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Abstract. Magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) allow functional brain imaging with high temporal resolu-
tion. While time-frequency analysis is often used in the field, it is not
commonly employed in the context of the ill-posed inverse problem that
maps the MEG and EEG measurements to the source space in the brain.
In this work, we detail how convex structured sparsity can be exploited
to achieve a principled and more accurate functional imaging approach.
Importantly, time-frequency dictionaries can capture the non-stationary
nature of brain signals and state-of-the-art convex optimization proce-
dures based on proximal operators allow the derivation of a fast estima-
tion algorithm. We compare the accuracy of our new method to recently
proposed inverse solvers with help of simulations and analysis of real
MEG data.

1 Introduction

Distributed source models in magnetoencephalography and electroencephalog-
raphy (collectively M/EEG) use the individual anatomy derived from high-
resolution anatomical Magnetic Resonance Images (MRI). They employ a dense
grid of current dipoles on the automatically segmented cortical surface. Following
Maxwell’s equations, each dipole adds its contribution linearly to the measured
signal leading to a linear solution to the forward problem.

However, the number of sources by far exceeds the number of M/EEG sen-
sors, making the inverse problem ill-posed. Therefore, constraints using a priori
knowledge based on the properties of real sources are necessary. Common priors
are based on the Frobenius norm. More recently, sparsity-inducing priors such
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as the ℓ1 norm have been introduced to take into account the assumption that
only a few brain regions are typically active during a cognitive task.

While wavelet decompositions and time-frequency (TF) analysis are com-
monly computed from M/EEG data to exhibit transient oscillatory signals, the
characteristics of such decompositions are rarely employed as a prior to regular-
ize the inverse problem.

In this contribution, we propose to use both of these a priori assumptions
within the framework of the inverse problem, making the TF analysis on the
sensors optional. To do so, we propose to use a structured prior based on the
ℓ21 mixed-norm combined with a simple ℓ1 norm. The prior is imposed on the
coefficients of the TF decompositions using Gabor dictionaries.

Notation We indicate vectors with bold letters, a ∈ R
N (resp. C

N ) and
matrices with capital bold letters, A ∈ R

N×N (resp. CN×N ). a[i] stands for
the ith entry in the vector. We denote ‖A‖Fro the Frobenius norm, ‖A‖2Fro =
∑N

i,j=1 |Aij |
2, ‖A‖1 =

∑N
i,j=1 |Aij | the ℓ1 norm, and ‖A‖21 =

∑N
i=1

√

∑N
j=1 |Aij |2

the ℓ21 mixed norm. AT and AH denote a matrix transpose and a Hermitian
transpose, respectively.

The inverse problem with time-frequency dictionaries Given a linear
forward operator G ∈ R

N×P , also called lead field matrix or gain matrix, where
N is the number of sensors and P the number of sources, the measurements
M ∈ R

N×T (T number of time instants) are related to the source amplitudes
X ∈ R

P×T by M = GX .
Solving the forward problem consists of computing G taking into account the

electromagnetic properties of the head [11, 10], whereas in the inverse problem
one computes a best estimate of the neural currents X⋆ based on the measure-
mentsM. However, to accomplish this task, priors need to be imposed onX. The
most conventional prior assumes that its weighted ℓ2 (Frobenius) norm is small.
This corresponds to the family of Minimum-Norm (MN) inverse solvers [11,
3]. Several alternative solvers based on ℓp norms with p < 2 have been also
proposed. With p ≤ 1, such priors promote sparse solutions [17, 9]. Such priors
however work on an instant by instant basis disregarding the oscillatory and non-
stationary nature of electromagnetic brain signals. For this reason such solvers
are usually employed following band-pass filtering of the data.

