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Abstract: Most of existing image restoration techniques suppose that the
blur is spatially-invariant. However, various physical phenomena related to
the optical instrument properties make that degradations may change in the
image domain. Taking into account space-variance of optical aberrations in
the restoration process is an important task that should enhance the accu-
racy of the estimated object. This latter issue has received little attention by
researchers in these last years. In this work, we derive a restoration method
for spatially-variant blurred images. In our approach, we consider a blur
modeled by a space-varying linear combination of spatially invariant blurs.
We develop the example of a piecewise-constant PSF model with regular
transitions between areas in order to alleviate blur alteration e�ect. Further-
more, we develop for this model, an appropriate deconvolution method based
on minimization of a criterion with total variation regularization. For this
purpose, we �t a domain decomposition-based minimization approach that
was recently developed by Fornassier et al., 2009 to the deconvolution prob-
lem with a spatially varying PSF model. We thus obtain a fast restoration
algorithm where the true image estimation is performed in a parallel way
on di�erent sub-regions of the image. We also study the convergence of the
proposed method especially for the considered spatially varying PSF model.

Key-words: Deconvolution, energy minimization, spatially-variant PSF,
total variation.
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Méthode de restauration d'image

avec un �ou spatialement variant

Résumé : La plupart des techniques de restauration d'image existantes
suppose que le �ou est spatialement invariant. Cependant, di�érents phéno-
mènes physiques liés aux propriétés des instruments optiques font que les
dégradations peuvent changer dans le domaine de l'image. Prendre en compte
la variation spatiale des aberrations optiques dans le processus de restauration
est une tâche importante qui devrait améliorer la précision de l'objet estimé.
Ce dernier problème a reçu peu d'attention par les chercheurs ces dernières
années. Dans ce travail, nous développons une méthode de restauration
d'image avec un �ou spatialement variant. Dans notre approche, nous consi-
dérons un �ou modélisé par une combinaison linéaire spatialement variante de
fonctions de �ou spatialement invariant. Nous développons l'exemple d'une
PSF constante par morceau avec des transitions régulières entre les régions
a�n d'atténuer l'e�et de changement de �ou entre les zones. En outre, nous
développons pour ce modèle, une méthode de déconvolution appropriée par
minimisation d'un critère avec une régularisation par variation totale. Pour
cela, nous adaptons une méthode de minimisation fondée sur une stratégie
de décomposition de l'image qui a été récemment développée par Fornasier et
al., 2009 au problème de déconvolution avec une PSF spatialement variante.
Nous obtenons ainsi un algorithme de restauration rapide où l'estimation de
l'image est e�ectuée d'une manière parallèle sur les di�érents sous-domaines
de l'image. Nous étudions également la convergence de la méthode proposée
notamment pour le modèle de PSF spatialement variante considéré.

Mots-clés : Déconvolution, minimisation d'énergie, PSF spatialement
variante, variation totale.
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1 Introduction

Since the �rst telescopes invented in the XVth century, optical imaging sys-
tems recognized a considerable advance providing high resolution and good
contrast photography. Nevertheless, till now they su�er from some artifacts
mainly due to the inherent limitations of the optical instruments as well as
the imaging environment. Indeed, optical images are a�ected by undesired
blur which is introduced by di�erent distortion sources. For instance, the
di�raction of light through a small circular aperture or imperfect optical lens
produces a blur commonly represented by an Airy disc (Pawley [2006]) which
limits the resolution of the acquired image. Defocus is an other example of
optical aberrations. It refers to a shift of the image plane from the plane of
focus and leads to the loss of small details. This kind of blur usually appears
in biological images acquired by a 3D confocal laser scanning microscope,
namely when the light coming from out of focus planes interferes with that
coming from the target plane during the �uorescence of the excited molecules.
Furthermore, camera or object motions during the exposure distort the qual-
ity of the acquired image and reduce its accuracy. In order to remove this
blur and retrieve the original scene, many image restoration methods were
previously developed in the literature. In most of them, the blur was sup-
posed to be spatially-invariant, so that the image formation process can be
modeled by a convolution with a function describing the imaging system
blur. This function is conventionally called point spread function (PSF). It
refers to the response of the imaging system to the Dirac impulse. Thus,
the mathematical expression corresponding to such an observation model is
given by the following equation:

g (x) =
X
t2R

[h (x� t) :u (t)] + b (x) (1)

where h (:) denotes the point spread function, assumed to be shift-invariant,
u (:) is the intensity of the original image to be estimated from observations
g (:), b (:) is an additive noise (e.g. Gaussian noise) and variables x and
t represent positions in the 2D or 3D discrete space R, with R an open
bounded set of R2 or R3.

When the point spread function is considered as spatially-invariant, the
restoration of the image can be achieved using classical deconvolution meth-
ods such as Wiener �lter (Pratt [1972]) and Richardson-Lucy based-algorithms
(Demoment [1989], Rudin and Osher [1994]). Di�erent regularization tech-
niques such as total variation (Rudin et al. [1992], Rudin and Osher [1994]) or
wavelet regularisation (Bect et al. [2004], Daubechies et al. [2004], Figueiredo
and Nowak [2003]) were introduced in the deconvolution process according
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to the considered application in order to regularize the ill-posed inverse prob-
lem. Thanks to the space invariance-assumption of the PSF, mathematical
computations can be carried out in the Fourier domain so that computational
cost of the convolution operation in the spatial domain is avoided.

