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Abstract: Image classification is a challenging problem due to intra-class appearance
variation, background clutter, occlusion, and photometric variability. Current state-of-
the-art methods do not explicitly handle background clutter, but rely on global image
representations, such as bag-of-word (BoW) models. Multiple-instance learning has
been used to explicitly deal with clutter, classifying an image positively as soon as at
least one image region is classified positively. In this paper, we propose a more robust
latent-SVM model that, unlike multiple-instance learning, does not rely on a single
image region to trigger a positive image classification. Rather, our model scores an im-
ages using all regions, and associates with each region a latent variable that indicates
whether the region represents the object of interest or its background. Background
and foreground regions are each scored by a different appearance model, and an ad-
ditional term in the score function ensures that neighboring regions tend to take the
same background/foreground label. We learn the parameters of our latent SVM model
using an iterative procedure that alternates between inferring the latent variables, and
updating the parameters. We compare the performance of our approach on the PAS-
CAL VOC’07 dataset to that of SVMs trained on global BoW representations, and
to a multiple-instance SVM trained on BoW representations of image regions. We
show that our approach outperforms multiple-instance learning by a large margin on
all classes, and outperforms global BoW models in 17 out of the 20 classes.

Key-words: image categorization, segmentation, structured support vector machines,
inference
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1 Introduction and motivation

The goal of image classification is to assign a label to an image based on the presence
of certain objects in the image. This is a challenging task due to intra-class variations in
category appearance. For example, the class car contains many different types of cars,
or in the case of deformable objects such as animals there is a large variation in poses.
Additional appearance variations are caused by occlusions, and photometric variability
due to changes in viewpoint and lighting. Image representations such as bag-of-visual-
words [3], or variants based on Fisher kernels [19], have been shown to yield good
performance on many challenging classification tasks. These representations aggregate
the quantized image patches into a vector that represents the complete image content,
e.g . a frequency histogram of visual words. In the aggregation process the regions
are treated as an orderless set, and hence all spatial information from the image is
disregarded. In an attempt to overcome this limitation, several approaches that extend
the orderless representations have been proposed. Examples include the use of spatial
pyramids over the image [15], or the use of attention maps to suppress background
clutter [12]. However, typically these techniques are used as a pre-processing step
and classify images using their global representation without attempting to combine
classification with background clutter suppression explicitly.

Region-based image representations have been used frequently in the context of
image annotation [2, 6, 26, 27, 28]. These approaches first segment the image into a
number of regions, and then predict the labels for the individual regions. The images
are then labeled with the union of the labels assigned to the regions, i.e . the problem
is essentially treated as a multiple instance learning problem [5]. Since individual
regions are classified (instead of the complete image), the clutter problem is less severe,
provided that the segments correspond to object and background parts in the image. For
the training images the correspondence between regions and image labels is not given,
and is therefore automatically inferred. Recent part-based object detectors [9, 22] also
use non-global representations, associating different subwindows of a candidate object
detection window to different parts of the model. Also in this case the training data
does not provide the part locations of the objects. Therefore, the part locations have to
be inferred by the model both at testing and training time.

In this paper we propose a new region-based image classification approach, that
differs from the related work mentioned above as follows. We use a fixed set of N im-
age segments, and each segment is assigned to either “selected” or “de-selected” state,
which, therefore, results in 2N possible image region configurations. Like in multi-
ple instance learning, the classification score of an image is obtained by finding the
highest scoring configuration over all of the 2N configurations of the regions. Unlike
the multiple instance approach, we use both, “selected” and “de-selected” segments
in order to compute a score for the image. This is similar to the part-based detectors,
where two parts can be thought of as “figure” and “ground”. Instead of using rect-
angular subwindows for our “parts”, each of the image segments is either assigned to
“figure” or to “ground”. With each region we associate a binary latent variable indi-
cating whether we include it for “figure” or “ground”. The classification score of an
image is then obtained by taking the maximum score over all possible assignment of
the latent variables. For the training images we assume that only an image-level label
is available. We train our models using an iterative two-stage procedure reminiscent
of the Expectation Maximization algorithm. In the first step, we efficiently determine
the latent variable configuration that yields the maximum score. In the second step, we
update the model parameters using SVM training procedures.
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With experiments on the challenging PASCAL 2007 data set we evaluate our ap-
proach, and compare it to a baseline using SVMs trained on image-level bag-of-visual-
words representations as well as multiple instance SVM. Our results show that our
model improves mean average precision (mAP) for all classes as compared to multiple-
instance learning, and on 17 of the 20 classes as compared to the global bag-of-words
baseline.