Beyond single instant solvers, various sparsity-promoting approaches have
been proposed [20, 7, 26]. Although, they manage to capture the time courses
of the activations, they implicitly assume that all active sources have non-zero
activations throughout the analysis period. To go beyond this approach, we
propose a solver where the sparsity of source configurations is promoted, but
also where the time course of each active dipole is a linear combination of a few
Gabor atoms. Our model can thus be expressed as:

M = GX+E = GZΦH +E , (1)

where ΦH ∈ C
K×T is a dictionary of K Gabor atoms, Z ∈ C

P×K are the coeffi-
cients of the decomposition, and E is additive white noise, E ∼ N (0, λI). Note
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Fig. 1. Sparsity patterns promoted by the different priors (ℓ2 no non-zero, ℓ1 scattered
and unstructured non-zero, ℓ21 block row structure, ℓ21 + ℓ1 block row structure with
intra-row sparsity). Red indicates non-zero coefficients.

that this last assumption can be justified for M/EEG data as it is possible to
estimate the noise covariance matrix from pre-stimulation recordings and spa-
tially whiten the data. Given a prior on Z, P(Z) ∼ exp(−Ω(Z)), the maximum
a posteriori estimate (MAP) is obtained by solving:

Z⋆ = argmin
Z

1

2
‖M−GZΦH‖2Fro + λΩ(Z) , λ > 0 . (2)

If we consider Ω(Z) = ‖Z‖1, (2) corresponds to a Lasso problem [23], also called
Minimum Current Estimate (MCE) in the M/EEG literature [17], where features
(or regressors) are spatio-temporal atoms. Similarly to the original formulation
of MCE (i.e., with no Φ), such a prior is likely to suffer from inconsistencies
over time [20]. Indeed such a norm does not impose a structure for the non-zero
coefficients, that are likely to be scattered all over Z⋆ (see Fig. 1). Therefore,
simple ℓ1 priors do not guarantee that only a few sources are active during the
time window of interest. To promote this, one needs to employ mixed-norms
such as the ℓ21 norm [20]. By doing so, the estimates have a sparse row structure
(see Fig. 1). However the ℓ21 prior on Z does not produce denoised time series
as it does not promote source estimates that are formed by a sum of a few
Gabor atoms. In order to recover the sparse row structure, while simultaneously
promoting sparsity of the decompositions, we propose to use a composite prior
formed by the sum of ℓ21 and ℓ1 norms. The prior then reads:

Ω(Z) = ρ‖Z‖1 + (1− ρ)‖Z‖21 , 0 < ρ < 1 . (3)

Gabor dictionaries Here we briefly present some important properties of Ga-
bor dictionaries (see [4] for more details). Given a signal observed over a time
interval, its conventional Fourier transform estimates the frequency content but
loses the time information. To analyze the evolution of the spectrum with time
and hence the non-stationarity of the signal, Gabor introduced the windowed
Fourier atoms which correspond to a short-time Fourier transform (STFT) with
a gaussian window. In practice, for numerical computation, a challenge is to
properly discretize the continuous STFT. The discrete version of the STFT is
called the Gabor Transform. The setting we are considering is the finite dimen-
sional one. Let g ∈ R

T be a “mother” analysis window. Let f0 ∈ N and k0 ∈ N
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be the frequency and the time sampling rate of the time-frequency plane gener-
ated by the STFT, respectively. The family of the translations and modulations
of the mother window generates a family of Gabor atoms (φmf )mf forming the

dictionary Φ ∈ C
T×K . We denote the number of atoms by K. The atoms can

be written

φmf [n] = g[n−mk0]e
i2πf0fn

T , m ∈ {0, . . . ,
T

k0
− 1}, f ∈ {0, . . . ,

T

f0
− 1} .

If the product f0k0 is small enough, i.e., the time-frequency plane is sufficiently
sampled, the family (φmf )mf is a frame of RT , i.e., one can recover any signal

x ∈ R
T from its Gabor coefficients (〈x,φmf 〉) = ΦHx. For the rest of the paper

we assume that this condition is satisfied.
More precisely, there exists two constants A,B > 0 such that

A‖x‖22 ≤
∑

m,f

〈x,φmf 〉 ≤ B‖x‖22 . (4)

When A = B, the frame is tight, and if A = B = 1 then the frame is an
orthogonal basis. The Balian-Low theorem says that it is impossible to construct
a Gabor frame which is a basis. Consequently, a Gabor transform is redundant
or overcomplete and there exists an infinitely number of ways to reconstruct x
from a given family of Gabor atoms. In the following, Φ is a frame.