Nevertheless, in many practical cases, the blur could not be considered as
invariant in the whole image domain and it is not the same at every point of
the observed scene. This issue can be encountered in several situations. For
instance, imaging a scene that contains several objects placed at di�erent fo-
cal distances w.r.t. the lens position usually leads to a varying defocus blur.
Besides, a space-varying blur can also occur if we would take into account geo-
metrical aberrations induced by the imperfect lens system or by the refractive
index mismatch between the di�erent system mediums in microscopy. For ex-
ample, confocal laser scanning microscope su�ers from a depth-varying blur
which is mainly caused by optical aberrations of lenses. Such a phenomenon
is illustrated for example in (Shaevitz and Fletcher [2007]). Astronomical
and satellite images are likewise distorted with a spatially-varying blur due
to atmospheric turbulence. In addition, a varying motion blur can be ob-
served when the imaged particles move with di�erent speeds or follow dif-
ferent trajectories. It is thus important to develop a restoration method for
spatially-varying blurred images. Indeed, the image formation model cannot
be represented anymore by a convolution between the PSF and the original
image since the space-invariance blur is no longer a valid assumption. The
mathematical observation model is henceforth expressed as follows:

g (x) =
X
t2R

[hx (x� t) :u (t)] + b (x) (2)

where hx (:) is the PSF corresponding to the location x. Because of the
space-variance of the PSF, the evaluation of such operation cannot be done
with a fast Fourier transform. Computations in the spatial space are very
expansive in terms of CPU time and memory. In order to speed up the
computational time, most of the existing methods are carried out under the
assumption of local invariance of the PSF. The image space is thus sectioned
into sub-regions where the blur variations are negligible so that the PSF can
be considered as invariant in that sub-region. Among these methods that
have dealt with the restoration problem of space-varying blurred images, we
list the followings:

First, the iterative image restoration method proposed in (Nagy and
O'Leary [1998]) for atmospherically blurred images is one of the earliest
space-variant deconvolution techniques. It is based on the preconditioned
conjugate gradient algorithm (Nagy et al. [1996]). In that method, a block-
invariant blur approximation with linear interpolation of the local PSF was
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considered in order to alleviate the block e�ect. In addition, the proposed
method was extended later by Bardsley et al. (Bardsley et al. [2006]) to
achieve blind restoration of spatially-varying blurred images and was partic-
ularly applied to restore astronomical images.

Besides, a non-linear restoration method based on self-organizing neural
network was proposed in (Sung and Choi [1998]) to remove spatially-varying
optical blur. In that method, an overlapping �eld approach was considered
to alleviate the block e�ect within the restored image.

Moreover, a depth variant maximum likelihood restoration approach was
developed in (Preza and Conchello [2004]) to compensate for degradation
changing with depth in 3D �uorescence microscopy images. In that method,
C. Preza and J. Conchello propose a decomposition of the 3D image into
strata along the optical axis, where the PSF is considered as variant. They
associate to each stratum a space-invariant PSF which is estimated as a
weighted interpolation between the PSF at the top and at the bottom of the
considered stratum.

Object estimation is then achieved using maximum likelihood expectation-
maximization algorithm embedded with the proposed PSF modeling.

Recently, an evolutionary merging mask algorithm (EMMA) was intro-
duced in (Maalouf [2010]) for 3D �uorescence microscopy images. It con-
sists in separately performing multiple deconvolution with di�erent space-
invariant PSF on the whole image, using any classical deconvolution algo-
rithm, the PSF at di�erent few depths is assumed to be known. The decon-
volved images are then merged together using an adequate mask that takes
the best of each part to build the �nal estimated object.

Finally, we cite a new method recently proposed in (Hajlaoui et al. [2010])
for restoration of satellite images (captured with push broom sensors) that
su�er from a variant blur along the orthogonal direction of the satellite mo-
tion. It mainly consists in �tting the forward-backward algorithm to the case
of block-varying PSF using wavelet frame regularization.

In spite of local-invariance approximation of the PSF, most of these listed
methods remain computationally intensive due to their iterative and sequen-
tial formulation. In our work, we propose a fast restoration approach for
space-varying blurred images, where the true image estimation can be per-
formed in a parallel way in di�erent sub-domains of the image, thanks to an
image decomposition strategy. We �rst introduce an image observation model
that takes into account space blur-variation. We consider a blur modeled by
a space-varying linear combination of spatially invariant blurs. In particular,
we consider a piecewise-constant PSF with regular transition between zones
in order to reduce mosaic e�ect of the block decomposition. Secondly, we
deal with the inversion problem of such a model by minimizing a criterion
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including a total variation regularization. We rely on an energy optimization
method based on a domain decomposition strategy that was recently devel-
oped in (Fornasier et al. [2009]). The main advantage of this method is that
energy minimization is processed in a parallel way on di�erent areas of the
image while taking into account the estimates in the adjacent areas of the
considered sub-image. Furthermore, we check the validity of some criteria in
the case of space-varying PSF model in order to do not break the convergence
properties of the proposed optimization method.

This report is organized as follows: in the second section, we present the
proposed approximate observation model for space-varying blurred image. In
the third section, we explicit the associated deconvolution approach which
is mainly based on the optimization method proposed by Fornasier et al.
In particular, we show how we �tted such a method to the proposed space-
varying PSF model and we study its convergence properties. In the fourth
section, we report and evaluate some numerical results obtained on a 2D
synthetic image as well as a simulated 3D biological image. Finally, we
conclude this report by proposing some perspectives which could complete
our research work.

RR n° 7654
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2 Space-varying PSF model

Before presenting the image formation model that we deal with, let us collect
the main notations used in this report.

2.1 Notations

As the observation is usually done with a matrix of CCD sensors, we consider
discrete notations. Let 
 =

�
x1

1; : : : ; x
1
N1

	
� : : :�

�
xd1; : : : ; x

d
Nd

	
� RN1�:::�Nd ,

d = 1; 2; 3 be the image dimension, 
 the image domain, and let F be the
space of functions from 
 to R standing for one pixel intensity. We denote by
H = RN1�:::�Nd , the space of vectors that refers to the whole image intensity.
A vector u in H can be written as u = (u (x))x2
. We endow H with the
following norms:

� k u kp=
�P
x2


j u (x) jp
�1=p

;8u 2 H; 1 � p <1,

� k u k1= max
x2

j u (x) j; 8u 2 H.

