
HAL Id: inria-00602536
https://inria.hal.science/inria-00602536

Submitted on 23 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A single landmark based localization algorithm for
non-holonomic mobile robots

Hugues Sert, Annemarie Kokosy, Wilfrid Perruquetti

To cite this version:
Hugues Sert, Annemarie Kokosy, Wilfrid Perruquetti. A single landmark based localization algorithm
for non-holonomic mobile robots. IEEE International Conference on Robotics and Automation, May
2011, Shanghai, China. �inria-00602536�

https://inria.hal.science/inria-00602536
https://hal.archives-ouvertes.fr


A single landmark based localization algorithm for non-holonomic
mobile robots

Hugues Sert, Annemarie K̈okösy and Wilfrid Perruquetti

Abstract— This paper proposes a single landmark based
localization algorithm for non-holonomic mobile robots. In the
case of a unicycle robot model, the localization problem is
equivalent to the system observability. Based on this obser-
vation, the proposed localization method consists in finding
a vector function which depends on the measurement vector
and its derivatives. In order to compute estimates of the
successive derivatives of the measurement vector, we will use
a numerical differentiation method. When the robot is able
to only measure the relative angle between itself and the
landmark in 2D case, the algorithm estimates the posture of the
robot, under the hypothesis that control inputs are known. But,
sometimes it is also useful to be able to estimate the control
input (for example when the robot slips). This is possible with
the proposed algorithm by using a landmark in dimension
three. The simulation results will be given in order to show
the effectiveness of the proposed algorithm. Moreover, these
results are compared with those obtained by an Extended
Kalman Filter in order to underline the advantages of the new
algorithm.

I. I NTRODUCTION

Localization is one of the most important issues for mobile
entity autonomous navigation [1]. Indeed it is impossible to
look for an intelligent mobile robot navigation strategy ifthe
robot has no self-localization capabilities. This localization
problem has focused researchers’ efforts for a long time. It
admits two sub-classes:

1) absolute localization: the collected data allow to lo-
calize the robot in the global environment (using for
example GPS),

2) relative localization: the collected data allow to localize
the robot with respect to the current situation (using for
example odometers or other proprioceptive sensors).

In an indoor environment it is almost very difficult to get
absolute localization because it is impossible to use GPS
(satellite signals are no more efficient indoors). Odometers
or similar proprioceptive sensors have an important drawback
because of drift issues [2]. Thus, in order to solve the local-
ization problem, the researchers have developed landmarks
based localization methods: landmarks are points of known
position in the environment which can be “seen” by the
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robot. Then the localization problem can be formulated as an
observability problem (in the sense of the automatic control
community): see [3], [4] and [5] for one or more robots.
One main drawback of such obtained results is that the
system is observable only for more than three landmarks.
In some environment it could be difficult to find so much
landmarks (see for example [6]), so other authors have
developed single landmark based methods which require to
compute a scale factor. [7] and [8] use the shapes of the
landmarks which require to use artificial landmarks of known
position and shape. If the shapes of the landmarks are not
known, it is possible to use information about the robot
movement in order to estimate the scale factor (see [6]). [9]
uses the odometers to estimate the scale factor. The greatest
drawback of this method is the robustness. In this paper a
new localization method is proposed which uses only the
position of the landmarks and the relative angle between the
landmarks and the robot to estimate, the linear speed, the
angular speed and the position of the robotwith only one
landmark .

II. PROBLEM FORMULATION OF A NEW SINGLE

LANDMARK BASED LOCALIZATION

A. Notations

In this paper the following notations are used (see Fig. 1):

• P = [x, y, θ] is the robot posture which contains the
coordinates[x, y] of the robot and its orientationθ,

• [xAi, yAi, zAi] is the coordinates of the landmark,
• the relative coordinates robot-landmarks:

xr = xAi − x, yr = yAi − y, (1)

• α andβ the relative angles robot-landmarksAi,
• the distance between the robot and the landmark:

– dRAi =
√

x2
r + y2r + z2Ai in space,

– dRAisol =
√

x2
r + y2r in plane,

• for a physical variablev, vm will denote its measured
quantity (usuallyvm = v + ηv whereηv is an additive
noise) andvf will denote a filtered value of the mea-
sured quantityvm which should be quite similar tov
in the ideal case.