The canonical reconstruction of x from its Gabor coefficients requires a
canonical dual window, denoted by g̃. Following (4) to define (φ̃mf )mf we have:

x =
∑

m,f

〈x,φmf 〉φ̃mf =
∑

m,f

〈x, φ̃mf 〉φmf = ΦHxΦ̃ = Φ̃HxΦ ,

where Φ̃ is the Gabor dictionary formed with the dual windows. When the frame
is tight, then we have g̃ = g, and more particularly we have ΦΦH = ‖ΦΦH‖Id8.
The representation being redundant, for any x ∈ R

T one can find a set of
coefficients zmf such that x =

∑

m,f zmfφmf , while the zmf verify some suitable
properties dictated by the application. For example, it is particularly interesting
for M/EEG to find a sparse representation of the signal.

In practice, the Gabor coefficients are computed using the Fast Fourier Trans-
form (FFT). The synthesis operation (and then, the inverse transform with the
appropriate window) is accomplished with the inverse FFT and overlap-add tech-
niques. Such analysis and synthesis operations are efficiently implemented in the
LTFAT Matlab toolbox9 [22].

Related work Time-frequency analysis is commonly used in the context of
M/EEG both in the sensor and source space, but rarely integrated with the so-
lution of the inverse problem. Some earlier contributions, such as [5, 8, 16], apply

8 We can however say nothing about ΦHΦ in general.
9 http://ltfat.sourceforge.net/
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a 2-step approach. First TF atoms are estimated from sensor data, typically
with greedy approaches like Matching Pursuit. Subsequently, the inverse prob-
lem is solved on the selected components using parametric [8], scanning [16] or
distributed methods [5]. Such methods suffer from several limitations. They im-
plicitly assume that the source waveforms correspond to single TF atoms, while
real brain signals are better modeled by a combination of atoms. In addition,
estimation errors made in the first step have a direct impact on the accuracy
of the source estimates. This is a particularly critical issue since the first step
does not take into account the biophysics of the problem, i.e., the solution of
the forward problem.

Spatial sparsity of source configurations has also been a recurrent assumption
to improve the resolution of the M/EEG inverse problem. Recently, priors based
on the ℓ21 mixed-norm have been proposed to achieve rotation invariance [12]
and to recover spatially sparse while temporally smooth solutions [20]. However,
in [20], a part of the temporal smoothness is obtained by filtering the data and by
using temporal basis functions obtained with an SVD. Alternatively, a sparsity-
inducing Bayesian formulation of the inverse problem has been proposed [7,
26]. However, these approaches make the strong assumption that the source
time courses are stationary. For example, the estimation crucially depends on
the time interval considered. Also the solutions obtained by these solvers are
invariant with respect to the permutation of the columns of M, i.e., the temporal
sequence of the data is immaterial.

In [24], an inverse solver that models the transient and non-stationary re-
sponses in M/EEG is proposed. A probabilistic model with wavelet shrinkage
is employed to promote spatially smooth time courses. The estimation however
relies on model approximations with no guarantee on the solution obtained. The
most related work to ours, beyond the field of M/EEG, is probably [18] where
sparsity is also promoted on the TF decompositions. The related optimization
problem, is however solved with a truncated Newton method which only ap-
plies to differentiable problems. The non-differentiability of the cost function is
tackled by using smooth approximation in the minimization. Moreover, Newton
methods are known to be fast in the neighborhood of the solution, but little is
known about the global convergence rate. In [19], it is proved that a suitable
Newton technique has the same rate of convergence as the accelerated first order
schemes like one we are employing below.

In this contribution, we do not address the problem of learning spatial basis
functions such as in [25, 2] as doing so makes the cost function non-convex which
affects the speed of convergence of the algorithm and also makes the solvers
dependent on the initialization.

2 Optimization strategy

The procedure we propose is based on first-order schemes that handle the op-
timization of any cost function F if it can be written as a sum of two terms: 1
smooth convex term f1 with Lipschitz gradient and 1 convex term f2, potentially
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non-differentiable [1]: F(Z) = f1(Z) + f2(Z). The cost function in (2) belongs
to this category. However, we need to be able to compute the proximal operator
associated to f2.

