identify x from Equation (7), the matrix A must have a
zero null space. This is equivalent to the requirement

Null(ΩΛ) ∩ Null(M) = WΛ ∩ Null(M) = {0}. (8)

Let us now assume that M and Ω are mutually independent, in the sense
that there are no nontrivial linear dependencies among the rows of M and
Ω; this is a reasonable assumption because first, one should not be measuring
something that may be already available from Ω, and second, for a fixed Ω,
mutual independency holds true for almost all M (in the Lebesgue measure).
Then, (8) would be satisfied as soon as dim(WΛ) + dim(Null(M)) ≤ d, or
dim(WΛ) ≤ m, since dim(Null(M)) = d − m. This motivates us to define

κΩ(ℓ) := max
|Λ|≥ℓ

dim(WΛ). (9)

The quantity κΩ(ℓ) plays an important role in determining the necessary
and sufficient cosparsity level for the identification of cosparse signals. Indeed,
under the assumption of the mutual independence of Ω and M, a necessary
and sufficient condition for the uniqueness of every cosparse signal given the
knowledge of its cosupport Λ of size ℓ is

κΩ(ℓ) ≤ m. (10)
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3.2. Uniqueness When the Cosupport is Unknown

The uniqueness question that we answered above refers to the case where
the cosupport is known, but of course, in general this is not the case. We
shall assume that we may only know the cosparsity level ℓ, which means that
our uniqueness question now becomes: what cosparsity level ℓ guarantees that
there can be only one signal x matching a given observation y?

As we have seen, the cosparse analysis model is a special case of a general
union of subspaces model. Uniqueness guarantees for missing data problems
such as (5) with general union of subspace models are covered in [4, 33]. In
particular [33] shows that M is invertible on the union of subspaces ∪γ∈ΓSγ if
and only if M is invertible on all subspaces Sγ + Sθ for all γ, θ ∈ Γ. In the
context of the analysis model this gives the following result whose proof is a
direct consequence of the results in [33]:

Proposition 2 ([33]). Let ∪ΛWΛ, |Λ| = ℓ be the union of ℓ-cosparse analysis
subspaces induced by the analysis operator Ω. Then the following statements
are equivalent:

1. If the linear system y = Mx admits an ℓ-cosparse solution, then this is
the unique ℓ-cosparse solution;

2. M is invertible on ∪ΛWΛ;

3. (WΛ1
+ WΛ2

) ∩ Null(M) = 0 for any |Λ1|, |Λ2| ≥ ℓ;

Proposition 2 answers the question of uniqueness for cosparse signals in the
context of linear inverse problems. Unfortunately, the answer we obtained still
leaves us in the dark in terms of the necessary cosparsity level or necessary
number of measurements. In order to pose a clearer condition, we use Propo-
sition 2 from [33] that poses a sharp condition on the number of measurements
to guarantee uniqueness (when M and Ω are mutually independent):

m ≥ κ̃Ω(ℓ), where κ̃Ω(ℓ) := max {dim(WΛ1
+ WΛ2

) : |Λi| ≥ ℓ, i = 1, 2}
(11)

Interestingly, a sufficient condition can also be obtained using the quantity κΩ

defined in (9) above, which was observed to play an important role in the unique-
ness result when the cosupport is assumed to be known. Namely, we have the
following result.

Proposition 3. Assume that κΩ(ℓ) ≤ m
2 . Then for almost all M (wrt the

Lebesgue measure), the linear inverse problem y = Mx has at most one ℓ-
cosparse solution.

Proof. Assuming the mutual independence of Ω and M, which holds for almost
all M, we note that the uniqueness of ℓ cosparse solutions holds if and only
if: dim (WΛ1

+ WΛ2
) ≤ m, whenever |Λi| ≥ ℓ, i = 1, 2. Assume that κΩ(ℓ) ≤

m/2. By definition of κΩ, if |Λi| ≥ ℓ, i = 1, 2, then dim(WΛi
) ≤ m

2 , hence
dim (WΛ1

+ WΛ2
) ≤ m.
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In the synthesis model the degree to which columns are interdependent can
be partially characterized by the spark of D [15] defined as the the smallest
number of columns of D that are linearly dependent. Here the function κΩ

plays a similar role in quantifying the interdependence between rows in the
analysis model.

Remark 4. The condition κΩ(ℓ) ≤ m
2 is in general not necessary while condi-

tion (11) is.

There are two classes of analysis operators for which the function κΩ is
well-understood: analysis operators in general position and the finite difference
operators. We discuss the uniqueness results for these two classes in the follow-
ing subsections.

3.3. Analysis Operators in General Position

It can be easily checked that κΩ(ℓ) = max(d − ℓ, 0). This enables us to
quantify the exact level of cosparsity necessary for the uniqueness guarantees:

Corollary 5. Let Ω ∈ R
p×d be an analysis operator in general position. Then,

for almost all m × d matrices M, the following hold:

• Based on Eq. (10), if m ≥ d − ℓ, then the equation y = Mx has at most
one solution with known cosupport Λ (of cosparsity at least ℓ);

• Based on Proposition 2, if m ≥ 2(d − ℓ), then the equation y = Mx has
at most one solution with cosparsity at least ℓ.

3.4. The Finite Difference Operator

An interesting class of analysis operators with significant linear dependencies
is the family of finite difference operators on graphs, ΩDIF. These are strongly
related to TV norm minimization, popular in image processing applications [45],
and has the added benefit that we are able to quantify the function κΩ and hence
the uniqueness properties of the cosparse signal model under ΩDIF.

We begin by considering ΩDIF on an arbitrary graph before restricting our
discussion to the 2D lattice associated with image pixels. Consider a non-
oriented graph with vertices V and edges E ⊂ V 2. An edge e is a pair e = (v1, v2)
of connected vertices. For any vector of coefficients defined on the vertices,
x ∈ R

V , the finite difference analysis operator ΩDIF computes the collection of
differences (x(v1)−x(v2)) between end-points, for all edges in the graph. Thus,
an edge e ∈ E may be viewed as a finite difference on R

V .
Can we estimate the function κΩDIF

(ℓ)? The following shows that it is
intimately related to topological properties of the graph. For each sub-collection
Λ ⊂ E of edges, we can define its vertex-set V (Λ) ⊂ V as the collection of
vertices covered by at least one edge in Λ. The support set V (Λ) of Λ can be
decomposed into J(Λ) connected components (a connected component is a set
of vertices connected to one another by a walk through vertices in Λ). It is easy
to check that a vector x belongs to the space WΛ = Null(ΩΛ) if and only if its
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values are constant on each connected component. As a result, the dimension
of this subspace is given by

dim(WΛ) = |V | − |V (Λ)| + J(Λ)

where the |V | − |V (Λ)| vertices out of V are associated to arbitrary values in
x that are distinct from all their neighbors, while all entries from each of the
J(Λ) connected components have an arbitrary common value. It follows that

κΩ(ℓ) = max
|Λ|≥ℓ

{

|V | − |V (Λ)| + J(Λ)
}

= |V | − min
|Λ|≥ℓ

{

|V (Λ)| − J(Λ)
}

(12)

Because of the nesting of the subspaces WΛ, the minimum on the right hand
side is achieved when |Λ| = ℓ.

Uniqueness Condition for Cosparse Images with respect to the 2D ΩDIF. In
the abstract context of general graphs, the characterization (12) may remain
obscure, but can we get more concrete estimates by specializing to the 2D
regular graph associated to the pixels of an N ×N image? It turns out that one
can obtain relatively simple upper and lower bounds for κΩDIF

and hence derive
an easily interpretable uniqueness condition (see Appendix C for a proof):

Proposition 6. Let ΩDIF be the 2D finite difference analysis operator that
computes horizontal and vertical discrete derivatives of a d = N × N image.
For any ℓ we have

d − ℓ

2
−

√

ℓ

2
− 1 ≤ κΩDIF

(ℓ) ≤ d − ℓ

2
−

√

ℓ

2
+

1

2
(13)

As a result, assuming that M is ‘mutually independent’ from ΩDIF, and if

m ≥ 2d − ℓ −
√

2ℓ +
1

2
≥ 2κΩDIF

(ℓ) (14)

then the equation y = Mx has at most one solution with cosparsity at least ℓ.