We de�ne the scalar product of u; v 2 H as follows:

< u; v >=
X
x2


u (x) :v (x)

Moreover, we denote by L the space of linear operators H : H �! H and we
associate it with the following norm:

� k H kp= max
u2Hnf0g

k H (u) kp
k u kp

= max fk H (u) kp such that k u kp� 1g.

We also introduce the space P = Hd such that any p in P can be written
as p = (pi)1�i�d. Furthermore, for any p 2 P and any x 2 
, we de�ne
jp (x)j1 = max fjpi (x)j ; 1 � i � dg. We thus introduce the following closed
convex set which will be used later for the computation of the restored image
using total variation regularization:

K = fdiv p : p 2 P such that jp (x)j1 � 1; for all x 2 
g (3)

where div stands for the divergence operator.

RR n° 7654
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2.2 Space-varying blur modeling

In order to take into account the blur variation of the optical distorting
system, we consider a blur modeled by a space-varying linear combination
of spatially invariant blurs. Denoting by g 2 H the blurred image, u 2 H
the original one, and fhi; 1 � i � Dg a �nite set of space-invariant PSF,
an approximation of the image formation process is given by the following
equation:

g (x) =
X

1�i�D

 i (x) : (hi � u) (x) ; 8x 2 
 (4)

where � stands for the discrete circular convolution and  i are weighting
functions in H.

In particular, we consider a piecewise-constant PSF model with regular
transition between zones. In fact, we assume that regions where the blur-
variation is negligible are a�ected by the same constant blur. To build the
image observation model, we propose to split the domain 
 into D overlap-
ping sub-domains as it was initially proposed in (Fornasier et al. [2009]). In
other words, we consider that the image domain 
 is sectioned into a set of
sub-domains f
i � 
; 1 � i � Dg such that adjacent sub-domains are over-
lapping i.e. 
 = [

1�i�N

i such that 
i \ 
i+1 6= Ø. An example of such a

domain decomposition into two overlapping sub-domains is displayed in Fig.
1. We assume that each block is a�ected by a space-invariant blur repre-
sented by a given PSF hi; 1 � i � D. In addition, blur alteration from one
block to another is not done in a brutal way but it is allayed by introducing
weighting functions  i 2 H with support ( i) = 
i for 1 � i � D. These
functions allow to smooth PSF variation between zones where 
i and 
i+1

overlap. Some additional constraints on the map set f i; 1 � i � Dg, sim-
ilar to those proposed in (Fornasier et al. [2009]), are introduced in order
to preserve the convergence properties of the proposed restoration method.
The functions  i; 1 � i � D must satisfy the following conditions:

1. 0 �  i � 1, for 1 � i � D,

2.
DP
i=1

 i (x) = 1; 8x 2 
.

For ease of presentation, we consider a space decomposition into two do-
mains. Furthermore, we propose to use in our later work a classical example
of weighting functions  1 and  2 as that displayed in Fig. 2. In this case,
the observation model given by (4) can be written as follows:

RR n° 7654
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g(x) =

8><>:
(h1 � u) (x) if x 2 
1 r 
2

 1 (x) : (h1 � u) (x) +  2 (x) : (h2 � u) (x) if x 2 
1 \ 
2

(h2 � u) (x) if x 2 
2 r 
2

Note that the above equation represents a particular case of the proposed
observation model given by (4) which was constrained by the choice of par-
ticular weighting functions. Actually, the proposed restoration method that
we will describe in the following section remains valid for any other choice
of the weighting functions as long as they verify the two previous conditions.
Thanks to such a modeling, we obtain a PSF which is di�erent at each point
of the image domain. We can illustrate this idea by developing the equation
corresponding to the image formation model when considering, for example,
two PSF:

g (x) =  1 (x) : (h1 � u) (x) +  2 (x) : (h2 � u) (x)

=  1 (x) :

�P
t

h1 (x� t) :u (t)

�
+  2 (x) :

�P
t

h2 (x� t) :u (t)

�
=
P
t

[ 1 (x) :h1 (x� t) +  2 (x) :h2 (x� t)] :u (t)

=
P
t

h (x; t) :u (t)

with h (x; t) =  1 (x) :h1 (x� t) +  2 (x) :h2 (x� t).
Hence, considering such a model leads to a space-variant �ltering. In-

deed, because of the introduction of transition functions, the blur function
h (x; :) changes at every point x of the image. That's why, we introduced
the operator eH 2 L which indicates the non-stationary convolution with the
proposed PSF model. To be more precise, we denote by eH the operator given
by the following equation:

eH (:) =  1:H1 (:) +  2H2 (:) (5)

where H1 (:) = h1�: denotes the circular convolution operator with the space-
invariant PSF h1 and H2 (:) = h2 � : corresponds to the circular convolution
operator with the space-invariant PSF h2. Let remark that computing eH (u)
can be rapidly done by making the convolutions by H1 and H2 in the Fourier
domain and then the linear combination in the spatial domain for each x 2 
.
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Figure 1: Overlapping domain decomposition into two sub-domains

Figure 2: Weighting functions  1 (:) and  2 (:) for two overlapping domain
decomposition.
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3 Image restoration method within a frame-

work of a space-varying PSF

After de�ning the image formation model, we now interest on inverting
the space-varying PSF by minimizing an energy functional formed by a
quadratic term corresponding to data �delity and a total variation regu-
larization (Rudin et al. [1992], Rudin and Osher [1994], Chambolle and Li-
ons [1997]). The main role of the total variation term is that it allows the
smoothness of homogeneous areas while preserving edges. We stress that
it is important to take into account such a term during the deconvolution
process since inversion with a low-pass �lter such as the PSF ampli�es high
frequencies and then ampli�es the noise even if it is small. We thus consider
the following functional to be minimized w.r.t. u 2 H:

J (u) =
 eH (u)� g

2

2
+ 2� kruk1 (6)

where � > 0 is a �xed regularization parameter. In order to minimize such
a functional, we are interested in an e�cient optimization method that was
recently developed in (Fornasier et al. [2009]). It was studied for a constant
linear operator. Its convergence was theoretically proved under some condi-
tions. Moreover, it was successfully applied on signal interpolation and 2D
image inpainting. It also showed promising results in terms of computational
time. In this section, we propose to summarize the underlying principles of
this method and �t it to the problem of decovolution with a space-varying
PSF according to the proposed model. Furthermore, we check the validity
of some properties related to the convergence of this procedure when consid-
ering the proposed non-stationary convolution.