Definition 1 (Proximity operator). Let ϕ : RM → R be a proper convex

function. The proximity operator associated to ϕ, denoted by proxϕ : RM → R
M

reads:

proxϕ(Z) = argmin
V∈RM

1

2
‖Z−V‖22 + ϕ(V) .

In the case of the composite prior in (3), the proximity operator is given by
the following lemma.

Lemma 1 (Proximity operator for ℓ21 + ℓ1). Let Y ∈ C
P×K be indexed by

a double index (p, k). Z = proxλ(ρ‖.‖1+(1−ρ)‖.‖21)(Y) ∈ C
P×K is given for each

coordinates (p, k) by

Zp,k =
Yp,k

|Yp,k|
(|Yp,k| − λρ)

+



1−
λ(1− ρ)

√

∑

k(|Yp,k| − λρ)+2





+

.

where for x ∈ R, (x)+ = max(x, 0) , and by convention 0
0 = 0 .

This result is a corollary of the proximity operator derived for hierarchical
group penalties recently proposed in [15]. The penalty described here can indeed
be seen as a 2-level hierarchical structure, and the resulting proximity operator
reduces to successively applying the ℓ21 proximity operator then the ℓ1 one.

The pseudo code is provided in Algorithm 1. The Lipschitz constant L of the
gradient of the smooth term in (2) is given by the square of the spectral norm
of the linear operator Z → GZΦH. We estimate it with the power iteration
method.

Algorithm 1 FISTA with TF Dictionaries

Input: Measurements M, lead field matrix G, regularization parameter λ > 0 and I

the number of iterations.
Output: Z⋆

1: Auxiliary variables : Y and Zo ∈ R
P×K , and τ and τo ∈ R.

2: Estimate the Lipschitz constant L with the power iteration method.
3: Y = Z⋆ = Z, τ = 1, 0 < µ < L−1

4: for i = 1 to I do

5: Zo = Z⋆

6: Z⋆ = proxµλΩ

(

Y + µGT (M−GYΦH)Φ
)

7: τo = τ

8: τ =
1+

√
1+4τ2

2

9: Y = Z⋆ + τo−1

τ
(Z⋆ − Zo)

10: end for
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Source models with unconstrained orientations When the source orien-
tations given by the normals of the cortical mesh cannot be trusted, it can be
interesting to relax this constraint by placing three orthogonal sources at each
spatial location. However, the TF composite prior also needs to be adapted. As-
suming that each source is indexed by a spatial location i and an orientation
o ∈ {1, 2, 3}, the ℓ1 and ℓ21 norms read:

‖Z‖1 =
∑

ik

√

√

√

√

3
∑

o=1

|Z[(i, o), k]|2 and ‖Z‖21 =
∑

i

√

∑

ko

|Z[(i, o), k]|2 ,

where k indexes the TF coefficients. It amounts to grouping the orientations in
a common ℓ2 norm such as in [20, 12].

Implementation Algorithm 1 requires to compute Gabor transforms at each
iteration which can be computationally demanding. However, due to the ℓ21 spar-
sity inducing prior, only a few rows of Z have non-zeros coefficients. The Gabor
transform is therefore computed for only a limited number of rows, equivalently
a small number of active sources. This makes the computation of YΦH (cf.
Algorithm 1 line 6) much faster.

In order to significantly reduce the computation time of sparse regression
problems, as the one presented here, a common strategy in machine learning is
to use an active-set approach [21]. Intuitively, if one can verify the optimality of
a solution (typically with Karush-Khun-Tucker (KKT) conditions), one can start
by solving a small subproblem and then check if the solution obtained is optimal
for the full problem. In the context of M/EEG, it consists in solving the inverse
problem with a small set of sources, assuming the others have zero activation.
This is particularly interesting when processing real M/EEG data for which P
can be up to 30000, whereas only at most a few hundred sources are likely to be
active. Whereas KKT optimality conditions can be efficiently verified with a ℓ21
penalty, it is not the case anymore with (3). To limit the computation time, we
propose to address the problem in two steps. In a first step, the inverse problem
is solved with a ℓ21 prior, using a small value for λ and an active set strategy.
Using a small λ makes the active set larger than necessary, so that the active
sources form a subset of it. Then (2) is solved with the composite prior on the
restricted source space. By doing so, the computation on real data, such as those
presented in Section 3.2, takes a few minutes on a standard laptop computer for
given values of the regularization parameters.