The 2D ΩDIF, Piecewise Constant Images, and the TV norm. The 2D finite
difference operator is closely related to the TV norm [45]: the discrete TV norm
of x is essentially a mixed ℓ2 − ℓ1 norm of ΩDIFx. Just like its close cousin TV
norm minimization, the minimization of ‖Ωx‖0 is particularly good at inducing
piecewise constant images. We illustrate this through a worked example.

Consider the popular Shepp Logan phantom image shown in the left-hand
side of Figure 3. We denote the cosupport of the image by Λ in line with the
discussion in this section: An edge belongs to Λ if a pair of horizontally or
vertically neighboring pixels v1 and v2 have the same value. This particular
image has 14 distinct connected regions of constant intensity. The number
of non-zero coefficients in the finite difference representation is determined by
the total length (Manhattan distance) of the boundaries between these regions.
For the Shepp Logan phantom this length is 2546 pixel widths and thus the
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cosparsity is ℓ = 130560−2546 = 128014. Furthermore, as there are no isolated
pixels with any other intensity, all pixels belong to a constant intensity region
so that |V (Λ)| = |V | and the cosupport has an associated subspace dimension
of:

dim(WΛ) = (|V | − |V (Λ)|) + J(Λ)

= 14

Figure 3: Top left: an example of a piecewise constant image: the 256 × 256 Shepp Logan
phantom; Top right: an image with the same cosparsity, ℓ = 128014, but whose cosupport is
associated with an empirically maximum subspace dimension. Bottom: zoom on the top of
the top right image.

In order to determine when the Shepp Logan image is the unique solution
to y = Mx with maximum cosparsity it is necessary to consider the maximum
subspace dimension of all possible support sets with the same cosparsity. This
is the quantity measured by κΩDIF

(ℓ).
Following the arguments used in the proof of Proposition 6 we need to find

an image for which the ΩDIF cosupport, Λ, is a single connected subgraph that
is as close to a square as possible. Such an image is shown in the right hand
side of Figure 3. For this image we have dim(WΛ) = 1276. Comparing this to
the bounds given in (13) of Proposition 6

1275 ≤ κΩDIF
(ℓ) ≤ 1276,

we see that in this instance the upper bound has been achieved. The unique-
ness result from Proposition 6 then tells us that a sufficient number of mea-
surements to uniquely determine the Shepp Logan image is given by m =
2κΩDIF

(128014) = 2552.
We will revisit this again in Subsection 6.2 where we investigate the empirical

recovery performance of some practical reconstruction algorithms.

3.5. Overview of cosparse vs sparse models for inverse problems

To conclude this section, Figure 4 provides a schematic overview of analy-
sis cosparse models vs synthesis sparse models in the context of linear inverse
problems such as compressed sensing. In the synthesis model, the signal x is
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Figure 4: A schematic overview of analysis cosparse vs synthesis sparse models in relation
with compressed sensing.

a projection (through the dictionary D) of a high-dimensional vector z living
in the union of sparse coefficient subspaces; in the analysis model, the signal
lives in the pre-image by the analysis operator Ω of the intersection between
the range of Ω and this union of subspaces. For a given sparsity of z, this is
usually a set of much smaller dimensionality.

4. Pursuit algorithms

Having a theoretical foundation for the uniqueness of the problem

x̂ = arg min
x

‖Ωx‖0 subject to Mx = y, (15)

we now turn to the question of how to solve it: algorithms. We present two
algorithms, both targeting the solution of problem (15). As in the uniqueness
discussion, we assume that M ∈ R

m×d, where m < d. This implies that the
equation Mx = y has infinitely many possible solutions, and the term ‖Ωx‖0

introduces the analysis model to regularize the problem.

4.1. The Cosparse Signal Recovery Problem is NP-complete

Related to (15), we can consider a cosparse signal recovery problem COSPARSE

consisting of a quintuplet (y,M,Ω, ℓ, ǫ) in which we seek to find a vector x∗

that satisfies
‖y − Mx∗‖2 ≤ ǫ, ‖Ωx∗‖0 ≤ p − ℓ (16)

where p is the number of rows of Ω as before. It is easy to see that the decision
problem “given (y,M,Ω, ℓ, ǫ), does there exist x∗ satisfying (16)?” is NP [25]:
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given a candidate solution, one can check in polynomial time whether it satisfies
the constraints (16). Moreover, every instance of the classical NP-complete (ǫ, k)
SPARSE approximation problem [13, 40] can trivially be reduced to an instance
of the above decision problem with Ω = Id, hence COSPARSE is indeed NP-
complete.

The above consideration prompts us to look for ways to solve (15) in an
‘approximate’ way. We discuss two possibilities, a convex relaxation and a
greedy approach, with an emphasis on the latter. Of course, there can be
many more possibilities to solve (15) or to find approximate solutions of it. We
mention a few works where some of such methods can be found: [6, 43, 46].

4.2. The Analysis ℓ1-minimization

A natural convex relaxation of (15) is to solve:

x̂ = arg min
x

‖Ωx‖1 subject to Mx = y. (17)

The analysis ℓ1-minimization is well-known and widely used already in prac-
tice (see e.g. [22, 51]). The attractiveness of this approach comes from that
the convexity of (17) admits computationally tractable algorithms to solve the
problem, and that the ℓ1-norm promotes high cosparsity in the solution x̂. An
algorithm that targets the solution of (17) and its convergence analysis can be
found in [6]. There are many other papers that have introduced algorithms to
solve problems of the form (17) or variants thereof. To give just an example,
[44] proposes a general form of forward-backward splitting that can be exploited
to deal with such problems.

4.3. The Greedy Analysis Pursuit Algorithm (GAP)

The algorithm we present in this section is named Greedy Analysis Pur-
suit (GAP). It is a variant of well-known greedy pursuit algorithm used for the
synthesis model—the Orthogonal Matching Pursuit (OMP) algorithm. Similar
to the synthesis case, our goal is to detect the informative support of Ωx—as
discussed in Section 3.1, in the analysis case, this amounts to the locations (co-
support) of the zeros in the vector Ωx, so as to introduce additional constraints
to the underdetermined system Mx = y. Note that for obtaining a solution,
one needs to detect at least d−m of these zeros, and thus if ℓ > d−m, detection
of the complete set of zeros is not mandatory.

An obvious way to find the cosupport of a cosparse signal would proceed
as follows: First, obtain a reasonable estimate of the signal from the given
information. Using the initial estimate, select a location as belonging to the
cosupport. Having this estimated part of the cosupport, we can obtain a new
estimate. One can now see that by alternating the two previous steps, we will
have estimated enough locations of the cosupport to get the final estimate.

However, the GAP works in an opposite direction and aims to detect the
elements outside the set Λ, this way carving its way towards the detection of
the desired cosupport. Therefore, the cosupport Λ̂ is initialized to be the whole
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set {1, 2, 3, . . . , p}, and through the iterations it is reduced towards a set of
size ℓ (or less, d − m).

Let us discuss the algorithm with some detail. First, the GAP uses the
following initial estimate:

x̂0 = arg min
x

‖Ωx‖2
2 subject to y = Mx. (18)

Not knowing the locations of the cosupport but knowing that many entries of
Ωx0 are zero, this is a reasonable first estimate of x0. Once we have x̂0, we
can view Ωx̂0 as an estimate of Ωx0. Hence, we find the location of the largest
entries (in absolute value) of Ωx̂0 and regard them as not belonging to the
cosupport. After this, we remove the corresponding rows from Ω and work with
a reduced Ω. A detailed description of the algorithm is given in Figure 5.

• Task: Approximate the solution of (15).

• Parameters: Given are the matrices M, Ω, the vector y, the target
number of zeros ℓ, and a selection factor t ∈ (0, 1].

• Initialization: Set k = 0 and perform the following steps:

– Initialize Cosupport: Λ̂0 = {1, 2, 3, . . . , p},

– Initialize Solution:

x̂0 = arg min
x

‖Ω
Λ̂0

x‖2

2 subject to y = Mx.

• GAP Iterations: Increment k by 1 and perform the following steps:

– Project: Compute α = Ωx̂k−1,

– Find largest entries: Γk = {i : |αi| ≥ t maxj |αj |},

– Update Support: Λ̂k = Λ̂k−1 \ Γk, and

– Update Solution:

x̂k = arg min
x

‖Ω
Λ̂k

x‖2

2 subject to y = Mx.

– Stopping Criterion: If k ≥ p − d + m (or k ≥ p − ℓ), stop.

• Output: The proposed solution is x̂GAP = x̂k obtained after k iterations.