• x̂ will denote the estimate value of variablex.

B. Problem

Let
{

Ẋ = F (X,V )
Z = H(X)

(2)



t

β

j
j

j

t

6

-

1
θ

α
arctan

(

yr
xr

)

t Ai: LandmarkAi

Top View

Three Dimensional View

x

y

Ai





xAi

yAi

zAi





Ai





xAi

yAi

zAi





dRAisol

dRAi

Fig. 1. Robot and landmark notation for the localization

be a state model system of a mobile robot, whereX ∈ R
n

is the state vector containing the mobile robot postureP =
[x, y, θ], V ∈ R

m is the control input vector andZ ∈ R
p is

the measurement vector. Since localization consists in finding
the posture of the robot (which is a part of the state vector)
from the measured output, it is clear that such a problem
is closely linked to the observability problem (in fact it isa
partial observability problem). Such a problem has two main
points of view: a differential geometric one and an algebraic
one. Let us recall here, one of the most important results
obtained by Michel Fliess about observability in an algebraic
framework:

Theorem 1 (see [10] and [11]):A system variablex ∈ F
is said to beobservable if, and only if, it is algebraic over
f〈u, y〉. An input-output systemF/f is said to be observable
if, and only if, the extensionF/f〈u, y〉 is algebraic.
Where the following definitions are used: forF which is
a differential field, the differential field extensionL/F is
given by two differential fieldsF,L, such that the derivation
of F ⊂ L is the restriction toF of the derivation ofL. An
element ofL is said to be differentially algebraic overF
if, and only if, it satisfies an algebraic differential equation
with coefficients inF . F 〈S〉, whereS is a subset ofL, the
differential subfield ofL generated byF andS.

Thus the above mentioned result shows that a system
variablex ∈ F is said to be observable, if and only if there
is an algebraic equation linkingx, the outputs, the inputs
and a finite number of the time derivatives of the inputs and
outputs. Let’s use this algebraic criteria for our localization
problem.

Theorem 2:A mobile robot with state dynamics (2) is
said to belocalizable if, and only if, there is an algebraic

equation linking postureP , the measured outputZ, input V
and a finite number of the time derivatives ofZ andV .

Thus, based on this result, our proposed method
of localization consists in finding the vector function
K(Z, Ż, Z̈, ..., Z(q)) such that:

P = K(Z, Ż, Z̈, ..., Z(q)). (3)

WhereZ(q) is theq-derivative ofZ.
For our case study, a unicyle robot, whose posture is exactly
stateX, thus its localizability is equivalent to the system
observability (see [10] and [12] for additional results on
the observability of non linear systems). The knowledge
of the formal expression ofK and an estimation of the
successive derivatives ofZ, will lead to the reconstruction
of postureP for any timet: this is the point of view used
in this paper which is closely linked to the new algorithms
developed within the ALIEN - INRIA project for numerical
differentiation estimation (see [13]). Let us emphasize that
these methods, which are algebraic and non-asymptotic,
exhibit good robustness properties with respect to corrupting
noise, without the need of knowing their statistical properties.
To sum up, the localization (reconstruction ofP = X (for
our case study)) is then obtained through three steps:

1) get a formal expression ofK (see theorems 3 and 4),
2) compute the estimates of the successive derivatives of

Z (see sub-section II-E) (for this case study, there is
no need to estimate the derivatives ofV ),

3) in K, substitute the derivatives by their estimates.

C. Robot State Model

The mobile robot considered is of unicycle type, with
two driving wheels mounted on the same axis and inde-
pendently controlled by two actuators (DC motors). The
robot is fully described by a three dimensional vector of
generalized coordinatesX constituted by the coordinates
[x, y] of the midpoint between the two driving wheels and by
the orientation angleθ with respect to a fixed frame. This
non-holonomic robot is assumed to observe landmarks in
two or three dimensions (both cases will be dealt with). The
kinematic model of this type of robot is given by:

Ẋ = F (X,V ) =





u cos (θ)
u sin (θ)

ω



 , (4)

whereX =
[

x y θ
]T

is the posture of the robot and

V =
[

u ω
]T

is the control input (linear velocity, angular
velocity).