Model selection Model selection amounts to setting the parameters λ and ρ.
As a principled way to do this, we use a k-fold cross-validation (CV) procedure
in which the signal of sensors left out is predicted from the solution estimated
using the remaining sensors. The best parameters are the ones that lead to the
smallest average root mean square error (RMSE) between measurements and
predictions across the folds. In practice, we use a 4-fold CV with a logarithmic
grid of 40 values for λ. To limit computation, we employed a fixed ρ = 0.1, since
our experiments proved it to be a good default choice.
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Fig. 2. Comparison of RMSE in the
source space as a function of λ

(SNR=6bB). Dashed lines correspond to
results with no TF. TF priors improve
the reconstruction and the best accuracy
is obtained with the TF ℓ21 + ℓ1 prior.
The 2-steps approach gives an almost op-
timal accuracy. The vertical dashed line
gives the λ estimated by CV.

10
−2

10
−1

10
0

10
1

10
2

10
−0.6

10
−0.3

10
0

λ

R
M

S
E

 

 

 

L
2
 (MN)

L
1
 (MCE)

L
21

TF
L1

TF
L21

TF
L21L1

L
21

+TF
L21L1

3 Results

In the following, we first evaluate the accuracy of our solver on toy data and a
simulated EEG dataset. We then apply our solver to experimental MEG data.

3.1 Simulation study

In order to have a reproducible and reasonably fast comparison of the differ-
ent priors, we generated a small artificial dataset with 20 electrodes and 200
sources. 4 of these sources were randomly selected to be active. The ECD wave-
forms (cf. Fig. 3(a)) represent 1 high and 3 low frequency components. The time
course of the oscillatory high frequency component is modeled by a Gabor atom,
whereas the time courses of the low frequency components were obtained from a
somatosensory evoked potential study [14] by fitting manually ECDs to the P15,
N20 and P23 components. To make the comparison of the priors independent of
the forward model and the sources spatial configuration, the linear forward oper-
ator was a random matrix, whose columns are normalized to 1. White gaussian
noise was added to the signals to achieve a desired signal-to-noise ratio (SNR).
Following the notation of (1), we define SNR as 20 log10(‖M‖Fro/‖E‖Fro).

Figure 2 presents the RMSE on the estimation for different solvers as a
function of λ (RMSE = ‖Xsim−X⋆

Ω‖
2
Fro). λ was chosen on a logarithmic grid from

10−2 to 102 and ρ was fixed to 0.1. The Gabor dictionary is tight, constructed
with a 128 samples long window g with k0 = 4 samples time shift and f0 = 1
sample frequency shift. Results show that the composite TF prior outperforms
the other priors, while the 2-steps approach gives an almost optimal accuracy
with a λ estimated by CV. Figure 3 shows the reconstructions for the best λ
according to Fig. 2 for the ℓ1, ℓ21 and the TF composite priors. It can be observed,
that the inverse method with the composite TF prior is able to reconstruct the
smooth time course of the simulated sources contrary to ℓ1 and ℓ21 priors.

The TF composite prior was then challenged on a realistic EEG configuration
with a 4-shell spherical head model (radii 0.90, 0.92, 0.96 and 1) and 60 elec-
trodes placed according to the international 10-5 electrode system. The source
waveforms were the same as before. The source space in Fig. 4 consisted of 152
sources in a regular grid (0.2 spacing) inside the innermost sphere. Source ori-
entations were randomly selected. For depth compensation, a source covariance
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Fig. 3. Simulations results with SNR = 6 dB. (a) simulated source activations. (b)
Noiseless simulated measurements. (c) Simulated measurements corrupted by noise. (d-
e-f) Estimation with ℓ1 prior. (g-h-i) Estimation with ℓ21 prior [20]. (j-k-l) Estimation
with composite TF prior. (f-i-l) show the sparsity patterns obtained by the 3 different
priors as explained in Fig. 1. Result (j) shows how the composite TF prior improves
over (d) and (g). (l) presents also a higher level of sparsity compared to (f) and (i).

based weighting method described in [13] was applied. Fig. 4 shows the head
model and reconstructions obtained with ℓ21 and the TF ℓ21 + ℓ1 priors. Even if
the performance drops down due to the limited spatial resolution of EEG, the
TF composite prior gives the best RMSE and is able to reconstruct and separate
the high frequency component.