Figure 5: Greedy Analysis Pursuit Algorithm (GAP)

Some readers may notice that the GAP has similar flavors to the FOCUSS
[26] and the IRLS [12]. This is certainly true in the sense that the GAP solves
constrained least squares problems and adjusts weights as it iterates. However,
the weight adjustment in the GAP is more aggressive (removal of rows) and
binary in nature. We also note that the use of the selection factor t in the GAP
is related to Weak Greedy Algorithms [53] for the synthesis model.
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Stopping criterion / targeted sparsity. In GAP, we have a range of choices be-
tween using the full ℓ zeros in the product Ωx versus a minimal and sufficient
set of d − m zeros. In between these two values, and assuming that the proper
elements of Λ have been detected, we expect the solution obtained by the al-
gorithms to be the same, with a slightly better numerical stability for a larger
number of zeros.

Thus, an alternative stopping criterion for the GAP could be to detect
whether the solution is static or the analysis coefficients of the solution are
small. This way, even if the GAP made an error and removed from Λ̂k an index
that belongs to the true cosupport Λ, the tendency of the solution to stabilize
could help in preventing the algorithm to incorporate this error into the solution.
In fact, this criterion is used in the experiment in Section 6.

Multiple selections. The selection factor 0 < t ≤ 1 allow the selection of multiple
rows at once, to accelerate the algorithm by reducing the number of iterations.

Solving the required least squares problems. The solution of Eq. (18) (and of
the adjusted problems with reduced Ω at subsequent steps of the algorithm)—
under some suitable conditions—is given analytically (see Appendix E for the
derivation) by

x̂0 = (MT M + (Id − MT (MMT )M)ΩT Ω)−1MT y. (19)

In practice, instead of (18), we compute

x̂0 = arg min
x

{

‖y − Mx‖2
2 + λ‖Ωx‖2

2

}

= arg min
x

∥

∥

∥

∥

[

y

0

]

−
[

M√
λΩ

]

x

∥

∥

∥

∥

2

2

for a small λ > 0, yielding the solution

x̂0 =

[

M√
λΩ

]† [

y

0

]

= (MT M + λΩT Ω)−1MT y.

We point out that the use of the parameter λ is for convenience in this work
but it becomes more useful when dealing with noisy observation. Furthermore,
the small value of λ can have adverse effects on computational cost for some
numerical algorithms (e.g., the conjugate gradient method) to solve the above
minimization. In our implementation, we have used λ values roughly from 10−4

to 10−6.

5. Theoretical analysis

So far, we have introduced the cosparse analysis data model, provided unique-
ness results in the context of linear inverse problems for the model, and described
some algorithms that may be used to solve such linear inverse problems to re-
cover cosparse signals. Before validating the algorithms and the model pro-
posed with experimental results, we first investigate theoretically under what
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conditions the proposed algorithms to solve cosparse signal recovery (15) are
guaranteed to work. After that, we discuss the nature of the condition derived
by contrasting it to that for the synthesis model. Further discussion including
some desirable properties of Ω and M can be found in Appendix D.

5.1. A Sufficient Condition for the Success of the ℓ1-minimization

In the sparse synthesis framework, there is a well-known necessary and suf-
ficient condition called the null space property (NSP) [16] that guarantees the
success of the synthesis ℓ1-minimization

ẑ0 := argmin
z

‖z‖1 subject to y = Φz (20)

to recover the sparsest solution, say z0, to y = Φz. To elaborate, in the case
of a fixed support T , the ℓ1-minimization (20) recovers every sparse coefficient
vector z0 supported on T if and only if

‖zT ‖1 < ‖zT c‖1, ∀z ∈ Null(Φ), z 6= 0. (21)

The NSP (21) cannot easily be checked but some ‘simpler’ sufficient conditions
can be derived from it; for example, one can get a recovery condition of [54]
called the Exact Recovery Condition (ERC):

‖|Φ†
T ΦT c |‖1→1 < 1, (22)

where the notation ‖|A|‖p→q denotes the operator norm of A from ℓp to ℓq, i.e.,

‖|A|‖p→q := sup
x6=0

‖Ax‖q

‖x‖p
.

The ERC (22) also implies the success of greedy algorithms such as OMP [54].
Note that here we used the symbol Φ for an object which may be viewed as a
dictionary or a measurement matrix. Separating the data model and sampling,
we can write Φ = MD as was done in Section 3.

One may naturally wonder: is there a condition for the cosparse analysis
model that is similar to (21) and (22)? The answer to this question seems to be
affirmative with some qualification as the following two results show (the proofs
are in Appendix A):

Theorem 7. Let Λ be a fixed cosupport. The analysis ℓ1-minimization

x̂0 := argmin
x

‖Ωx‖1 subject to y := Mx0 = Mx (23)

recovers every x0 with cosupport Λ as a unique minimizer if, and only if,

sup
xΛ:ΩΛxΛ=0

|〈ΩΛcz, sign(ΩΛcxΛ)〉| < ‖ΩΛz‖1, ∀z ∈ Null(M), z 6= 0. (24)
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Corollary 8. Let NT be any d×(d−m) basis matrix for the null space Null(M),
and Λ be a fixed cosupport such that the ℓ × (d − m) matrix ΩΛNT is of full
rank d − m. If

sup
xΛ:ΩΛxΛ=0

‖(NΩT
Λ)†NΩT

Λc sign(ΩΛcxΛ)‖∞ < 1, (25)

then the analysis ℓ1-minimization (23) recovers every x0 with cosupport Λ.
Moreover, if

‖|(NΩT
Λ)†NΩT

Λc |‖∞→∞ = ‖|ΩΛcNT (ΩΛNT )†|‖1→1 < 1 (26)

then condition (25) holds true.

There is an apparent similarity between the analysis ERC condition (26)
above and its standard synthesis counterpart (22), yet there are some subtle
differences between the two that will be highlighted in Section 5.3.

5.2. A Sufficient Condition for the Success of the GAP

There is an interesting parallel between the synthesis ERC (22) and its anal-
ysis version in Corollary 8; namely, the analysis ERC condition (26) also implies
the success of the GAP algorithm when the selection factor t of the GAP is 1
(in fact, ‖|ΩΛcNT (ΩΛNT )†|‖1→1 < t ≤ 1), as we will now show.

From the way GAP algorithm works, we can guarantee that it will perform
a correct elimination at the first step if the largest analysis coefficients of ΩΛc x̂0

of the first estimate x̂0 are larger than the largest of ΩΛx̂0 where Λ denotes
the true cosupport of x0. This observation suggests that we can hope to find
a condition for success if we can find some relation between ΩΛc x̂0 and ΩΛx̂0.
The following result provides such a relation:

Lemma 9. Let NT be any d× (d−m) basis matrix for the null space Null(M)
and Λ be a fixed cosupport such that the ℓ × (d − m) matrix ΩΛNT is of full
rank d − m. Let a signal x0 with ΩΛx0 = 0 and its observation y = Mx0 be
given. Then the estimate x̂0 in (18) satisfies

ΩΛx̂0 = −(NΩT
Λ)†NΩT

ΛcΩΛc x̂0. (27)

Having obtained a relation between ΩΛx̂0 and ΩΛc x̂0, we can derive a suf-
ficient condition which guarantees the success of GAP for recovering the true
target signal x0:

Theorem 10. Let NT be any d×(d−m) basis matrix for the null space Null(M)
and Λ be a fixed cosupport such that the ℓ × (d − m) matrix ΩΛNT is of full
rank d − m. Let a signal x0 with ΩΛx0 = 0 and an observation y = Mx0 be
given. Suppose that the analysis ERC (26) holds true. Then, when applied to
solve (15), GAP with selections factor t > ‖|(NΩT

Λ)†NΩT
Λc |‖∞→∞ will recover

x0 after at most |Λc| iterations.
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Proof. At the first iteration, GAP is doing the correct thing if it removes a row
from ΩΛc . Clearly, this happens when

‖ΩΛx̂0‖∞ < t‖ΩΛc x̂0‖∞. (28)

In view of (27), if (26) holds and t > ‖|(NΩT
Λ)†NΩT

Λc |‖∞→∞, then (28) is
guaranteed. Therefore, GAP successfully removes a row from ΩΛc at the first
step.