2 Related work

In this section we describe related work in image annotation, multiple-instance learn-
ing, and part-based models for object detection. We highlight the similarity between
these in terms of the resulting optimization problems.

For image annotation both generative [2, 6] and discriminative [26, 27, 28] region-
based models have been proposed. The idea to segment the image into a number of
regions, and to associate the image labels with these regions is particularly appealing
in the case of multi-label problems where each image can carry a number of labels,
e.g . indicating the presence of several object categories. Typically, the training images
are only labeled at an image level, and the correspondence between labels and regions
therefore has to be established automatically by the training procedure. Generative
models define a joint distribution over visual features extracted from the regions and
the image labels. For example, [2] uses topic models, where each topic represents a
Gaussian distribution over visual features and a multinomial distribution over image
labels.

In discriminative models, e.g . [26, 27, 28], multiple instance learning has been
used. Multiple instance learning [5] is a learning paradigm where the training data
examples come in “bags” of instances, and labels are provided at the bag-level with no
knowledge about instance-level labels. Negative bags contain only negative instances,
while positive bags contain at least one positive instance (however it is not known
which one(s)). This framework applies very naturally to image classification, where
various regions of an image segmentation are modeled as the instances in the bag. An
image is then labeled positively if at least one of the image regions contain the object
of interest.

Both generative and discriminative region-based methods have been trained us-
ing iterative procedures that alternate between updating the model parameters, and
inferring the associations between segments and labels. Performance of such methods
clearly depends on the quality of the image segmentation, i.e . to which extent the image
segments corresponds to objects in the scene. Increasing the number of segments by us-
ing multiple image segmentations has been used to increase the chances of having good
segments, e.g . by varying the parameters of the segmentation algorithm [21]. In [17]
the set regions was defined as the set of all rectangular sub-windows of an image, in
combination with linear classifiers over bag-of-words appearance representations. In
order to efficiently infer the region which is most likely to be positively classified they
used a branch-and-bound technique [14].

Recent state-of-the-art part-based object detectors also have relied on region-based
representations [9, 22]. In this case the objects have been modeled as a constellation
of parts. In addition to scoring the appearance of the parts, their spatial constella-
tion has been also taken into account by the scoring function. The training data is
weakly-labeled in that no parts information (such as their location) is known, and only
bounding boxes for the object instances are given. These models have been learned

RR n° 7665



Region-Based Image Classification with a Latent SVM Model 5

by iterative techniques, that alternate an inference step in which regions of the object
window are associated with the parts, and updating the models given part locations.

In essence, the same optimization problem is solved in (i) the multiple instance
learning technique [1], (ii) the image classification model of [17], and (iii) the part-
based detector of [9]. In each case a latent variable z indexes either (i) instances in
the bag, (ii) sub-windows of an image, or (iii) part locations of an object. The object
x (a bag of instances, an image, or a potential object bounding-box) is then scored by
the taking the maximum over the latent variable z of a score that is computed from the
features that depend on both x and z. Therefore, negative examples (bags, images, or
object windows) should score low for all possible z to ensure negative classification,
while for positive examples it suffices that one value of z scores high enough to trigger
a positive classification.

Our model also fits in this framework and is trained with similar optimization tech-
niques. As compared to [9], we apply our model to image classification instead of
object detection, and instead of localized parts we use “distributed parts” composed of
all image regions that are in the same state. As compared to [17], we use all image
regions to score the image, not just the part of the image in a sub-window. By separat-
ing the image into a “figure” and “ground” regions, we can score both an object and its
context and use different score functions for them when appropriate.