3.1 Overlapping domain strategy for energy minimiza-

tion

We detail here the alternating subspace minimization algorithm described in
(Fornasier et al. [2009]), for the non-stationary convolution operator eH (:).
First of all, we should stress that the minimization approach proposed in
(Fornasier et al. [2009]) was carried out in a discrete approximation frame-
work and a discrete expression of the energy function (6) was introduced. In
fact, the solution proposed by Fornasier et al. consists in instead of mini-
mizing the functional (6) on the whole domain 
 to minimize it in a parallel
way on sub-domains of 
 using a domain decomposition strategy, in order
to reduce the computational time. An overlapping domain splitting similar
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to that described in the previous section was proposed. In that method, the
sub-domains 
i; 1 � i � N are subject to a constraint given by a splitting
property of the total variation term (equation 2, (Fornasier et al. [2009])).
Note that the number of sub-domains N considered in the minimization
method is not necessarily the same as that chosen in the PSF modeling and
one can choose a domain decomposition di�erent from that proposed in the
previous section. For sake of clarity, we also present this method for two
sub-domains 
1 and 
2 (cf. Fig. 1). However, the method is easily general-
izable to multiple domains. Considering such a domain splitting, a possible
decomposition of the solution u 2 H of the minimization problem of function
(6) is given by:

u(x) =

8><>:
u1 (x) if x 2 
1 r 
2

u1 (x) + u2 (x) if x 2 
1 \ 
2

u2 (x) if x 2 
2 r 
2

(7)

where function ui is in the subspace Vi = fu 2 H; support (u) � 
ig, for
i 2 f1; 2g. Moreover, we denote by �1 the interface between 
1 and 
2 n
1

and by �2 the interface between 
2 and 
1 n 
2 (cf. Fig. 1). With this
splitting, Fornasier et al. propose to perform the minimization of functional
(6) in each sub-domain taking into account the estimates in the other sub-
domains. Let consider, for instance, the following minimization problem on
the sub-domain 
1:

u�1 = Arg Min
u12V1=Trj�1

u1=0
J (u1 + u2) (8)

where Trj�1u1 = u1j�1 is the restriction of u1 on the boundary �1. The main
di�culty of the proposed subspace minimization method is �nding an appro-
priate algorithm for solving the problem of local minimization of functional
J (:) w.r.t. u1 given by (8) while preserving the condition Trj�1u1 = 0. In-
deed, because of such a condition, classical minimization methods based on
gradient descent scheme are no directly applicable. For that matter, For-
nasier et al. propose to use a Lagrange multiplier scheme. The main idea
of this algorithm is minimizing an auxiliary function of J (:) where the vari-
able u1 is not a�ected by the action of the blur operator eH. An algorithmic
solution of such a minimization problem is then accessible using an oblique
thresholding theorem which will be presented afterwards. Now, let detail
the proposed Lagrange multiplier scheme (Fornasier et al. [2009]) for local
minimization. It consists in minimizing an auxiliary functional Js1 (:) of J (:)
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called surrogate functional (Fornasier and Schönlieb [2009], Fornasier et al.
[2009]) of J (:) by iterating the following equation:

u
(l+1)
1 = Arg Min

u12V1=Trj�1
u1=0

Js1

�
u1 + u2; u

(l)
1

�
; l � 0 (9)

where Js1 (:) is de�ned as follows:

Js1

�
u1 + u2; u

(l)
1

�
= J (u1 + u2) +

u1 � u(l)
1

2

2
�
 eH �u1 � u(l)

1

�2

2

with u1; u
(l)
1 2 V1; u2 2 V2. We can rewrite Js1

�
u1 + u2; u

(l)
1

�
in the following

form such that the variable u1 is not anymore a�ected by the action of eH (:):

Js1

�
u1 + u2; u

(l)
1

�
= ku1 � z1k2

2 + 2� kr (u1+u2) j (
1)k1 (10)

with z1 = u
(l)
1 +

� eH� �g � eH (u2)� eH �u(l)
1

���
j 
1 where eH� (:) denotes

the adjoint of the non-stationary convolution operator eH (:). Thus, we look
for an expression of the adjoint eH� (:). Let u; v 2 H,

< eH (u) ; v > = <  1:H1 (u) ; v > + <  2:H2 (u) ; v >

We focus on developing the �rst part of the second term of the above equa-
tion:

<  1:H1 (u) ; v >=
X
x2


 1 (x) : (h1 � u) (x) :v (x)

=
X
x2


(h1 � u) (x) : 1 (x) :v (x)

= < H1 (u) ;  1:v >

= < u;H�1 ( 1:v) >

Thus, < eH (u) ; v >=< u;H�1 ( 1:v) + H�2 ( 2:v) >. That is to say,eH� (v) = H�1 ( 1:v) + H�2 ( 2:v), where H�1 (:) and H�2 (:) are respectively
adjoints of H1 (:) and H2 (:). Let remark that the adjoint operator eH� can
also be computed by multiplication in the Fourier domain (for H�1 and H�2
convolutions) after multiplying v by  1 and  2. Then, the computation of
the adjoint operator is also fast. In order to provide an algorithmic solution
of the local minimization problem, the following oblique thresholding theorem
was used in (Fornasier et al. [2009]).