Now suppose that (26) was true and GAP has removed a row from ΩΛc at
the first iteration. Then, at the next iteration, we have the same ΩΛ and, in
the place of ΩΛc , a submatrix Ω̃Λc of ΩΛc (with one fewer row). Thus, we can
invoke Lemma 9 again and we have

ΩΛx̂1 = −
(

NΩT
Λ

)†
NΩ̃T

ΛcΩ̃Λc x̂1.

Let R0 :=
(

NΩT
Λ

)†
NΩT

Λc and R1 :=
(

NΩT
Λ

)†
NΩ̃T

Λc . We observe that R1 is a
submatrix of R0 obtained by removing one column. Therefore,

‖|R1|‖∞→∞ ≤ ‖|R0|‖∞→∞ < t.

By the same logic as for the first step, the success of the second step is guar-
anteed. Repeating the same argument for the subsequent steps, we obtain the
conclusion.

Clearly, at least one row from Λc is removed at each iteration. Therefore,
x0 is recovered after at most |Λc| iterations.

Remark 11. As pointed out at the beginning of the subsection, the Exact Re-
covery Condition (26) for the cosparse signal recovery guarantees the success of
both the GAP and the analysis ℓ1-minimization.

5.3. Analysis vs synthesis exact recovery conditions

When Φ is written as MD, the exact recovery condition (22) for the sparse
synthesis model is equivalent to

‖|(MDT )†MDT c |‖1→1 < 1. (29)

Here, T is the support of the sparsest representation of the target signal. At
first glance, the two conditions (29) and (26):

‖|ΩΛcNT (ΩΛNT )†|‖1→1 < 1

look similar; that is, for both cases, one needs to understand the characteristics
of a single matrix, ΩNT for the cosparse model, and MD for the sparse model.
Moreover, the expressions involving these matrices have similar forms.

However, upon closer inspection, there is a crucial difference in the structures
of the two expressions. In the synthesis case, the operator norm in question
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depends only on how the columns of MD are related, since a more explicit
writing of the pseudo-inverse shows that the matrix to consider is

(DT
T MT MDT )−1(MDT )T MDT c

This fact allows us to obtain more easily characterizable conditions like inco-
herence assumptions [54] that ensure condition (29).

To the contrary, in the analysis case, more complicated relations among the
rows and the columns of ΩNT have to be taken into account. The matrix to
consider being

ΩΛcNT
(

NΩT
ΛΩΛNT

)−1
NΩT

Λ,

the inner expression NΩT
ΛΩΛNT is connected with how the columns of ΩNT

are related. However, because the matrices ΩΛcNT and NΩT
Λ appear outside,

it also becomes relevant how the rows of ΩNT are related.
There is also an interesting distinction in terms of the sharpness of these

exact recovery conditions. Namely, the violation of (29) implies the failure of
the OMP in the sense that there exist a sparse vector x = DT zT for which the
first step of OMP picks up an atom which is not indexed by T . To the opposite,
the violation of (26) does not seem to imply the necessary “failure” of GAP in
a similar sense.

Note however that both conditions are not essential for the success of the
algorithms. One of the reasons is that the violation of the conditions does not
guarantee that the algorithms would select wrong atoms. Furthermore, even if
the GAP or the OMP “fails” in one step, that does not necessarily mean that
the algorithms fail in the end: further steps may still enable them to achieve an
accurate estimate of the vector x0.

5.4. Relation to the Work by Candès et. al. [7]

Before moving on to experimental results, we discuss the recovery guarantee
result of Candès et al. [7] for the algorithm

x̂ = argmin
x̂∈Rd

‖DT x̂‖1 subject to ‖Mx̂ − y‖2 ≤ ǫ (30)

when partial noisy observation y = Mx + w with ‖w‖2 ≤ ǫ is given for an
unknown target signal x.

In order to derive the result, the concept of D-RIP is introduced [7]: A
measurement matrix M satisfies D-RIP adapted to D with constant δD

s if

(1 − δD
s )‖v‖2

2 ≤ ‖Mv‖2
2 ≤ (1 + δD

s )‖v‖2
2

holds for all v that can be expressed as a linear combination of s columns of D.
With this definition of D-RIP, the main result of [7] can be stated as follows:
For an arbitrary tight frame D and a measurement matrix M satisfying D-RIP
with δD

7s < 0.6, the solution x̂ to (30) satisfies

‖x̂ − x‖2 ≤ C0ǫ + C1
‖DT x − (DT x)s‖1√

s
(31)
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where the constants C0 and C1 may depend only on δD
7s, and the notation (c)s

represents a sequence obtained from a sequence c by keeping the s-largest values
of c in magnitude (and setting the others to zero).

The above recovery guarantee is one of the few—very likely the only—results
existing in the literature on (30). However, we observe that there is much room
for improving the result. We now discuss why we hold this view. For clarity
and for the purpose of comparison to our result, we consider only the case ǫ = 0
for (30).

First, we note that [7] implicitly uses the estimate of type ‖ΩΛcz‖1 < ‖ΩΛz‖1

for (24). Hence, the main result of [7] cannot be sharp in general due to the
fact that the sign patterns of (24) are ignored.5

Second, the quality of the bound ‖DT x− (DT x)s‖1/
√

s in (31) is measured
in terms of how effective DT x is in sparsifying the signal x with respect to the
dictionary D. To explain, let us consider the synthesis ℓ1-minimization

∆1(x) := argmin
z∈Rn

‖z‖1 subject to MDz = Mx (32)

and let ∆0(x) be the sparsest representation of x with D:

∆0(x) := argmin
z∈Rn

‖z‖0 subject to Dz = x.

Applying the standard result for the synthesis ℓ1-minimization, we have

‖∆1(x) − ∆0(x)‖2 ≤ C2
‖∆0(x) − (∆0(x))s‖1√

s

provided that MD satisfies the standard RIP with, e.g., δ2s <
√

2 − 1 ≈ 0.414.
Since D is a tight frame, it implies

‖D∆1(x) − x‖2 ≤ C2
‖∆0(x) − (∆0(x))s‖1√

s
. (33)

Note that both ∆0(x) and DT x are legitimate representations of x since D∆0(x) =
x = DDT x. Thus, ∆0(x) is sparser than DT x in general; in this sense,
DT x is not effective in sparsifying x. Given this, we expect that ‖∆0(x) −
(∆0(x))s‖1/

√
s is smaller than ‖DT x − (DT x)s‖1/

√
s. We now see that (31)

with ǫ = 0 and (33) are of the same form. Furthermore, given the degree of
restriction on the RIP constants (δD

7s < 0.6 vs. δ2s < 0.414), we can only expect
that the constant C2 is smaller than C1. From these considerations, (31) sug-
gests to us that analysis ℓ1-minimization (17) performs on par with synthesis
ℓ1-minimization (32), or tends to perform worse.

Third, the only way for (31) to explain that the cosparse signals are perfectly
recovered by analysis ℓ1-minimization is to show that DT x is exactly s-sparse

5Note that the same lack of sharpness holds true for our results based on (26), yet we will
see that these can actually provide cosparse signal recovery guarantees in simple but nontrivial
cases.

26



for some s > 0 with D-RIP constant δD
7s < 0.6. Unfortunately, we can quickly

observe that the situation becomes hopeless even for moderately overcomplete
D; for example, let D be a 1.15-times overcomplete random tight frame for
R

d and consider recovering (d − 1)-cosparse signals for the operator DT . Note
that (d − 1)-cosparse signals x lead to (0.15d + 1)-sparse representation DT x.
This means that we need δD

7(0.15d+1) = δD
1.05d+7 to be smaller than 0.6 to show

that x can be recovered with analysis ℓ1, which of course cannot happen since
δD
d ≥ 1 (unless every element x in the span of D is uniquely characterized by

its projection Mx, an uninteresting situation that can only occur if either M

is one to one, or D does not span the signal space). By somehow taking the
synthesis view of the signals, (31) cannot explain the recovery of the simplest
cosparse signals (cosparsity d− 1) no matter what M is (as long as it is under-
determined).

We also observe that the result of [7] cannot say much about the recovery of
cosparse signals with respect to the finite difference operators ΩDIF discussed
in Section 3. This is due to the fact that ΩT

DIF is not a tight frame. How does
our recovery result (26) fare in this regard? For illustration, we took Ω to be
the finite difference operator ΩDIF for 32 × 32 images (thus, d = 1024). As a
test image, we took x to be constant in the region {(i, j) : i, j = 1, . . . , 16} and
{(i, j) : i, j = 1, . . . , 16}c. For this admittedly simple test image, using the same
notational convention as in Section 3.4, we computed the operator norm in (26)
for random measurement matrices M ∈ R

640×1024, with N a basis of the null
space of M (computed with an SVD), and Λ the cosupport of the test image.
When the operator norm was computed for 100 instances M, it was observed to
be less than 0.726. Hence, our result does give the guarantee of cosparse signal
recovery in simple cases.

