J. Bardsley, S. Jeeries, J. Nagy, and R. Plemmons, A computational method for the restoration of images with an unknown, spatially-varying blur, Optics Express, vol.14, issue.5, p.17671782, 2006.
DOI : 10.1364/OE.14.001767

H. H. Bauschke, J. M. Borwein, and A. S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, Recent developments in optimization theory and nonlinear analysis
DOI : 10.1090/conm/204/02620

J. Bect, L. Blanc-féraud, G. Aubert, and A. Chambolle, A l1-unied variational framework for image restoration, p.113, 2004.

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, vol.20, issue.1, p.8997, 2004.

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, vol.76, issue.2, p.167188, 1997.
DOI : 10.1007/s002110050258

I. Daubechies, M. Defrise, and C. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.58, issue.11, p.14131457, 2004.
DOI : 10.1002/cpa.20042

G. Demoment, Image reconstruction and restoration: overview of common estimation structures and problems, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.37, issue.12, p.20242036, 1989.
DOI : 10.1109/29.45551

M. A. Figueiredo and R. D. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Transactions on Image Processing, vol.12, issue.8, pp.906-916, 2003.
DOI : 10.1109/TIP.2003.814255

M. Fornasier and C. B. Schönlieb, Subspace Correction Methods for Total Variation and $\ell_1$-Minimization, SIAM Journal on Numerical Analysis, vol.47, issue.5, p.3397, 2009.
DOI : 10.1137/070710779

URL : http://arxiv.org/abs/0712.2258

M. Fornasier, A. Langer, and C. B. Schönlieb, A convergent overlapping domain decomposition method for total variation minimization, Numerische Mathematik, vol.31, issue.3, p.141, 2009.
DOI : 10.1007/s00211-010-0314-7

N. Hajlaoui, C. Chaux, G. Perrin, F. Falzon, and A. Benazza-benyahia, Satellite image restoration in the context of a spatially varying point spread function, Journal of the Optical Society of America A, vol.27, issue.6, pp.14731481-1520, 2010.
DOI : 10.1364/JOSAA.27.001473

URL : https://hal.archives-ouvertes.fr/hal-00714260

S. Inoué, Foundations of confocal scanned imaging in light microscopy. Handbook of biological confocal microscopy, p.119, 2006.

E. Maalouf, Contribution to uorescence microscopy, 3d thick samples deconvolution and depth-variant psf, 2010.

M. Minsky, Memoir on inventing the confocal microscope, Scanning, vol.10, p.128138, 1988.

J. G. Nagy and D. P. Leary, Restoring Images Degraded by Spatially Variant Blur, SIAM Journal on Scientific Computing, vol.19, issue.4, p.10631082, 1998.
DOI : 10.1137/S106482759528507X

J. G. Nagy, R. J. Plemmons, and T. C. Torgersen, Iterative image restoration using approximate inverse preconditioning, IEEE Transactions on Image Processing, vol.5, issue.7, p.11511162, 1996.
DOI : 10.1109/83.502394

P. Pankajakshan, B. Zhang, L. Blanc-féraud, Z. Kam, J. C. Olivo-marin et al., Blind deconvoltion for thin layered confocal imaging, Applied Optics, issue.22, p.4844374448, 2009.
DOI : 10.1364/ao.48.004437

URL : https://hal.inria.fr/inria-00395523/file/AppliedOpticsPaperTypesetting.pdf

J. B. Pawley, Fundamental limits in confocal microscopy. Handbook of Biological Confocal Microscopy, p.42, 2006.

W. K. Pratt, Generalized wiener ltering computation techniques, EEE Transactions on Computers, p.636641, 1972.
DOI : 10.1109/t-c.1972.223567

C. Preza and J. A. Conchello, Depth-variant maximum-likelihood restoration for three-dimensional uorescence microscopy, JOSA A, vol.21, issue.9, p.15931601, 2004.
DOI : 10.1364/josaa.21.001593

L. I. Rudin and S. Osher, Total variation based image restoration with free local constraints, Proceedings of 1st International Conference on Image Processing, p.3135, 1994.
DOI : 10.1109/ICIP.1994.413269

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, p.259268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

J. W. Shaevitz and D. A. Fletcher, Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function, Journal of the Optical Society of America A, vol.24, issue.9, p.26222627, 2007.
DOI : 10.1364/JOSAA.24.002622

P. A. Stokseth, Properties of a Defocused Optical System*, Journal of the Optical Society of America, vol.59, issue.10, p.13141321, 1969.
DOI : 10.1364/JOSA.59.001314

H. K. Sung and H. M. Choi, Nonlinear restoration of spatially varying blurred images using self-organizing neural network, IEEE International Conference on Acoustics, Speech, and Signal Processing, pp.1097-1100, 1998.