3 Region-based latent SVM image classification

In this section we describe in detail our region-based latent SVM image classification
model. We first describe the model in Section 3.1, and in Section 3.2 we discuss how
to learn the model from labeled training images. Finally, in Section 3.3, we show how
to efficiently infer the latent variables during learning and to classify new images.

3.1 Feature function

Our model is based on learning weights in order to assign different scores for differ-
ent regions of an image, depending on whether regions are considered as “figure” or
“ground” by the model. For example in object classification, we would like to use
different functions to score the object and the context in which it appears. Therefore,
we segment an image into a set of N regions denoted X = {x1, . . . , xN}. The seg-
mentation can be obtained by partitioning the image using a rectangular grid, or using
a segmentation algorithm such as normalized cuts [23], or super-pixels [20]. We use
xn ∈ RD to denote a feature vector describing the appearance, and possibly shape,
of the n-th region, e.g . such as a bag-of-word histogram over quantized SIFT descrip-
tors [16], or color histograms.

Throughout this paper we consider a binary classification task, and our goal is to
learn a score function that is predictive for the presence of an object category in an
image. We associate a latent variable zi with each segment xi, and denote the set of
latent variables as Z = {z1, . . . , zN}. The value of zi ∈ {1, . . . ,K} indicates how
the segment will be scored. While the model is defined for general K ≥ 2, in our
experiments we will focus on binary latent variables with K = 2. In this case we
can interpret the state of zi as indicating whether the segment is treated as figure or
ground. The variables zi are latent in the sense that their value is not observed, neither
for training images, nor for test images that need to be classified.
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We useG = (V,E) to denote a graph defined over the set of regionsX such that the
vertices in V corresponds to the regions xi, and each edge (i, j) ∈ E ⊆ V ×V connects
two regions xi and xj . In the case of segmentation by means of a regular grid we can
use a 4-connected neighborhood, or when using a general segmentation algorithm we
can connect all segments that share a boundary. Given a particular assignment of the
latent variables we then define a scoring function of the image as a sum of unary and
pairwise terms:

f(X,Z) =

N
∑

i=1

su(zi, xi) +
∑

(i,j)∈E

sp(zi, zj , xi, xj). (1)

The unary score su(zi, xi) is given by a linear function. The weights for this linear
function are determined by the value of latent variable zi. Using a weight vector wk

associated with each state k ∈ {1, . . . ,K} we define su(zi = k, xi) = w⊤
k xi.

The pairwise terms can implement a preference for spatially contiguous assign-
ments of the latent variables, e.g . such that the figure regions tend to be connected. For
each combination of states the pairwise score is defined by scalar parameter λkl, and is
modulated by a similarity p(xi, xj) between the regions sp(zi = k, zj = l, xi, xj) =
λklp(xi, xj). The term p(xi, xj) has the effect of attenuating the pairwise cost when the
regions are very dissimilar, and it can for example be defined using a distance between
xi and xj .

In order to clarify the linear dependence of the score function on the parameters,
we rewrite Eq. (1) as

f(X,Z) =
K

∑

k=1

w⊤
k

∑

i:zi=k

xi +

K
∑

k,l=1

λkl

∑

(i,j)∈E

p(xi, xj)[[zi = k, zj = l]] (2)

= β⊤Φ(X,Z), (3)

where [[·]] denotes the indicator function of its argument. The vector β is formed by
concatenating all weight vectors wk, and the pairwise parameters λkl. The feature
function Φ(X,Z) = [φ(X,Z), ψ(X,Z)] concatenates representations for the unary
and pairwise terms. The first term of Φ(X,Z) is obtained by concatenating sums over
features of regions that are assigned to same latent state k ∈ {1, . . . ,K}, i.e .

φ(X,Z) =

[

∑

i:zi=1

xi, . . . ,
∑

i:zi=K

xi

]

. (4)

The second term of vector Φ(X,Z) is obtained by concatenating sums of pairwise
similarities over edges, i.e . each entry corresponds to a combination of latent states
(k, l) and contains

ψ(X,Z) = [. . .
∑

i: zi=k

∑

j: zj=l

p(xi, xj) . . . ]. (5)

Now that we have defined the score function for an image X and a particular as-
signment of the latent variables Z, we define the score function for an image as the
maximum over the scores obtained over all possible values of the latent variables:

f(X) = max
Z

f(X,Z). (6)
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We use the sign of the score function to classify the image, i.e . y = sign(f(X)) ∈
{−1,+1}. Thus, an image will be classified positively if at least one setting of the
latent variables leads to a positive score.