6. Experiments

Empirical performance of the proposed algorithms is presented in this sec-
tion. First, we show how the algorithms perform in synthetic cosparse recovery
problems. Second, experimental results for an analysis-based compressed sens-
ing are presented.

6.1. Performance of analysis algorithms

In this section, we apply the algorithms described in Section 4 to synthetic
cosparse recovery problems. In the experiment, the entries of M ∈ R

m×d were
drawn independently from the normal distribution. The analysis operator Ω ∈
R

p×d was constructed so that its transpose is a random tight frame with unit
norm columns for R

d—we will simply say that Ω is a random tight frame in
this case.6 A random (almost) tight frame B with unit columns was generated

6One could also construct Ω by simply drawing the rows of it randomly and independently
from Sd−1 without the tight frame constraint. We have run the experiment for such operators
and observed that the result was similar.
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starting from a d × p Gaussian matrix by alternating the following two steps:
1) Singular value decomposition was performed on B to yield USVT = B, and
then S was replaced with a matrix of the form [αId,0] for α =

√

p/d. This
gives us a new B which is a tight frame. 2) The columns of B were normalized
to unit length. Next, the cosparsity ℓ was chosen, and the true or target signal
x was generated randomly as described in Section 2.2. The observation was
obtained by y = Mx.

Matlab cvx package [27] with the default solver SeDuMi [52] was used for
the analysis-ℓ1. The precision was set to best. For the final results, we used the
estimate x̂ from the ℓ1 solver to obtain an estimate of the cosupport—the cosup-
port estimate was obtained by taking the indices for which the corresponding
analysis coefficient is of size less than 10−6—and then using this cosupport and
the observation y to compute the final estimate of x (this process can be consid-
ered as de-biasing.). No visually noticeable changes due to the last de-biasing
step were noted in the results.
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Figure 6: Recovery Rate of Analysis Algorithms for d = 200.

Figure 6 shows the results. In all cases, the signal dimension d is set to 200.
We then varied the number m of measurements, the cosparsity ℓ of the target
signal, and the operator size p according to the following formulae:

m = δd, ℓ = d − ρm, p = σd.

which is consistent with Donoho & Tanner’s notations for phase transition dia-
grams [17]: δ = m/d is the undersampling ratio, and ρ = (d − ℓ)/m measures
the relative dimension of the ℓ-cosparse subspaces compared to the number of
measures. For every fixed parameter triplet (σ, δ, ρ), the experiment was re-
peated 50 times. A relative error of size less than 10−6 was counted as perfect
recovery. Each pixel in the diagrams corresponds to a triplet (σ, δ, ρ) and the
pixel intensity represents the ratio of the signals recovered perfectly with white
being the 100% success.
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The figures show that the GAP can be a viable option when it comes to the
cosparse signal recovery. GAP performs better than ℓ1-minimization, especially
for overcomplete Ω’s. It is clear from its description that GAP has polynomial
complexity. In practice, computational cost can be high when the size of the
problem is very large; to give a rough picture, for the experiment of Section 6.2,
(a super greedy version of) GAP was observed to take twice or three times
longer to complete the task than l1 magic.

It is known that the performance of OMP for the sparse signal recovery
varies according to the nature of the distribution of the magnitudes of the sparse
coefficients. More specifically, OMP performs very well when the coefficients
follow independent Gaussian distributions while it does not work as well when
the coefficients are drawn from independent Rademacher distributions (1 or
−1 with equal probabilities). This phenomonon turns out to be true in the
case of GAP as well, and Figure 7 shows the corresponding result when Ω

is an orthogonal matrix. Note, however, such an unfavorable distribution as
Rademacher may not make sense or may have different effects for redundant
Ω’s.
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Figure 7: Recovery Rate of Analysis Algorithms for d = 200 and σ = 1 when Ωx0 follows the
Rademacher distribution. GAP (left) and L1 (right).

An interesting phenomenon observed in the plots for overcomplete Ω is that
there seems to be some threshold δ∗ such that if the observation to dimension
ratio δ is less than δ∗, one could not recover any signal however cosparse it
may be. We may explain this heuristically as follows: If m measurements are
available, then the amount of information we have for the signal is c1m where c1

is the number of bits each observation represent. In order to recover a cosparse
signal, we need first to identify which subspace the signal belongs to out of

(

p
ℓ

)

,
and then to obtain the d− ℓ coefficients for the signal with respect to a basis of
the d − ℓ dimensional subspace. Therefore, roughly speaking, one may hope to
recover the signal when

c1m ≥ log2

(

p

ℓ

)

+ c1(d − ℓ) = log2

(

p

ℓ

)

+ ρc1m.

Thus, the recovery is only possible when (1 − ρ)δ ≥ log2

(

p
d

)

/(c1d). Using
the relation p = σd and Stirling’s approximation, this leads to an asymptotic
relation

δ ≥ (1 − ρ)δ ≥ σ log σ − (σ − 1) log(σ − 1)

c1
,
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which explains the phenomenon.
The calculation above and the experimental evidence from the figures con-

firm the intuition we had in Section 2.3: The combinatorial number of low-
dimensional cosparse subspaces arising from analysis operators in general po-
sition is not desirable. This strengthens our view on the necessity of design-
ing/learning analysis operators with high linear dependencies.

6.2. Analysis-based Compressed Sensing

We observed in Section 6.1 that the cosparse analysis model facilitates effec-
tive algorithms to recover partially observed cosparse signals. In this section,
we demonstrate the effectiveness of GAP algorithm on a standard toy problem:
the Shepp Logan phantom recovery problem.

We consider the following problem that is related to computed tomography
(CT): There is an image, say of size n×n, which we are interested in but cannot
observe directly. It can only be observed indirectly by means of its 2D Fourier
transform coefficients. However, due to high cost of measurements or some
physical limitation, the Fourier coefficients can only be observed along a few
radial lines. These limited observations or the locations thereof can be modeled
by a measurement matrix M, and with the obtained observation we want to
recover the original image. As an ideal example, we consider the Shepp Logan
phantom. One can easily see that this image is a good example of cosparse
signals in ΩDIF which consists of all the vertical and horizontal gradients (or
one step differences). This image has been used extensively as an example in
the literature in the context of compressed sensing (see, e.g., [3, 8]).

Figure 8 is the result obtained using GAP. The number of measurements
that corresponds to 12 radial lines is m = 3032. Compared to the number
of pixels in the image d = 65536, it is approximately 4.63%. The number of
analysis atoms that give non-zero coefficients is p−ℓ = 2546. The size of ΩDIF is
roughly twice the image size d = 65536, namely p = 130560. At first glance, this
corresponds to very high cosparsity level (ℓ = 130560−2546), or put differently,
given the high cosparsity level ℓ = 128014, we seem to have required too many
measurements. However, using the near optimal guarantee for uniqueness (14),
we have a uniqueness guarantee when m ≥ 2552. In view of this, the fact that
GAP recovered the signal perfectly for 3032 measurements is encouraging.

We have also ran the GAP algorithm for a larger sized 512 × 512 problem.
The results (not shown here) are visually similar to Figure 8. In this case,
the number of measurements (m = 7112) represents approximately 2.71% of
the image size (d = 262144). The number of non-zero analysis coefficients is
p − ℓ = 5104. The sufficient uniqueness condition (14) gives m ≥ 5110 as a
number of measurements for the uniqueness.

While encouraged by the result on the Phantom images, we acknowledge
that these images are unrealistic. Hence, further experiments on more realistic
images will be desirable. Some progress has been made [39] to address this.

Remark 12. Due to the large size of these problems, GAP algorithm as de-
scribed in Section 4 had to be modified: We used numerical optimization (the
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(a)

(b)
(c) (d)

Figure 8: Recovery of 256 × 256 Shepp Logan phantom image. (a) Original Image. (b)
Sampling locations of Fourier coefficients. (c) Locations where one-step difference of the
original image is non-zero. Upper half corresponds to the horizontal differences and lower half
the vertical differences. (d) Locations that GAP identified/eliminated to be the ones where
the differences are likely non-zero. Perfect reconstruction is implied by the fact that this image
‘contains’ image (c).

conjugate gradient method) to approximate pseudo-inverses. Also, due to high
computational cost, we eliminated many rows at each iteration (super greedy)
instead of one. Although this was not implemented using a selection factor,
this can be interpreted as using varying selection factors 0 < tk < 1 along the
iterations.