D. Measurement Model

We are going to distinguish the 2D and 3D cases. The
measurement model

• in the 2D case, is given by equations (5) and (6):

Z = H(X) = αm = α+ ηα (5)

α = arctan

(

yr
xr

)

− θ (6)



wherexr andyr are the relatives positions between the
landmarks and the robot defined by (1) andηα is a
measurement noise.

• in the 3D case, is given by equations (7)-(9):

Z = H(X) =

[

αm = α+ ηα
βm = β + ηβ

]

(7)

α = arctan

(

yr
xr

)

− θ (8)

β = arctan

(

zAi
√

x2
Ai + y2Ai

)

(9)

whereηα andηβ are additive noise measurements.

E. Estimation of the successive time derivatives ofZ

This algebraic setting for numerical differentiation of
noisy signals was introduced in [14] and analyzed in [13].
Consider a signalvm = v + ηv. We want to estimate the
derivative ofv.

1) Continuous version of the derivative:The continuous
version of thenth time derivative estimate of the variablev
is given by:

v
(n)
f (Tt;κ;µ;N) =

∫ 1

0

g(τ, κ, µ,N)vm(t− τ)dτ (10)

wherevm is the measured quantity ofv (see notations) and

g(τ) =

q
∑

l=0

λlhκ+q−l,µ+l(τ), (κ;µ) ∈ N, q = N − n (11)

with

λl = (−1)q−l

(

p+ q − l
p

)(

p+ q + 1
l

)

, l = 0, ..., q

(12)
whereq = N − n andp = n+ κ and

hκ,µ(τ) =
(−1)nγκ,µ,n

Tn
rect(τ)

dn

dτn
ωκ,µ(τ) (13)

rect(τ) =

{

1 if τ ∈ [0; 1]
0 ortherwise

(14)

ωκ,µ(t) = tκ+n(1− t)µ+n (15)

γκ,µ,n =
(µ+ κ+ 2n+ 1)!

(µ+ n)!(κ+ n)!
(16)

See [13] for details about the choice of the different param-
eters involved in this differentiation estimation method.

Remark 1:Let us note that this formula is still valid for
n = 0 and thus gives a filtered estimate of the measured
variable. This will be used to obtain the following filtered
quantities:αf , βf , uf , ωf , θf , . . ..

2) Discrete version:The nth order time derivative esti-
mate in the discrete case is obtained as the output of the
finite impulse response filter (FIR):

v(n)(lTs;κ;µ;N) ≈

M
∑

j=0

Wjgjvm,l−j (17)

where vm,i = vm(iTs), Ts is the sampling period,M is

the number of coefficients of the filter andcj = Wjgj , j =
0, ...,M − 1 is its impulse response. CoefficientsWj cor-
respond to the chosen method of integration of the signal
between0 and 1. Here, for the trapezoidal method, the
coefficients are given by:

W0 = WM =
1

2M

Wj =
1

M
, j = 1, ...,M − 1

(18)

Coefficientsgj are such asgj = g(jTs/T ), j = 0, ...,M ,
with T = MTs the first moment of estimation.

III. M AIN RESULTS

A. New 2D and 3D robot localization algorithms

1) 2D case: A new single landmark based localization
algorithm:

Hypothesis 1:The following data are supposed to be
known:

• [xAi, yAi, zAi], the landmark position,
• u, the linear speed of the robot,
• ω, the angular speed of the robot.

The following data are supposed to be measured:
• θm, measured with a compass (a noisy measurement),
• αm the robot-landmark relative angle (a noisy measure-

ment).
Theorem 3:Let us consider the robot state model, (4), the

measurement model, (5) and (6) and the relative coordinates
between the robot and the landmarkxr andyr given by (1).
Under hypothesis 1, the relative coordinates of the robot,
Xr = [xr, yr]

T are estimated by:

X̂r =

[

x̂r

ŷr

]

=









uf sin (αf ) cos (αf + θf )

(α̇f + ωf )
uf sin (αf ) sin (αf + θf )

(α̇f + ωf )









(19)

whereuf , ωf , αf , α̇f and θf are the filtered quantities (see
remark 1).

Remark 2:This algorithm is suitable only when the non-
holonomic constraint is satisfied (no slipping, no skidding).
More over the following condition should be in forceα̇+ω 6=
0 : for example when the landmarks is far away from the
robot α̇ ≃ 0 and the robot is not spinning (in line)ω ≃ 0 or
when the robot is at rest.