3.2 Learning algorithm

To learn the model parameter vector β for a given class we follow the latent SVM
framework as used in [1, 9, 17]. The learning objective is the same as defined for
classical SVM training [25]: we minimize the trade-off between the hinge loss on the
training images, and the ℓ2 regularization term:

min
β

1

2
β⊤β + C

M
∑

m=1

max (0, 1 − ymfβ(Xm)) , (7)

where ym denotes the class labels of the m-th training image Xm. The optimization
problem can be equivalently written as

min
β,ξm≥0

1

2
β⊤β + C

M
∑

m=1

ξm (8)

s.t. ∃Z fβ(Xm, Z) ≥ +1 − ξm, if ym = +1 (9)

∀Z fβ(Xm, Z) ≤ −1 + ξm, if ym = −1 (10)

For positive examples, we require that there exists at least one configuration of the la-
tent variables which results in predicting the positive label. For the negative examples,
however, no assignment of the latent variables should result in positive prediction, i.e .
every possible assignment of latent variables should result in negative prediction. This
is a semi-convex optimization problem in the sense that the loss function is convex for
negative examples (corresponding to a conjunction of linear constraints), however is
not convex for positive examples (corresponding to a disjunction of linear constraints).

The model parameters β are learned using an iterative algorithm similar to Expec-
tation Maximization [4]. In the first (expectation) step, for fixed parameters β, the
latent variables of the positive examples are set to Zm = arg maxZ fβ(Xm, Z). In the
second (maximization) step, we solve the optimization problem to find the best model
parameters β, replacing the constraint in Eq. (9) with the stronger constraint

fβ(Xm, Zm) ≥ +1 − ξm, if ym = +1. (11)

The new optimization problem, using fixed Zm, is convex. In our implementation we
use LIBLINEAR [8] to solve the convex sub-problem, but any other solver could be
used, e.g . stochastic gradient descent as in [9].

In the convex sub-problem, there is a single constraint for each positive exam-
ple. For negative examples, however, the number of constraints is exponential since
Z ∈ {1, . . . ,K}N . In order to handle the exponential number of constraints we use
the cutting plane algorithm [11], in a similar way as it is used in structured output
prediction models [24]. The cutting plane method solves the problem by maintain-
ing a working set of active constraints. The optimization problem is solved under the
constraints in the working set, and then the constraints outside of the working set are
checked. If all constraints are satisfied, then the original problem has been solved. If
not, the most violated constraint(s) are added to the working set and the procedure is
repeated.
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The final training algorithm that we use integrates the cutting plane method to han-
dle the negative examples, and re-estimating the latent variable for the positive exam-
ples. We initialize the working set of constraints with a single setting of the latent
variable for all images. We then solve for β given the constraints in the working set.
For the current value of β we find for each example the highest scoring latent vari-
able assignment Zm = arg maxZ fβ(Xm, Z). For positive examples, the correspond-
ing constraint in the working set is replaced with Eq. (11). For negative examples, if
fβ(Xm, Zm) ≤ −1 + ξm, is violated, then Zm is used to add an additional constraint
to the working set, otherwise nothing is done.

Note that the working set contains a single constraint for each positive image, while
the number of constraints for negative images grows over the iterations. In order to
limit memory requirements and to speed-up the learning procedure, it is advantageous
to remove negative constraints from the working set that have been inactive for a num-
ber of iterations [9].

3.3 Inference over the latent variables

What remains to be done is to compute for each image the assignment of the latent
variables Zm that maximizes the score function: Zm = arg maxZ fβ(Xm, Z). In gen-
eral, this optimization problem is an intractable NP-hard problem, and can for example
be approximated by using iterative conditional modes, or loopy belief propagation. In
our work, we use submodular pairwise scores, and the number states of each latent
variable is K = 2. In this case the exact solution can be found in polynomial time
using graph-cuts [13]. To ensure submodularity, we constrain λkk = 0, and λkl ≤ 0
for k 6= l.