To conclude this section, we have repeated the 256×256 Shepp Logan phan-
tom image recovery problem using several algorithms while varying the number
of radial observation lines. Given that we know the minimal theoretical number
and a theoretically sufficient number of radial observation lines for the unique-
ness guarantee, the experimental result gives us an insight on how various al-
gorithms actually perform in the recovery problem in relation to the amount of
observation available. Figure 9 shows the outcome. The algorithms used in the
experiment are the GAP, the TV-minimization from l1magic, the AIHT from
[3], and the back-projection algorithm.7 The GAP and l1magic can be viewed
as analysis-based reconstruction algorithms while the AIHT is a synthesis-based
reconstruction algorithm. The AIHT is seen to use Haar wavelets as the synthe-
sis dictionary, hence the algorithm implicitly assumes that the phantom image
has sparse representation in that dictionary. We remark that while Figure 9

7The code for l1magic was downloaded from http://www.acm.caltech.edu/l1magic/ and
the one for AIHT from http://www.personal.soton.ac.uk/tb1m08/sparsify/AIHT Paper Code.zip.
The result for the back-projection was obtained using the code for AIHT.
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gives an impression that the AIHT does not have any improvement over the
baseline back-projection algorithm, perfect reconstructions were observed for
the former when sufficient measurements were available, which is not the case
for the back-projection.
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Figure 9: SNR vs the number of radial observation lines in 256 × 256 Shepp Logan phantom
image recovery. The output line for the GAP is clipped due to high SNR value. SNR was

computed as 20 log10

“

‖x‖2

‖x̂−x‖2

”

where x̂ is an approximation to the true signal x.

Remark 13. It must be noted that in our experiment, each radial line consists
of N pixels for an N × N image; this is in contrast to the fact that the radial
lines in the existing codes, e.g. l1magic, have N − 1 pixels. We have made
appropriate changes for our experiment. The radial lines with N − 1 pixels do
make the recovery problem more difficult and more observations were required
for perfect recovery for the GAP.

7. Conclusions and Further Work

In this work, we have described the cosparse analysis data model as an alter-
native to the popular sparse synthesis model. We have shown that the cosparse
analysis model is distinctly different from the sparse synthesis one in spite of
their apparent similarities. In particular, treating the cosparse model as the
synthesis model by assuming that the analysis representations of cosparse sig-
nals are sparse was demonstrated to be not very meaningful. Having presented
the model, we stated conditions that guarantee the uniqueness of cosparse solu-
tions in the context of linear inverse problems based on the work [33]. We then
presented some algorithms for the cosparse recovery problem and provided some
theoretical result for the analysis ℓ1-minimization and the newly proposed GAP.
Lastly, the model and the proposed algorithm were validated via experimental
results.
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Although our work in this paper shows that the cosparse analysis model
together with algorithms based on the model is an interesting subject to study
and viable for practical applications, there is much more to be learned about
the model. Among possible future avenues for related research, we list the
following8:

1. The stability of measurement matrices M on the analysis union of sub-
spaces ∪ΛWΛ;

2. The effect of noise on the cosparse analysis model and associated algo-
rithms;

3. Adaptation to the cases where the signals of interest are not exactly
cosparse;

4. The designing / learning of analysis operators for classes of signals of in-
terest;

5. More concrete and/or optimal theoretical success guarantees for algo-
rithms. As an example, one may seek a similar concept as coherence
for the analysis operators;

6. Better understanding of the role of linear dependencies between rows of
the analysis operator.

On top of these, one can also develop and study more algorithms for cosparse
signal recovery; for example, if we view that the GAP is the ‘dual’ of the OMP,
then we could ask: what is the dual of the CoSaMP [41] (or subspace pursuit
[11])?

Appendix A. Proof of Theorem 7 and Corollary 8

Let us begin with the simplest case. For a fixed x0 with cosupport Λ, the
analysis ℓ1-minimization (23) recovers x0 as the unique minimizer if and only if

|〈ΩΛcz, sign(ΩΛcx0)〉| < ‖ΩΛz‖1, ∀z ∈ Null(M), z 6= 0.

This follows from two facts: a) the above condition characterizes strict local
minima of the optimization problem; b) the optimization problem is convex and
can have at most one strict local minimum, which must be the unique global
optimum. From this, we derive the following: The analysis ℓ1-minimization (23)
recovers x0 as a unique minimizer for any x0 with cosupport Λ, if and only if

sup
xΛ:ΩΛxΛ=0

|〈ΩΛcz, sign(ΩΛcxΛ)〉| < ‖ΩΛz‖1, ∀z ∈ Null(M), z 6= 0

and the proof of Theorem 7 is complete.

8Some progress [39] has been made for items 2 and 3 in the listing.
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To obtain Corollary 8, observe that we can remove the constraint z ∈
Null(M) by writing z = NT α where NT is an d × (d − m) basis matrix for
Null(M) and α ∈ R

d−m is an appropriate coefficient sequence. Thus, the nec-
essary and sufficient condition becomes

sup
xΛ:ΩΛxΛ=0

∣

∣〈ΩΛcNT α, sign(ΩΛcxΛ)〉
∣

∣ < ‖ΩΛNT α‖1, ∀α ∈ R
d−m, α 6= 0.

(A.1)

Since the ℓ × (d − m) matrix ΩΛNT is thin (ℓ ≥ d − m) and full-rank, defining
β := ΩΛNT α, we have α = (ΩΛNT )†β. Therefore, a sufficient (but no longer
necessary) recovery condition for analysis ℓ1-minimization is

sup
xΛ:ΩΛxΛ=0

∣

∣〈ΩΛcNT (ΩΛNT )†β, sign(ΩΛcxΛ)〉
∣

∣ < ‖β‖1, ∀β ∈ R
ℓ, β 6= 0.

(A.2)

Equivalently, for all xΛ with ΩΛxΛ = 0,

sup
‖β‖1=1

|〈β, (NΩT
Λ)†NΩT

Λc sign(ΩΛcxΛ)〉| < 1 (A.3)

that is to say

sup
xΛ:ΩΛxΛ=0

‖(NΩT
Λ)†NΩT

Λc sign(ΩΛcxΛ)‖∞ < 1. (A.4)

Condition (25) follows from the above. To conclude the proof of Corollary 8,
we note that since ‖ sign(ΩΛcxΛ)‖∞ ≤ 1, the left hand side of (A.4) is bounded
above by

‖|(NΩT
Λ)†NΩT

Λc |‖∞→∞ = ‖|ΩΛcNT (ΩΛNT )†|‖1→1.

Therefore, condition (26) implies (25) and the proof is complete.

Appendix B. Proof of Lemma 9

Since x̂0 is the solution of arg minx ‖Ωx‖2
2 subject to y = Mx, applying the

Lagrange multiplier method, we observe that x̂0 satisfies

ΩT Ωx̂0 = MT v and Mx̂0 = y,

for some v ∈ R
m. From the first equation, we obtain v = (MT )†ΩT Ωx̂0.

Putting this back in, one gets
(

Id − MT (MT )†
)

ΩT Ωx̂0 = 0. The last equation
can be written as (NT )†NΩT Ωx̂0 = 0, where (NT )† is the pseudo-inverse of
NT . Thus,

NΩT Ωx̂0 = 0.

Now, we split ΩT Ω = ΩT
ΛΩΛ + ΩT

ΛcΩΛc and write

NΩT
ΛΩΛx̂0 = −NΩT

ΛcΩΛc x̂0.
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Since ΩΛx0 = 0, we can also write

NΩT
ΛΩΛu = −NΩT

ΛcΩΛc x̂0 (B.1)

with u = x̂0−x0. On the other hand, from Mx̂0 = y = Mx0, we have Mu = 0.
This means that u can be expressed as u =: NT w for some w. Plugging this
into (B.1), we have

NΩT
ΛΩΛNT w = −NΩT

ΛcΩΛc x̂0.