Theorem 1. The following two statements are equivalent:

1. u�1 = Arg Min
u12V1=Trj�1

u1=0
ku1 � z1k2

2 + 2� kr (u1+u2) j (
1)k1 ;

RR n° 7654



Restoration Method for Spatially Variant Blurred Images 15

2. 9 � 2 V1 with support (�) = �1 such that:

u�1 = (I � P�K) (z1 + u2 � �)� u2 and Trj�1u
�
1 = 0 (11)

where P�K (u) = ArgMin
v2K
ku� vk2 ; for u 2 H is the orthogonal pro-

jection onto the closed convex set K given by (3).

Numerical computation of the orthogonal projection can be performed thanks
to the dual method of Chambolle (Chambolle [2004]). The proof of such a
theorem is provided in (Fornasier et al. [2009]).

In addition, it is shown in (Fornasier et al. [2009]) that � 2 V1 as in
statement 2 of the previous theorem is a �xed point of the following equation:

� = (Trj�1)� Trj�1 (z1 + P�K (� � (z1 + u2))) (12)

and it is accessible by means of the following iterative algorithm:

Algorithm 1 Fixed point computation

� Initialize �(0) 2 V1; support (�) = �1

� For m from 0 to (M � 1), iterate the following equation:

�(m+1) = (Trj�1)� Trj�1

�
z1 + P�K

�
�(m) � (z1 + u2)

��

The convergence of the above algorithm to a �xed point of function given
by (12) was shown in (Fornasier et al. [2009]) using the strong non-expansive
property of the projection P�K (Bauschke et al.). This latter do not depend
on the non-stationary convolution operator eH (:), but only on the convex set
K due to the regularization term. Hence, this property still holds in the case
that we are dealing with. Thus, by computing � and including it in (11), the
local minimization problem of function Js1 (:) given by (10) is solved and a
partial value of the image u on the sub-domain 
1 is obtained. The global
minimization algorithm of functional (6) that allows for the computation
of the solution u on the whole domain 
 consists in alternating subspace
minimization using (8) and its symmetrical for the computation of u2 and
then combining the obtained local solutions using (7). In (Fornasier et al.
[2009]), two versions of the global minimization algorithm are presented, i.e.
the sequential and the parallel algorithms. We choose here to focus on the
parallel algorithm where local minimizations are simultaneously performed
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as it is more interesting in terms of computational time. It is expressed as
follows:

Algorithm 2 Parallel version of the alternating subspace minimization al-
gorithm

� Initialize u(0) = ~u
(0)
1 + ~u

(0)
2 ,
�
e:g: ~u

(0)
1 = 0; ~u

(0)
2 = 0

�
� Initialize the number of iterations N , L and I,

� Initialize the regularizing parameter �,

� For n from 0 to (N � 1), iterate the following steps:

Step 1: Energy minimization on the sub-domain 
1

� Initialize u(n+1;0)
1 = ~u

(n)
1 ,

� For l from 0 to (L� 1), iterate the following equation:

u
(n+1;l+1)
1 = Arg Min

u12V1=T rj�1 u1=0
Js

1

�
u1 + ~u(n)

2 ; u
(n+1;l)
1

�
Step 2: Energy minimization on the sub-domain 
2

� Initialize u(n+1;0)
2 = ~u

(n)
2

� For i from 0 to (I � 1), iterate the following equation:

u
(n+1;i+1)
2 = Arg Min

u22V2=T rj�2 u2=0
Js

2

�
~u

(n)
1 + u2; u

(n+1;i)
2

�

Step 3: u(n+1) =
u

(n+1;L)
1 + u

(n+1;I)
2 + u(n)

2

Step 4:

(
~u

(n+1)
1 = �1 :u

(n+1)
1

~u
(n+1)
2 = �2 :u

(n+1)
2

f�1; �2g � H is a bounded uniform partition of unity (BUPU) that sat-
is�es the following conditions:

1. Trj�i
�i = 0 for i = 1; 2;

2. �1 + �2 = 1;
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3. support (�i) � 
i for i = 1; 2;

4. Max fk�1k1 ; k�2k1g <1.

The main role of these functions f�1; �2g � H is to ensure the boundedness of

the sequences
�eu(n)

1

�
n2N

and
�eu(n)

2

�
n2N

produced by the previous algorithm

and thus prove the existence of an optimal decomposition u(1) = ~u
(1)
1 +~u

(1)
2

used in the convergence proof of the proposed minimization method. A
classical example of these auxiliary functions �1 and �2 is presented in Fig.
2. Furthermore, the main advantage of the overlapping sub-domains property
proposed in (Fornasier et al. [2009]) is simplifying the theoretical proof of the
convergence of the global minimization algorithm by avoiding a �ne analysis
on the interfaces �1 and �2. Moreover, the number of iterations N , L and
I are manually set to high values in order to achieve the global optimum
of the energy function. Nevertheless, one can use a stopping criterion for
the iterative algorithm. For instance, the convergence of such an iterative
algorithm is usually assumed to be reached when the vector u remains stable
during iterations. That is to say, the mean square error, for example, between
two successive outputs (u(n) and u(n+1)) is below a very low �xed threshold.
In addition, further constraints on the operator eH (:) are required in order to
ensure the convergence of the proposed minimization method to an optimal
solution. This issue will be the subject of the following sub-section.