3.2 Experimental results with MEG data

We also applied our method to somatosensory MEG data. In this experiment,
the right median-nerve was stimulated at the wrist with 0.2 ms constant cur-
rent pulses above the motor threshold. The inter-stimulus interval was random
between 3 - 12 s in an event-related design. MEG data were acquired using
a 306-channel Neuromag Vectorview system. The signals were recorded with
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Fig. 4. Results with real EEG
lead field (SNR=3dB). The 4
dipoles are color coded. Ma-
genta dots show the 3D grid
of sources. Dark dots show the
EEG sensors locations. Con-
trary to TF ℓ21+ℓ1, ℓ21 fails to
recover the deep green dipole
time course.
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a bandpass of 0.01 - 250 Hz, digitized at 1004 samples/s and averaged offline
triggered by the stimulus onset. All epochs containing EOG signals higher than
150 µV peak-to-peak amplitude were discarded from the averages, resulting in
68 averaged epochs. For source estimation, the noise-covariance matrix was esti-
mated from the baseline period of 200 ms before stimulus onset in the raw data.
The sources were estimated assuming unconstrained orientations. The Gabor
dictionary is tight, constructed with a 256 samples (≃ 256 ms) long window g
with k0 = 16 samples time shift and f0 = 1 sample frequency shift. Results are
presented in Fig. 5.

The first activation of the contralateral primary somatosensory cortex (cS1)
peaks around 20 ms and lasts up to 100 ms; then the secondary somatosensory
cortices (contralateral cS2, ipsilateral iS2) activate around 70 ms and lasts up
to 200 ms. The posterior parietal cortex (PPC) starts to activate at 70 ms with
a more significant activation between 140 and 200 ms. This is consistent with
the understanding of PPC, also known as the parietal association area, which is
known to be higher in the hierarchy of cognitive processing [6].

4 Conclusions

In this work, we showed how physiologically motivated priors for brain activa-
tions can be accounted for in a mathematically principled framework in M/EEG
source analysis. Using a composite prior, the sparsity of spatial patterns, the
temporal smoothness, and the non-stationarity of the source signals were well re-
covered. Thanks to the structure of the cost function considered, mainly its con-
vexity, an efficient optimization strategy was proposed. The problem being con-
vex, the solver is not affected by improper initialization and cannot be trapped
in local minima. Simulations indicated benefits of the approach over alterna-
tive solvers, while results with well understood MEG data confirm the accuracy
of the reconstruction with real signals. Both results show that our solver is a
promising new approach for mining M/EEG data.

Further work will investigate the impact of the choice of the time-frequency
dictionary and the compromise between time and frequency resolution of the
Gabor atoms, leading eventually to the use of a union of dictionaries.
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Fig. 5. Results obtained with the TF compos-
ite prior ℓ21 + ℓ1 applied to somatosensory
MEG data. Estimation was performed with
unconstrained orientations on a set of 8195
cortical locations (G ∈ R

306×24585). Estima-
tion leads to 37 active brain locations that
have been clustered into 4 groups matching
known functional regions. Clustering was done
using k-means based on the source activation
time courses. (e) illustrates the cascade of ac-
tivation starting from cS1, to both S2 cortices
and later cPPC.
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(a) MEG data: M ∈ R
306×256

(b) Locations of the estimated active ECDs. ECDs clusters are color coded: Dark blue
matches cS1, red cS2, light blue iS2, green cPPC.
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(c) M⋆ = GX⋆ (denoised
sensors data)
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(d) X⋆ ∈ R
24585×256
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(e) Average energy density
over time in each cluster.
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