Proof: By taking the time derivative of (1) combined
with (4), the following equation is obtained:

ẋr = −ẋ = −u cos (θ) and ẏr = −ẏ = −u sin (θ). (20)

By using equation (6), after the filtering process (i.e.
removing the noise effectη):

sin (αf + θ)x̂r − cos (αf + θ)ŷr = 0 (21)

The time derivative of this equation combined with (20),
leads to:

(α̇f + ω) cos (αf + θ)x̂r − sin (αf + θ)u cos (θ) =
−(α̇f + ω) sin (αf + θ)ŷr − cos (αf + θ)u sin (θ)

(22)



(α̇f + ω) [cos (αf + θ)x̂r + sin (αf + θ)ŷr] =
sin (αf + θ)u cos (θ)− cos (αf + θ)u sin (θ)

(23)

So:

(α̇f + ω) [cos (αf + θ)x̂r + sin (αf + θ)ŷr] = u sin (αf )
(24)

Now (21) and (24) can be rewritten into a matrix form
with x̂r and ŷr as unknown data:

[

sin (αf + θ) − cos (αf + θ)
(α̇f + ω) cos (αf + θ) (α̇f + ω) sin (αf + θ)

] [

x̂r

ŷr

]

=

[

0
u sin (αf )

]

Solving this equation it follows that:

X̂r =

[

x̂r

ŷr

]

=









u sin (αf ) cos (αf + θ)

(α̇f + ω)
u sin (αf ) sin (αf + θ)

(α̇f + ω)









.

Then u, ω and θ are also filtered in order to increase the
robustness of the estimation process with respect to the noise
which could affect the control inputs and measurements.

Remark 3:We can remark in hypothesis 1 that, in order to
estimateX̂r by using a 2D landmark, it is necessary to know
the linear and angular speed of the robot. If this hypothesisis
too restrictive, it can be relaxed by using a three-dimensional
landmark. In this case, it is possible to estimate the linear
and the angular speed of the robot.

2) 3D case: A new single landmark based localization
algorithm without the knowledge of the linear and angular
speed:Contrary to hypothesis 1 in the 2D case, when a 3D
landmark is used, it is not necessary to know the linear and
angular speeds of the robot.

Hypothesis 2:The following features are assumed to
hold:

• landmark position[xAi, yAi, zAi] is known,
• relative anglesαm and βm are measured (noisy mea-

surement),
• θm, the robot orientation is measured with a compass

(a noisy measurement).
Theorem 4:Let us consider the robot state model, (4),

the measurement model, (7)-(9) and the relative coordinates
between the robot and the landmarkxr and yr given by
equation (1). Under hypothesis 2 the relative coordinates of
the robot,Xr = [xr, yr]

T and the velocities (linearu and
angularω) are estimated by:

û =
zAiβ̇f

sin2 βf cosαf

(25)

ω̂ =
2 tan (αf )

sin (2βf )
β̇f − α̇f (26)

X̂r =

[

x̂r

ŷr

]

=









û sin (αf ) cos (αf + θf )

(α̇f + ω̂)
û sin (αf ) sin (αf + θf )

(α̇f + ω̂)









(27)

whereαf , α̇f , βf , β̇f and θf are the filtered quantities (see
remark 1).

Proof: The only part to be proved is the estimation
of the velocities (for the proof of equation (27) see the 2D
case).
Estimation of the linear speedu
Using Fig. 1:

[

xr

yr

]

= dRAisol

[

cos(α+ θ)
sin(α+ θ)

]

Using the filtering process to eliminate the noise measure-
ment, this equation becomes:

[

x̂r

ŷr

]

= dRAisol

[

cos(αf + θf )
sin(αf + θf )

]

so:

dRAisol = x̂r cos(αf + θf ) + ŷr sin(αf + θf ) (28)

By differentiating this equation and by using equation (20),
the following equation is obtained:

ḋRAisol = −x̂r(α̇f + ω̂) sin(αf + θf )
−û cos θf cos(αf + θf )

+ŷr(α̇f + ωf ) cos(αf + θf )− û sin θf sin(αf + θf )
,

which combined with equation (21) leads to:

ḋRAisol = −û cos(αf ). (29)

Using equation (9):

tanβf =
zAi

dRAisol

,

which can be rewritten in the following expression:

dRAisol sinβf − zAi cosβf = 0. (30)

The following equation can be obtained by differentiating
this last one:

ḋRAisol sinβf + β̇fdRAisol cosβf + zAiβ̇f sinβf = 0.