3.2 Convergence of the proposed energy minimization

method

After describing the alternating subspace minimization algorithm �tted to
the proposed non-stationary convolution operator, we now interest in prov-
ing its convergence. From the convergence proof established in (Fornasier
et al. [2009]) for space-invariant linear operator, we exhibit two necessary
conditions. First, the operator eH (:) should allow the coercivity of the func-
tional J (:) given by (6). In fact, if J is coercive in H then there exists a
constant C > 0 such that fu 2 H : J (u) � Cg is bounded in H. That is
to say, there exists a subsequence of the sequence

�
u(n)
�
n2N produced by

the algorithm which converges to a �nite limit u(1). We thus introduce the
de�nition of a coercive function.

De�nition 2. J (:) is called coercive if: J (u)! +1 as kuk ! +1.
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To prove such a property, it su�ces to show that 1 =2 Ker
� eH�, where

Ker
� eH� =

n
u 2 H : eH (u) = 0

o
. Indeed,

eH (1) (x) =
X
t

( 1 (x) :h1 (x� t) +  2 (x) :h2 (x� t)) (13)

Since we deal with normalized and positive PSF i.e. khik1 =
P
t

jhi (t)j =P
t

hi (t) = 1 for i 2 f1; 2g, the previous equation (13) can be expressed as:

eH (1) (x) =  1 (x) +  2 (x) = 1 (14)

and therewith �nishes the proof.
A second necessary condition for the convergence of the proposed mini-

mization method is
 eH

2
� 1. It contributes to certain convergence proper-

ties of the sequence
�
u(n)
�
n2N such as:

1. J
�
u(n)
�
> J

�
u(n+1)

�
; 8n 2 N unless u(n) = u(n+1)

2. lim
n!1

u(n+1) � u(n)


2
= 0.

We can easily prove that for any stationary convolution operator H (:) = h�:,
we have kHk2 � 1 if h is normalized i.e. khk1 = 1. Furthermore, using the
properties of the circulant matrix corresponding to a space-invariant PSF,

we can also prove that kHk2 �
1
p
n
with n = Card (
). In fact, it is known

that any circulant matrix is diagonalizable with normalized discrete Fourier
transform. Thus, k H k2 is bounded by the maximal eigenvalue of that

matrix which itself is bounded by
1
p
n
since this eigenvalue is computed as

a normalized discrete Fourier transform of the PSF in the zero coordinate.
Now, let prove the validity of this condition for space-varying operator (i.e.
k eH k2� 1). We de�ne the following norm corresponding to eH:

k eH k2= max
n
k eH (u) k2 such that k u k2� 1

o
(15)

Let u be in H such that kuk2 � 1. It is easy to verify that:

k eH (u) k2�
p
n k eH (u) k1 : (16)

It su�ces to show that k eH (u) k1�
1
p
n
.
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We have k eH (u) k1= max
x2

j
h eH (u)

i
(x) j which means that k eH (u) k1=

max
x2

j  1 (x) :H1 (u) (x) +  2 (x) :H2 (u) (x) j.

Using the triangle inequality, we obtain:

k eH (u) k1� max
x2

j 1 (x)j : jH1 (u) (x)j+ j 2 (x)j : jH2 (u) (x)j (17)

Besides, we know that for a stationary operator Hi; i = 1; 2, we have

kHik2 �
1
p
n
which implies that kHik1 �

1
p
n
since kHik1 � kHik2. Hence,

we deduce that:

jH1 (u) (x)j �
1
p
n
; and jH2 (u) (x)j �

1
p
n
; 8x 2 
. Taking into account

this last conclusion in (17), we obtain:

k eH (u) k1�
1
p
n
max
x2

j 1 (x)j+ j 2 (x)j (18)

Consequently, by combining (16) and (18), we �nd:

k eH (u) k2�
p
n k eH (u) k1� max

x2

j 1 (x)j+ j 2 (x)j (19)

Thereby, we proved that k eH k2� 1 as j 1 (x)j+ j 2 (x)j = 1; 8x 2 
.
With this property validation, the rest of the convergence proof follows

analogous arguments as that in (Fornasier et al. [2009]).

4 Numerical results

In this section, we provide some numerical experiments in order to assess
the presented restoration method and illustrate the advantage of the space-
variance approach. We interest in two particular examples. The �rst test was
performed on a 2D synthetic image distorted with a variant blur according
to the presented observation model. This allows us to validate our restora-
tion approach since the considered image follows exactly the considered blur
modeling (there is no any approximation included in the image observation
model). We also evaluate the robustness of our method against noise and
we consider a space-varying blurred image corrupted with an additive white
Gaussian noise. Moreover, to assess the quality of our restoration algorithm,
we provide some numerical measures such as the mean square error and the
peak signal-to-noise ratio. Secondly, we test the proposed method on a simu-
lated 3D image of a �uorescence confocal microscopy, the blur is continuously
varying along the optical direction.
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4.1 Test on a 2D synthetic image

First, we consider the 2D synthetic image of 128 � 128 pixels displayed in
Fig. 3(a). We blurred this image with four di�erent Gaussian PSF, each
corresponds to a given region. We thus consider an overlapping domain de-
composition into four sub-domains. Its interfaces are depicted in Fig. 3(e),
The red line corresponds to the lower side of the �rst rectangular sub-domain

1, the two green lines correspond to the interfaces of the sub-domain 
2,
the blue ones correspond to those of the third sub-domain 
3 and the yellow
line represent the upper side of the sub-domain 
4. Weighting functions as
those displayed in Fig. 2 are considered in the proposed distortion modeling.
The considered PSF have a zero mean and respectively the following stan-
dard deviations �1 = 1, �2 = 1; 75, �3 = 2; 5 and �4 = 3; 25. The resulting
distorted images is depicted in Fig. 3(b). The restored image displayed in
Fig. 3(c) shows the relevance of the proposed deblurring method. Note that
the reconstruction method was performed by considering the same decompo-
sition as that used for the generation of the blurred image. The regularizing
parameter is �xed to � = 10�4. The evolution of the energy functional dur-
ing iterations is plotted in Fig. 4(a). Actually, it illustrates the convergence
of the estimation method. In this test, the numbers of iterations of local
and global minimization algorithms are respectively set to 30 and 60. But
one can notice from the curve of the energy functional depicted in Fig. 4(a)
that 20 iterations of the global algorithm are su�cient to reach the optimum
of the energy function. The simulation of the algorithm on a machine hav-
ing a multi-core processor (8 cores) of a frequency 1:86 GHz required only
1mnand 20 s to reach its convergence. In fact, the method was programmed
in Matlab and the code is not optimized. The computing time can be reduced
by optimizing the code using the C++ programming language for example.
Furthermore, knowing the true image value, we compute the mean square er-
ror (MSE) between the estimated object and the true one using the following
formula in order to assess the accuracy of our estimation method.