4 Experimental validation

We first describe our experimental setup in Section 4.1, and the experimental results in
Section 4.2.

4.1 Experimental setup

Data set. The PASCAL VOC data sets have become the defacto standard to eval-
uate image classification experiments. The main challenge of these data sets is the
wide variety of object categories, as well as the significant intra-class variation due to
changes in scale, color, position of the objects, background clutter, partial visibility,
and inclusion of deformable objects such as people and animals. We use the publicly
available PASCAL VOC 2007 dataset [7] that consists of a total of 9,963 images in 20
categories. The data set is split into fixed training/validation (5011 images) and test
sets (4952 images).

To evaluate the performance of the classifiers we use average precision (AP), which
is defined as the average of precisions computed at the point of each of the relevant
documents in the sequence of images ranked by decreasing classification score. The
mean average precision is the mean of the AP computed for each class.

Segmentation. We experimented with several segmentation methods. The first method
was a naive naive segmentation approach, cutting the image into 5×5 non-overlapping
rectangles. The second approach was using normalized cuts [23] with 16 segments.
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aeroplane bicycle bird boat bottle bus car

BoW-SVM 68.3 39.1 33.2 59.0 14.2 34.2 64.0

miSVM 25.4 24.2 13.5 35.8 8.2 15.4 47.7

RBLSVM 66.9 43.3 32.4 59.5 16.0 39.2 68.9

RBLSVM (v) 67.7 41.4 34.8 59.4 16.3 39.3 68.7

cat chair cow d.table dog horse motorbike

BoW-SVM 37.7 36.7 28.7 24.9 32.4 59.8 39.9

miSVM 26.6 21.2 12.3 10.1 20.9 42.4 18.5

RBLSVM 38.0 38.5 27.7 27.6 31.7 66.7 45.8

RBLSVM (v) 37.3 39.5 29.5 28.7 31.1 64.7 43.8

person p.plant sheep sofa train tvmonitor mean AP

BoW-SVM 73.3 11.6 30.7 25.6 58.4 32.6 40.2

miSVM 65.9 7.6 9.3 12.8 29.2 16.5 23.2

RBLSVM 77.0 12.5 28.8 28.5 61.1 35.0 42.3

RBLSVM (v) 76.8 13.3 25.6 29.7 61.8 34.5 42.2

Table 1: Average precision (AP) for global bag-of-words SVM, region-based miSVM,
and our region-based latent SVM models. Last column gives the mean AP over all
classes.

Surprisingly, both segmentations produced similar performance, and thus in the re-
mainder of the paper we use the simple grid segmentation since it is performed trivially.
We use a 4-neighborhood to connect the regions in a graph.

Feature extraction. We use bag-of-visual-word representations based on quantized
SIFT descriptors [16]. From each image we sampled 1000 SIFT features computed at
random locations and scales, and we learned a codebook of W = 1000 visual words
using k-means. Furthermore, we apply power-normalization to each histogram [19] by
taking the square-root of the visual word histogram entries.

Pairwise potentials. Given an edge (i, j) ∈ E in the graph we compute a pairwise
similarity p(xi, xj) as proposed in [10] given by p(xi, xj) = 1

1+‖xi−xj‖
where xi and

xj are LUV color histograms from regions i and j respectively, and ‖·‖ is the ℓ2-norm.

4.2 Experimental results

We now proceed to compare our region-based latent SVM (RBLSVM) with two base-
line approaches. The first is a (linear) SVM trained on bag-of-visual-words extracted
from the entire image (BoW-SVM). The second is an SVM trained with the multiple
instance learning method of [1] using each image as a bag that contains the 5 × 5
regions as instances (miSVM). For all models we use the validation set to set the reg-
ularization parameter C. The models are then retrained on the union of training and
validation sets with the selected regularization parameter. We use the baseline BoW-
SVM model trained on global image histograms to initialize the latent variables for
the latent SVM model. The regions, in both positive and negative images, are then
initialized by the class predicted for that region using the baseline BoW-SVM. We also
include a variant of our model, RBLSVM (v), where we set the pairwise parameter
using cross-validation, see below.
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Bus Car

Bicycle Motorbike

Sheep Bird

Figure 1: Examples of region classification by miSVM (left), and our RBLSVM (right).
For visualization purposes, regions labeled as negative are marked by a transparent
white mask.