In this relation, by replacinġdRAisol by equation (29):

−û cosαf sinβf + β̇f (dRAisol cosβf + zAi sinβf ) = 0.
(31)

And by using Fig. 1:
[

dRAisol

zAi

]

= dRAi

[

cosβf

sinβf

]

so:
dRAi = dRAisol cosβf + dRAisol sinβf (32)

By replacing this equation in (31) and by knowing thatzAi =
dRAi sinβf , (Fig. 1):

û =
β̇fdRAi

cosαf sinβf

=
β̇fzAi

cosαf sin
2 βf

(33)

Estimation of the angular speedω
By using the expression ofdRAisol found in (28) in (24):

(α̇f + ω̂)dRAisol = û sinαf

So by using equation (9):

ω̂ =
û sinαf tanβf

zAi

− α̇f



By replacing û found in equation (33), the result for̂ω is
demonstrated:

ω̂ =
β̇f tanαf

sinβf cosβf

− α̇f =
2β̇f tanαf

sin(2βf )
− α̇f

B. Experimental results and comparisons with an extended
Kalman filter

In order to show the effectiveness of the here proposed
method, the obtained results from theorem 4 were imple-
mented on Matlab (hereafter calledALIEN algorithm ).
Results from theorem 3 are not implement as they are sub-
parts of theorem 4. Results obtained using ALIEN algorithm
are compared with those obtained by an EKF (Extended
Kalman Filter) for two parameters setting. In the first one,
the statistical noise characteristics (R matrix) are known
by the EKF and in the second one they are unknown (the
covariance noise matrix (R matrix) is so set to high values).
In both cases the new algorithm has no information about
the noise characteristics, and EKF is initialized at10cm of
the true initial position. Due to paper limitation the EKF is
not developed here (for more details see [15]).

Tab. I summaries the required inputs (informations) for
each algorithm (ALIEN and EKF).

The algorithm : ALIEN Algorithm EKF
Needs to know the control input NO YES

Needs to know the noise characteristics NO YES
Needs to know the orientation of the robot YES NO

Needs to be initialized NO YES

TABLE I

COMPARISON OF TWO LOCALIZATION ALGORITHMS HYPOTHESIS

Fig. 2 shows the inputs and outputs for each algorithms.
One can see that the ALIEN algorithm only needs the

[x; y; θ]T andP

α andβ
[xAi; yAi; zAi]

T

θ

u

ω

[x, y]T

α andβ

[xAi; yAi; zAi]
T

[x0; y0] andP0

u andω

R

ALIEN Algorithm

EKF

-
-
-

:
-
j

-
-
-
--

-

Fig. 2. Input and output of the two localization methods

measurements ofα and β, the landmarks position and the
orientation of the robot to get an estimation of the velocities
and of the position of the robot contrary to the EKF which
needs further noise characteristics (matrixR), and an ini-
tialization (P0). Furthermore, EKF needs the velocities input
contrary to the ALIEN algorithm which does not need this
information, as it is able to estimate it. Moreover, the ALIEN
algorithm only uses information about a single landmark

to get an estimation of the robot velocities and position
contrary to the EKF which needs at least three landmarks
to get an estimation of the position of the robot. In the
case of more than one landmarks, the ALIEN algorithm
uses a mathematical means to fuse the different estimations
obtained by using each landmark separately.