Hence, w = −
(

NΩT
ΛΩΛNT

)−1
NΩT

ΛcΩΛc x̂0. This gives us

x̂0 − x0 = u = −NT
(

NΩT
ΛΩΛNT

)−1
NΩT

ΛcΩΛc x̂0.

Again, using ΩΛx0 = 0, we have

ΩΛx̂0 = −ΩΛNT
(

NΩT
ΛΩΛNT

)−1
NΩT

ΛcΩΛc x̂0 = −(NΩT
Λ)†NΩT

ΛcΩΛc x̂0.

Appendix C. Proof of Proposition 6

All the statements in this section are about a 2D regular graph consisting of
d = N × N vertices (V ) and the vertical and horizontal edges (E) connecting
these vertices. To prove the proposition, we will need three basic lemmas.

Lemma 14. For a fixed ℓ, the value

α(ℓ) := min
Λ⊂E:|Λ|≥ℓ

{|V (Λ)| − J(Λ)}

is achieved for a subgraph (V (Λ),Λ)—we will simply identify Λ with the subgraph
from here on—satisfying |Λ| = ℓ and J(Λ) = 1.

Proof. It is not difficult to check that the minimum if achieved for Λ with |Λ| = ℓ.
Thus, we will assume |Λ| = ℓ.

Now, we need to show that there is also a Λ with J(Λ) = 1. Suppose that
Λ̃ with |Λ̃| = ℓ achieves α(ℓ) and J(Λ̃) > 1. We will show that we can obtain
Λ from Λ̃ that also achieves the value α(ℓ), and |Λ| = ℓ and J(Λ) = 1. For
simplicity, we will consider the case J(Λ̃) = 2 only; one can deal with other
cases by the repetition of the same argument.

Let Λ̃1 and Λ̃2 be the two connected components of Λ̃. Note that on a
2D regular graph, we can shift a subgraph horizontally or vertically unless the
subgraph has vertices on all four boundaries of V . Since Λ̃1 and Λ̃2 are discon-
nected, not all of them can have vertices on all four boundaries of V . Therefore,
one of them, say Λ̃1, can be shifted towards the other. Let us consider the first
moment when they touched each other. Let t be the number of vertices that
coincided. Then, at most t − 1 edges must have coincided. Thus, denoting the
number of edges coincided by s < t, the resulting subgraph Λ̃′ has |V (Λ̃)| − t
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vertices and |Λ̃| − s edges and one connected components. Now let Λ be a sub-
graph obtained from Λ̃′ by adding s additional edges that are connected to Λ̃′.
Then,

|V (Λ)| ≤ |V (Λ̃′)| + s ≤ |V (Λ̃)| − t + s,

|Λ| = |Λ̃| = ℓ, and J(Λ) = 1. Hence,

|V (Λ)| −J(Λ) ≤ |V (Λ̃)| − t+ s− 1 = |V (Λ̃)| −J(Λ̃)− t+ s+1 ≤ |V (Λ̃)| −J(Λ̃),

which is what we wanted to show.

The next Lemma provides a lower bound for the minimum number of vertices
minΛ,|Λ|=l |V (Λ)|.

Lemma 15. For ℓ ≥ 1,

min
Λ,|Λ|=ℓ

|V (Λ)| ≥ ℓ

2
+

1

2
+

(

ℓ

2
+

1

4

)1/2

.

Proof. From Lemma 14 we can restrict ourselves to sets Λ that are connected.
Let e↓(v) denote the edge descending from a vertex v, for which we may need
to extend the boundary of the lattice. Similarly let e→(v) denote the edge
extending rightwards from v. We can now define the following enlargement of
the edge set Λ.

Λ̄ = {e↓(v), e→(v) : v ∈ V (Λ)}. (C.1)

Since each edge can only descend or extend rightwards from a single vertex we
have |Λ̄| = 2|V (Λ)|. We also have Λ ⊂ Λ̄.

We now wish to estimate how much larger |Λ̄| is to |Λ|. Let us define the
width, w, of V (Λ) as the number of columns spanned by V (Λ). Similarly define
the height, h, as the number of rows spanned by V (Λ). For every row spanned
by V (Λ) the edge extending rightwards from the right-most vertex is in Λ̄\Λ.
Similarly for every column spanned by by V (Λ) the edge descending from the
lowest vertex is also in Λ̄\Λ. Hence we have the following bound

2|V (Λ)| = |Λ̄| ≥ |Λ| + w + h. (C.2)

Intuitively to minimize |V (Λ)| we should choose a set of vertices with maximal
area to perimeter ratio.

Given that V (Λ) lies in a rectangle of size h × w we can bound the number
of edges in Λ using a counting argument to obtain:

ℓ ≤ h(w − 1) + w(h − 1) (C.3)

Substitiuting this into (C.2) we get:

2|V (Λ)| ≥ ℓ + w +
ℓ + w

2w − 1
(C.4)
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and similarly we can now bound the minimum possible number of edges by:

min
Λ,|Λ|=ℓ

|V (Λ)| ≥ 1

2

(

ℓ + min
w≥1

[

w +
ℓ + w

2w − 1

])

, (C.5)

where on the right hand side we are minimizing over all w ≥ 1. Although this
includes non-integer values of w this does not invalidate the bound. It only
makes it less tight.

The right hand side of (C.5) is convex over w ≥ 1 with the minimum occur-

ring at w⋆ = 1
2 +

(

ℓ
2 + 1

4

)1/2
for which we also have:

w⋆ =
(ℓ + w⋆)

(2w⋆ − 1)
,

i.e. square cosupports are optimal.
Inserting this into (C.5) then gives:

min
Λ,|Λ|=ℓ

|V (Λ)| ≥ ℓ

2
+

1

2
+

(

ℓ

2
+

1

4

)1/2

(C.6)

as required.

The goal of our third Lemma is not just to derive a lower bound on κΩDIF
but

a lower bound that is close to optimal. By Lemma 14, κΩDIF
(ℓ) is achieved for

connected Λ, so, as with Lemma 15, we will consider such Λ’s only (J(Λ) = 1).
With J(Λ) = 1, the formula (12) tells us to look for the cases when |V (Λ)| is
minimal in order to compute κΩDIF

(ℓ).
What is the shape of the collection of edges Λ yielding the minimum? Re-

calling Euler’s formula for graphs on plane:

|V (Λ)| − |Λ| + |F (Λ)| = 2, (C.7)

where F (Λ) is the faces of Λ which includes the ‘unbounded one’, we see that
we are seeking Λ such that |F (Λ)| is maximal, i.e., there is maximum number
of faces. By intuition, we conjecture that this happens when Λ consists of all
the edges in an almost square, by which we mean V (Λ) is an r× r or r× (r +1)
rectangular grid or the inbetweens (e.g., an r×r grid of pixels to which 1 ≤ j ≤ r
pixels have been added on one side). These considerations lead to the following:

Lemma 16.

α(ℓ) ≤ ℓ

2
+

√

ℓ

2
+ 1

for ℓ ≥ 5.

Proof. For r ≥ 2, we consider a subgraph corresponding to an r×r square (solid
lines) and consider graphs obtained by adding additional edges in the fashion
depicted in Figure C.10.
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Figure C.10: Add dashed edges (from longer to shorter dashed) to r × r square subgraph
(solid lines).

We find that for the square Λ, |Λ| = 2(r2−r) and |V (Λ)| = r2, for the graph
Λ with one additional edge, |Λ| = 2(r2−r)+1 and |V (Λ)| = r2+1, for the graph
Λ with two additional edges, |Λ| = 2(r2−r)+2 and |V (Λ)| = r2 +2, and for the
graph Λ with three additional edges, |Λ| = 2(r2− r)+3 and |V (Λ)| = r2 +2. In
fact, we observe that two edges can be added while adding one additional vertex
until Λ corresponds to r × (r + 1) rectangle. Summarizing all these, a graph Λ
that is constructed as above, is contained r × (r + 1) rectangle (included), and
contains r×r square; satisfies either |Λ| = 2(r2−r)+2j or |Λ| = 2(r2−r)+2j+1,
and |V (Λ)| = r2 + j + 1, for j = 1, . . . , r − 1—this holds for j = r as well.
(Here, the case |Λ| = 2(r2 − r) + 1 is not stated.) By a similar observation, we
observe that a graph Λ that is constructed similarly as above, is contained in
(r + 1) × (r + 1) square (included), and contains r × (r + 1) square; satisfies
either |Λ| = 2r2−1+2j or |Λ| = 2r2−1+2j +1, and |V (Λ)| = r2 +r+j +1, for
j = 1, . . . , r—this holds for j = r + 1 as well. Of course, in all cases, J(Λ) = 1.