MSE (u; o) =
1

Card (
)

X
x2


(u (x)� o (x))2 (20)

with u (:) is the estimated object and o (:) is the original one, before degra-
dations. The plot of the MSE versus iterations is presented in Fig. 4(b). It
illustrates the fast convergence of our algorithm. In order to highlight the
advantage of the space-variance approach, we also restored the image using a
single PSF having a zero mean and a standard deviation equals the mean of
the four standard deviation of the four PSF used for the image degradation
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(� = 2; 125). One can notice a poor restoration especially in the higher and
lower regions of the restored image of Fig. 3(d).

(a) (b) (c)

(d) (e)

Figure 3: (a) Original image, (b) blurred image with four Gaussian PSF,
(c) restored image with the space-variance approach, (d) restored image with
space invariance assumption, (e) interfaces of the considered domain decom-
position.

(a) (b)

Figure 4: (a) Energy evolution with iterations and (b) mean square error
versus iterations corresponding to the proposed restoration procedure with
space-varying PSF.

Second, in order to evaluate the robustness of our method against noise,
we test it on an image of 256�256 pixels a�ected by the same blur functions
as those considered in the previous test (four Gaussian PSF) and corrupted
with an additive Gaussian noise having a standard deviation equals � = 9.
The images before and after degradations are respectively depicted in Fig.
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5(a) and Fig. 5(b). Similar parameter values (number of iterations of local
and global algorithms) as those chosen in the previous test, are considered.
The regularizing parameter is set to � = 5 : 10�3. The computing time
is about 2mn. The restored image as well as the image corresponding to
the di�erence between this latter and the original image are respectively
displayed in Fig. 5(c) and Fig. 5(d). We also present in Fig. 5(e) and Fig.
5(f) those obtained when considering one Gaussian PSF of zero mean and
standard deviation � = 2; 125. Visually, we can notice in Fig. 5(c) a good
restoration for the considered noisy image. In fact, the restored image with
the space variance approach is very close to the real one (cf. Fig. 5(d)).
However, the restored image with one invariant PSF is well denoised but not
well deblurred. In addition, we numerically evaluate the robustness of the
restoration method against noise and we compute the peak signal-to-noise

ratio using the following formula PSNR = 10 log10

D2

MSE (g; u)
with D the

dynamic range of the image intensity. It is about 24 dB.

4.2 Test on a simulated 3D biological image

We interest now in testing our algorithm on a 3D image assumed to be
acquired with a confocal laser scanning microscope (CLSM) (Minsky [1988],
Inoué [2006]). The main particularity of such a system is that it distorts
the image with a depth-varying blur. It is mainly due to the refraction
phenomenon because of the variation of the refractive index in the system
as well as aberrations due to the increasing imaging depth. Ideally, the �rst
plane immediately below the coverslip is free of aberrations. In this test,
we consider a simulated CLSM image of two micro-spheres placed at two
di�erent depths. The actual object is thus exactly known. Hence, an e�ective
evaluation of the proposed method can also be obtained by comparing the
estimated object w.r.t the true one. In what follows, we describe the imaging
conditions with the considered acquisition parameters that we used for the
PSF generation. Then, we present and discuss the obtained results.

4.2.1 Simulating the observation

We generated two spherical beads having each a diameter of 672 nm in a vol-
ume of 9648 nm � 9648 nm � 4848 nm. The �rst bead is placed at a depth
of 1440 nm along the optical axis and the second bead is placed at a depth
of 3360 nm. These micro-spheres are supposed to be embedded in a medium
of a refractive index ns = 1:45. Fig. 7(a) displays the simulated original
object. This object is assumed to be imaged by a CLSM system having a
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(a) (b) (c)

(d) (e) (f)

Figure 5: (a) Original image, (b) blurred and noisy image, (c) restored
image with the space variance approach, (d) intensity di�erence between
the restored and original images, (e) restored image with space invariance
assumption, and (f) intensity di�erence between the restored and original
images.

magni�cation of 100X, a numerical aperture of NA=1.4 and an oil immersed
lens with a refractive of ni = 1:5. The coverslip chosen has a refractive index
very close to that of the objective medium, so that aberration induced by the
mismatch of the refractive index between these two mediums is negligible.
The excitation and emission peaks are respectively at wavelengths of 543 nm
and 600 nm. The pinhole of the confocal microscope is adjusted to a very
small physical size so that it can be approximated by a Dirac function in the
PSF equation (Stokseth [1969], Pankajakshan et al. [2009]). Furthermore,
the image reconstruction respects the Nyquist sampling, the lateral and the
axial pixel sizes are set to 48 nm. Knowing all the imaging setup conditions,
the PSF can be computed using a mathematical PSF model based on the
Stokseth approximation (Stokseth [1969], Pankajakshan et al. [2009]). Fig.
6 displays the maximum intensity projection of the simulated PSF onto the
lateral and the axial planes for two di�erent depths. Fig. 6(a) and Fig. 6(c)
correspond to a PSF for a zero depth under the coverslip and Fig. 6(b) and
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Fig. 6(d) correspond to a PSF generated at a depth of 4800 nm. One can
see the axial shift of the PSF measured at a deep point under the coverslip
w.r.t. that generated at a zero depth. However, the radial PSF is practically
unchangeable with depth (cf. Fig. 6(a) and Fig. 6(b)). This illustrates the
PSF variation along the axial direction for CLSM images discussed at the
beginning of this section. Since the PSF is di�erent for each z-slice, we gener-
ated 101 PSF, each of them corresponds to a z-slice. An accurate simulation
of axially-variant blurred CLSM image is then obtained by performing 101
convolutions with the appropriate PSF. Axial slice of the obtained distorted
image is displayed in Figure 7(b).