1) Comparative results:The algorithms are tested for1,
5, 10, 50 and100 landmarks. For each case, the experiment
is repeated50 times and an uniformly distributed noise on
the interval[−0.5; 0.5] is added to the angular measurements.
The initial covariance matrix (P0) for the EKF is set at0.1m
on the diagonal for the position and0rad on the diagonal
for the orientation and0 elsewhere.

a) First experimentation: EKF knows the true noise
characteristics: Tab. II shows the results obtained by both
algorithms. For each algorithm the mean error and the
variance of error are given.

number of landmarks 1 5 10 50 100
eALIEN in (m) 0.0552 0.0263 0.0199 0.0120 0.0100
σALIEN in (m) 0.0031 5.1451e-004 2.7911e-004 7.9280e-005 5.8512e-005
eEKF in (m) 0.0897 0.0308 0.0224 0.0138 0.0116
σEKF en (m) 0.0012 8.5777e-004 5.0071e-004 1.5034e-004 9.6251e-005
tALIEN
tEKF

0.6114 1.0971 1.2504 0.6544 0.7351

TABLE II

COMPARATIVE RESULTS OF BOTH METHODS WHENEKF DOES NOT

KNOW THE NOISE CHARACTERISTICS

We can notice that there are no significant differences
between the two algorithms in terms of mean estimation error
and variance of estimation error, but the ALIEN algorithm
computing time (tALIEN ) is really competitive with respect
to the EKF one (tEKF ) when the number of landmarks is
below 4 or increases a lot.

Fig. 3 shows the results obtained for one run and for one
landmark.

b) Second experimentation: EKF does not know the
noise characteristics:Tab. III shows the results obtained
by both algorithms. For each algorithm the mean estimation
error and the variance estimation error are given.

number of landmarks 1 5 10 50 100
eALIEN in (m) 0.0456 0.0278 0.0216 0.0118 0.0100

σALIEN 0.0019 6.4213e-004 3.3078e-004 7.9920e-005 5.6736e-005
eEKF in (m) 0.1664 0.1595 0.1537 0.1178 0.0966
σEKF en (m) 2.5201e-004 1.4515e-004 1.0377e-004 8.6138e-004 0.0017
tALIEN
tEKF

0.6214 1.0951 1.2487 0.7735 0.7371

TABLE III

COMPARATIVE RESULTS OF BOTH METHODS WHENEKF DOES NOT

KNOW THE NOISE CHARACTERISTICS

EKF gives bad estimation results due to a bad initialisa-
tion which could not be compensated by the measurements
because the algorithm has no knowledge about the noise
characteristics. The ALIEN algorithm does not have this
drawback because it does not need the noise characteristics
in the estimation process.
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IV. CONCLUSION

This paper has proposed a new landmark based local-
ization algorithm for a unicycle mobile robot. One of the
most important advantage of this algorithm is that it is able
to localize the robot with only one landmark. If the robot
can only measure the relative angle between itself and the
landmark in a 2D case, the proposed solution allows to
localize the robot with respect to the landmark. In this case
the control input (velocities: linear and angular ones) have to
be known. Due to the drift problem in robotic navigation it
can be useful to also estimate the linear and angular speed of
the robot. This paper has proposed a solution to this problem
by using only the relative angles between the robot and a
single landmark in the 3D case. The theoretical development
is implemented in Matlab in order to show the effectiveness
of the proposed solution. Moreover, these results have been
compared with those given by an Extended Kalman Filter,
which is a reference in the mobile robotics community. A
number of conclusions can be drawn from these experiments.
First of all the more landmarks there are the more the ratio
between the computing time necessary for the localization
using the new algorithm and that using the EKF becomes
favorable to the proposed algorithms.
The new proposed algorithm requires no knowledge of
velocities (linear velocity and angular velocity), unlikethe
EKF which needs to know these inputs. Nevertheless, it is
possible to extend the EKF to this case, but it requires a
number of new theoretical developments, because there is
no model of evolution for the velocities.
Moreover, for similar results in terms of error and variance,
the paper proposes a new algorithm which is simpler to
implement and more efficient in terms of computing time
than the EKF one. However, the advantage of the EKF is its

ability to give a confidence interval estimation. It is not yet
possible for the proposed algorithm to give such a confidence
interval, but it will the main subject of our future work.
Concerning the initialization of the algorithm, it is not
possible to conclude, because the EKF can be initialized with
a least squares estimator using fifty measurements, in the
same way as the ALIEN algorithm needs fifty measurements
to give a first estimate of the position.
Another great advantage of the new algorithm is the lack of
statistical assumptions on noise measurements, which makes
it more robust with respect to any type of sensors. The future
works concerns the study of the placement of the landmark
and the choice of the landmarks in function of the current
situation.
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