The above observation leads to the following inequalities—which we conjec-
ture to be in fact equalities:

α(2(r2 − r) + 2j) ≤ r2 + j, j = 1, . . . , r,

α(2(r2 − r) + 2j + 1) ≤ r2 + j, j = 1, . . . , r,

α(2r2 − 1 + 2j) ≤ r2 + r + j, j = 1, . . . , r + 1,

α(2r2 − 1 + 2j + 1) ≤ r2 + r + j, j = 1, . . . , r + 1.

We will now express these in a simpler form in terms of |Λ| = ℓ. In the first
case, letting ℓ = 2(r2 − r) + 2j, we have

r2 + j =
ℓ

2
+ r.

Since
2(r2 − 2r + 1) ≤ 2(r2 − r + 1) ≤ ℓ ≤ 2r2,

we have r − 1 ≤
√

ℓ
2 ≤ r. Hence, we can write α(ℓ) ≤ ℓ

2 +
√

ℓ
2 + 1. The other
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three cases can be treated similarly and we obtain

α(ℓ) ≤ ℓ

2
+

√

ℓ

2
,

α(ℓ) ≤ ℓ

2
+

√

ℓ

2
+

1

2
,

α(ℓ) ≤ ℓ

2
+

√

ℓ

2

Therefore, for all ℓ ≥ 5, we have α(ℓ) ≤ ℓ
2 +

√

ℓ
2 + 1.

We now put these ingredients together.

Proof of Proposition 6. The proof of the lower bound comes directly from Lemma 16.
To prove the upper bound we note that from Lemma 14, Lemma 15 and

Eq. (12) we have:

κΩ(ℓ) = |V | − min
|Λ|≥ℓ

{

|V (Λ)| − J(Λ)
}

= d − min
|Λ|≥ℓ

|V (Λ)| + 1

≤ d − ℓ

2
− 1

2
−

(

ℓ

2
+

1

4

)1/2

+ 1

≤ d − ℓ

2
−

√

ℓ

2
+

1

2

as required.

Appendix D. Discussion on the analysis exact recovery condition

We observe that the analysis ERC condition (26) is not sharp in general,
especially for the redundant Ω. In the case of GAP, tracing the arguments of
Lemma 9 and Theorem 10, we conclude that in order for (26) to be sharp, there
must exist a cosparse signal x0 such that, with x̂0 defined as in (18), ΩΛc x̂0

matches the exact sign pattern of the row of (NΩT
Λ)†NΩT

Λc with the largest
ℓ1-norm and is of constant magnitude in absolute value. We remind that x̂0

is the initial estimate that appears in the algorithm. Since the collection of
ΩΛc x̂0 may not span the whole R

Λc

, especially when Ω is over-complete, it is
unreasonable to expect the existence of such an x0. Similarly, in the case of
analysis ℓ1, we know that (26) is obtained from (25) in a crude way without
taking into account the sign patterns of ΩΛcxΛ, which is not sharp in general
for redundant Ω.

Average case performance guarantees? Can we think of a way to obtain a more
realistic success guarantee? We have a partial answer for this question in the
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sense that we can derive a condition—which is not a guarantee—that reflects
empirical results more faithfully. The idea is, instead of obtaining an upper
bound of the left hand side of (25) by disregarding (or considering the worst
case of) sign patterns, to model the effects of the sign patterns by estimating
the size of the left hand side in terms of the maximum ℓ2-norm of the rows of
(

NΩT
Λ

)†
NΩT

Λc (up to some constants). Though further investigation is desir-
able, we have empirically observed that the condition derived in this way better
reflected the success rates of GAP and ℓ1-minimization.

Desirable properties for Ω and M. At this point, one may ask a practical ques-
tion: what are desirable properties of Ω and M that would help the perfor-
mance of GAP or ℓ1-minimization? Can we gain some insights from our the-
oretical result? For this, we look for scenarios where the entries of R0 :=

ΩΛNT
(

NΩT
ΛΩΛNT

)−1
NΩT

Λc are small (hence, it is likely that condition (26)

is satisfied). We start with the inner expression
(

NΩT
ΛΩΛNT

)−1
. The larger

the minimum singular value of NΩT
ΛΩΛNT , the smaller the entries of R0. First,

assuming that the rows of Ω are normalized, we note that the minimum singular
value is larger when the size Λ is larger. Second, the closer the minimum sin-
gular value is to the maximum one (this is in some sense an RIP-like condition
for Ω), the larger it is. These two observations tell us that Ω should have high
linear dependencies (to allow large cosupport Λ) and the rows of Ω should be
close to uniformly distributed on Sd−1.

Suppose that Ω has the properties described above. Then, R0 is well ap-
proximated by R1 := γΩΛNT NΩT

Λc for some γ > 0. Therefore, we ask when
the entries of ΩΛNT NΩT

Λc are small. Each entry of ΩΛNT NΩT
Λc can be guar-

anteed to be small if a) N satisfies an RIP condition for the space spanned by
two rows of Ω and the rows of Ω are incoherent. In summary, it is desirable
that:

• The rows of Ω are close to uniformly distributed in Sd−1.

• Ω is highly redundant and has highly linearly dependent structure.

• M is ‘independent’ from Ω. This has to do with the RIP-like properties.

• The rows of Ω are incoherent.

• The cosparsity ℓ is large.

Remark 17. The 2D finite difference operator ΩDIF may be considered inco-
herent even though the coherence is relatively large (1/4). This is because the
majority of pairs of rows of ΩDIF are in fact uncorrelated.

Heuristic comparison of success guarantees for analysis-ℓ1 and GAP. We point
out that one can obtain from (27) a condition for the GAP that is similar to
(25). For this, we observe from (27) that

‖ΩΛx̂0‖∞ = ‖(NΩT
Λ)†NΩT

ΛcΩΛc x̂0‖∞ = ‖[ΩΛcNT (ΩΛNT )†]T ΩΛc x̂0‖∞.
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Since ‖ΩΛx̂0‖∞ < ‖ΩΛc x̂0‖∞ is the necessary and sufficient condition for the
(one-step) success of the GAP, we can derive a necessary and sufficient condition:

‖[ΩΛcNT (ΩΛNT )†]T ΩΛc x̂0‖∞ < ‖ΩΛc x̂0‖∞

where x0 is varied over all signals with cosupport Λ and x̂0 is the signal resulting
from the first step of GAP. The above condition can be rewritten in a form
similar to (25):

sup
x0

‖[ΩΛcNT (ΩΛNT )†]T (sign(ΩΛc x̂0) ⊙ v)‖∞ < 1 (D.1)

where x̂0 is derived as in (18), ⊙ denotes the element-wise multiplication of vec-
tors, and v is obtained from ΩΛc x̂0 by taking element-wise absolute values and
normalizing it to a unit ℓ∞-norm (v := |ΩΛc x̂0|/‖ΩΛc x̂0‖∞). Condition (D.1)
and (25) are in a similar form, but there are two differences between the two:
First, for (D.1), the signal x̂0 that apears is not in general a vector with cosup-
port Λ. It is rather a signal that arises from an approximation. Second, there is
a ‘weight’ vector v in (D.1). One can heuristically deduce that such a v favors
condition (D.1) to hold true since the size of most entries of v likely be smaller
than 1. Beside these differences, one should keep in mind that condition (D.1)
is only for one step.

Appendix E. Derivation of the Solution (19)

By the method of Lagrange multiplier, x̂0 is the solution of (18) if there is
µ ∈ R

m such that
ΩT Ωx̂0 = MT µ, y = Mx̂0.

We first assume that M is of full rank, thus MMT is invertible. With this as-
sumption, we can solve for µ and obtain µ = (MMT )−1MΩT Ωx̂0. Substituting
this in and combining the two equation, we have

[

(Id − MT (MMT )−1M)ΩT Ω
M

]

x̂0 =

[

0

y

]

.

Now we assume that the matrix on the right hand side is of full rank. Multiplying
the both sides by

[

(Id − MT (MMT )−1M) MT
]

(which is of full rank), we
arrive at

(MT M + (Id − MT (MMT )−1M)ΩT Ω)x̂0 = MT y,

from which (19) follows. Above, we have used the fact that Id−MT (MMT )−1M

is a projection.
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