(a) (b)

(c) (d)

Figure 6: Maximum intensity projection of a numerically computed confocal
laser scanning PSF (a) along the lateral plane giving the axial plane for a
zero depth, (b) along the lateral plane giving the axial plane for a depth of
4800 nm, (c) along the optical axis giving the radial plane for a zero depth
and (d) along the optical axis giving the radial plane for a depth of 4800 nm.
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4.2.2 Object estimation

We test the proposed restoration algorithm on the simulated micro-sphere
image. For the approximate observation model, we consider two PSF gen-
erated at the bead positions, using the Stokseth PSF model (see (Stokseth
[1969], Pankajakshan et al. [2009])). That is to say, the �rst PSF was gener-
ated at a depth of 1440 nm and the second one was generated at a depth of
3360 nm. We thus split the image volume into two overlapping sub-volumes
with a recovery rate about 33% of the sub-image volume. As it is described
in the second section of this report, the boundary e�ects are controlled by
weighting functions varying along the z-axis. They were chosen as the plots
exposed in Fig. 2. We considered likewise this splitting in the restoration
algorithm. The regularizing parameter was set to � = 10�4. The algorithm
contributes to the restored image whose axial slice is depicted in Fig. 7(c).
To see the contribution of the proposed restoration method, we also present
in Fig. 7(d) the result of deconvolution with a space-invariant PSF using
method described in (Fornasier et al. [2009]). In order to clearly see the ad-
vantage of the proposed restoration method, we show in Fig. 8 the plots of
the intensity pro�les along the optical axis passing through the bead center.
The red curve corresponds to the intensity pro�le of the original object, the
green curve corresponds to the observation intensity pro�le, the blue curve
corresponds to the restored object with space non-invariance approach and
the discontinuous black curve shows the intensity pro�le of a restored object
with the space-invariance assumption.
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(a) (b)

(c) (d)

Figure 7: (a) Axial slice of the simulated 3D image of two micro-spheres,
the �rst micro-sphere is situated at a depth of 1440 nm and the second one is
situated at a depth of 3360 nm, (b) axial slice of the observation blurred with
a depth-variant PSF, (c) axial slice of the restored object with the proposed
restoration method considering two PSF generated at the bead positions and
(d) axial slice of the restored object with space-invariant PSF generated at
a zero depth.

Figure 8: Intensity pro�les along the optical axis passing through the center
of the micro-spheres. The red plot corresponds to the original object, the
green plot corresponds to the blurred object, the blue plot corresponds to
the restored object with the space-variant restoration approach and the dis-
continuous black plot corresponds to the restored object with space-varying
PSF.
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5 Conclusion

In this report, we presented a restoration method for spatially-variant blurred
images. We considered a block constant PSF model. In this modeling, block-
ing artifacts are managed thanks to an overlapping domain decomposition
strategy as well as the introduction of appropriate transition functions. Fur-
thermore, object estimation within a framework of the considered space-
varying PSF was achieved by minimizing a quadratic functional including a
total variation regularization. For that matter, we extended an optimization
method based on an overlapping domain decomposition technique to the case
of space-varying PSF. Computational time is thus reduced by performing a
parallel processing on di�erent areas of the image at the same time. The
convergence of the proposed method when using a space-varying PSF model
was also proved thanks to certain constraints on the considered transition
functions. In fact, the proposed algorithm works for any convex combination
of stationary convolution operators and thus avoids the fastidious computa-
tion in the spatial domain when �ltering with space-varying �lter. Indeed,
in the proposed blur modeling, stationary convolutions can be rapidly com-
puted in the Fourier domain and then combined together using space-varying
weighting functions. Numerical experiments show the e�ciency of the pro-
posed restoration method and the potential interest of the space-varying PSF
model. Besides, we should emphasis that the accuracy of the restored im-
age is highly dependent on the choice of a convenient domain decomposition
considered in the observation model. In fact, in each sub-domain where
the blur-variation could be considered as insigni�cant, we consider a single
approximate PSF. Automatic domain decomposition can be obtained by tol-
erating certain variation rate of the PSF within a given region, as it was
previously proposed in (Maalouf [2010]). In that method, a correlation coef-
�cient between a reference PSF and each of the PSF measured at di�erent
points, was computed in order to measure the PSF variation rate and then
used to de�ne PSF positions.

Several directions could extend the presented work. In fact, in our decon-
volution procedure, we interested in minimizing a criterion including a data
term computed as a quadratic error between the actual acquisition and the
observation according to the considered model. This data term corresponds
perfectly to an additive Gaussian noise context. However, if we deal with a
multiplicative noisy image (e.g. Poisson noise), the energy function cannot
be written in a surrogate function form (see (10)). Hence, it could be in-
teresting to �t the proposed restoration method to the multiplicative noise
case. Moreover, in the presented deconvolution method, we considered only
one regularizing term which corresponds to total variation. It could be inter-
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esting to incorporate other regularizing terms such as wavelet regularization
mainly to avoid the staircase artifacts introduced by total variation. In that
case, one should study the splitting of the regularizing criterion as it was
previously done in (Fornasier et al. [2009]) for the total variation term. To
conclude, blind restoration in the context of the space-varying PSF model is
still an open issue.
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