The per-category AP and over-all performance of the four models we evaluated is
reported in Table 1. First of all, it is striking that using miSVM we obtain results that
are well below those obtained with the other models. This is probably due to the fact
that miSVM scores the image based on the features of a single region, and therefore
can not use the complete image content for classification.

Our RBLSVM improves the baseline BoW-SVM results by approximately 2%
mAP, from 40.2% to 42.3%. This may appear as a small improvement, however if
we take a closer look at the per-category performance we see that RBLSVM model
outperforms the baseline BoW-SVM on 17 out of 20 categories. Categories of vehicles
appearing in urban street scenes, bicycle, bus, car, motorbike, standout by particularly
large improvements. This might be explained by the fact that images of these classes
are easily be confused by SVMs based on image-wide bag-of-word histograms, since
the global scene layout is similar for these categories. In this case the RBLSVM model
can bring improvements by scoring differently the object itself and its scene context.
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In Figure 1 we show the region assignments obtained using our RBLSVM model
for two images of several classes. In the same figure we also show the region classi-
fication as produced by miSVM. For the latter we see that most regions are classified
negatively, which could be due to the fact that miSVM learns the model under the
assumption that only a single region is responsible for a positive class label. Conse-
quently it finds solutions in which many regions score poorly and get classified nega-
tively, and only a few regions get classified positively. Our RBLSVM model, on the
other hand, generally does select the object regions in a more-or-less consistent man-
ner, except perhaps for the bird category; for this class our model also performs worse
than the baseline SVM.

When we examined the learned pairwise parameters λkl we found that the learned
values are so small that they bring a negligible contribution to the total score function.
Since the learning algorithm is not guaranteed to find the globally optimal parameters,
we performed an additional experiment where we set the λkl by maximizing mAP
on the validation set. The results obtained in this manner are indicated in Table 1 by
RBLSVM (v). Perhaps surprisingly, setting the λkl using the validation set does not
significantly change overall performance, but it does change for some of the classes.

5 Conclusion

We have presented a new region-based image classification approach that automatically
decomposes images into parts that play a different role in the classification process,
e.g . corresponding to an object of interest and its context. The model is trained in
a weakly-supervised manner, i.e . without requiring that objects in training images are
localized by bounding boxes or otherwise. The optimization problem to learn the model
parameters is formulated as a latent SVM problem, which we solve using an EM-
like procedure that combines an efficient solution to assign the latent variables and a
cutting plane technique to efficiently handle the exponential number of constraints. We
show that the proposed model outperforms a bag-of-visual-words SVM baseline on
the challenging PASCAL VOC’07 data set. We also compare to a multiple instance
SVM learning approach using the same image regions and features, which leads to
much poorer results. This demonstrates the benefits of combining regions as done in
our model, instead of selecting a single region to score the image as done in multiple
instance learning, or using global bag-of-words image representations.

Several extensions to the proposed model can be envisioned. First, in our experi-
ments we have used binary latent variables. An extension to latent variables with more
states enriches the model, but also renders exact inference intractable. It is therefore
unclear whether the advantage of more states outweighs the errors introduced in the
inference. Second, in this work we used linear classifiers, since this requires storage
requirement linear in the number of regions. This formulation allows us to use fast
SVM solvers that solve the optimization problem in the primal. It is interesting to ex-
tend this approach to using non-linear kernels, which are known to yield better classi-
fication performance. Alternatively, (approximate) explicit embeddings of the induced
feature spaces of non-linear kernels can be used to maintain tractable space and time
requirements. Yet another option would be to use Fisher kernel image representation
[18] which are also known to yield excellent performance when combined with linear
classifiers.
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