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Abstract—In this paper, we propose an ef cient algorithm
to compute the centroidal Voronoi tessellation in 2D periodic
space. We rst present a simple algorithm for constructing the
periodic Voronoi diagram (PVD) from a Euclidean Voronoi
diagram. The presented PVD algorithm considers only a small
set of periodic copies of the input sites, which is more ef cient
than previous approaches requiring full copies of the sites
(9 in 2D and 27 in 3D). The presented PVD algorithm is
applied in a fast Newton-based framework for computing
the centroidal Voronoi tessellation (CVT). We observe that
full-hexagonal patterns can be obtained via periodic CVT .
optimization attributed to the convergence of the Newton-based L
CVT computation.

KeywordsPeriodic Voronoi diagram, Delaunay triangulation,

. - . Figure 1. Periodic centroidal Voronoi tessellation of 30 sites (the polygons
centroidal Voronoi tessellation, hexagonal pattern

with the same color belong to the same periodic Voronoi cell) : (a) PVD
of initial sites; (b) periodic CVT.
I. INTRODUCTION
The W i is 2 fund | ) When using Voronoi diagram for the generation of high-
& Voronol diagram is a fundamental geometric structurequa“ty meshes, we can impose different application-related

which was rst proposed in the 1900s [1]. For a given Setjiaria One particular yet important application is to gen-

of sites (or generatprs) in a domgin, the Voronoi di_agram 'rate mesh in a periodic space under a periodic distance
de nedh asda collection othoron0| ::ells eacE of which cog.— metric. As an example, for a 2D squared domain, this spatial
tains the domain points that are closer to the correspondinge i icity implies intuitively that when a particle leaves the

site of the cell than to any pther site. The Voronoi dlagramdomain crossing a certain edge, it immediately returns to
has been extensively studied over one hundred years ane qomain passing through the opposite edge. The Voronoi
successfully used in numerous applications of various d'sc'diagram constructed in such a periodic space is called a
plines, such as natural science, industry design, mathemati eriodic \Voronoi diagram (PVD, see Figure 1(a) for an

geogfaP:IY and sodon. 'I(;her% exij.tﬁdiffereglt variants of e, ampie) PVD has been a useful tool in diverse application
Voronol diagram, de ned under different distance metrics g|yg yhere spatial periodicity is a frequently encountered

E]e.g. é;elqdesm dgs_tance on dsurf_aces, _Eudc_lldean distanchpenomenon, for instance the micro-structural modeling of
yperbolic space distance and anisotropic distance), or With, 5eria|s [4]-[7] and the simulation of uid dynamics [8],
different constraints (e.g. diagram restricted to a compa

domain, sites constrained on domain boundaries and diagra
periodicity).

Centroidal Voronoi tessellation (CVT) is a special kind 1. @ simple algorithm for computing 2D periodic Voronoi
of Voronoi diagram that requires each site to coincide with ~ diagram. Compared to the previous approaches, we use
the mass center of its corresponding Voronoi cell [2]. CvT  only a small number ofnirrors (de ned in Section 1)
has many nice properties which are useful in data clustering, ~ instead of using the full copies;
optimal quadrature and quantization. One important property 2. a periodic CVT computation algorithm based on the
is that the cells of an optimal (isotropic) CVT are congruent ~ quasi-Newton solver, which has faster convergence
to regular hexagons in asymptotic sense [3]. This property ~ Speeds compared to the classical Lloyd iteration;
ensures a uniform and regular partition of the considered 3. the observation that full-hexagonal Voronoi cells can
domain by CVT, which is desirable in many engineering ~ be obtained via periodic CVT optimization for some
applications such as mesh generation. speci ¢ values of the number of sites.

The main contributions of this paper include :



A. Related work the presented PVD computation algorithm can be applied

The Voronoi diagram in a metric space is a special kindn" & CVT framework in Section IV. Experimental results
of tessellation of that space. The reader is referred to [10}2r€ reported in Section V, and we draw our conclusion in
[12] for details of Voronoi diagram and its dual concept — Section V.
Delaunay triangulation. T

The de nition of Voronoi diagram (and thus its optimized ) i B 0 ,
version CVT) incorporates the notion of distance between _leen a se_t of sitexX = fxigi=l_ in 2D, the V(_)ron0|
cell generators and domain points (see Section II). Differenf“":lgrn":lm ofX is de ned by a collection oh Voronoi cells
distance metrics have been studied. Begnd Cohen [13] 1971 , where
constructed geodesic CVT on mesh surfaces and used it = fx2R%jkx  xik kx x;k8j6ig
for shape segmentation and remeshing. Alternatively, Yan
et al. [14] computed the constrained and restricted CVT orffach Voronoi cell ; is the intersection of a set of 2D half-
mesh surfaces based on Euclidean distance metric, in trPaces, delimited by the bisecting planes of the Delaunay
context of isotropic remeshing. Latergty and Liu [15] edges incident to the site.
generaljzed this Euclide_an CVT to higher orde_r, which is Periodic Voronoi diagram
useful in 2D quad-dominant and 3D hex-dominant mesh o ) ) o
generations. Rong et al. [16] introduced an algorithm which The 2D pe.r|0d|c space is a 2D at torgE , Which is
computes CVT in hyperbolic space. The advantage of doingom.eomorphlc to the surff_ﬂce of a torus in 3D.(as shown
computation in this space is that it allows us to easily genl" Figure 2). The at torus is de ned as the quotient space
erate high-quality meshes from high-genus models. Ju et al
[17] studied the properties of CVT on spherical domain anc

applied it to climate and global modeling. Finally, Tournois
et al. [18] presented a method to compute Euclidean CV
in 2D constrained domain.

As mentioned previously and reported in [4]-[9], pe-
riodic Voronoi diagram has been widely used in divers
applications. However, in all these applications, the PVD is

computed using full copies of primary sites, which is not an

ef cient solution especially when we have a large numberFigure 2. A periodic domain in 2D (left) is homeomorphic to the surface
of sites. This observation motivated our work on ef cient °f & torus in 3D (right).

computation of PVD, a problem not well addressed in the_, . 5. _
literature. In [19], Fu et al. discussed the ef cient computa-Tl_l_ RW_G’ Wh(:]reG 'S the grgur)_(uo_i ’ +)0' indu F]

tion of Voronoi diagram on periodic graphs by exploiting the( 1). We use the u_nlt squg o= [ f’ h) [ ! ()j_as the .
relation between nearest neighbor search on periodic grapﬁgpresentatlv_e_(or primary) omamzo the perio IC space in
and some geometric convex-distance functions. Howeve ’ID for S|mgl|0|ty. T_hel elemenlts .OT are the equwalegce
their research problem is different from that studied in this® aszszesTlrJ]n ;r equivaience _rﬁeza_npg p; S dpl P2 e
paper. In particular, although in [19] the space is a periodiéJ - The distance metric i is de ned bydr(p: q) :=

H [} 0 0 i
graph with repeated pattern, the Voronoi diagram is ar{mn(dR(p 'qo))f wherep™ andq are equivalent t@ andq
ordinary one which is not de ned under a periodic distanceunder the quotient map, respectively. We refer the reader to

metric (its formal de nition will be given later in Section [20] for more details _Of the _de nition of peripdic space.
II-A). Assuming that the input sites are located in the primary

domainDg =[0;1) [0;1). Similar to the Euclidean Voronoi
giagram, the 2D periodic Voronoi diagram of sit¥s is

. PROBLEM FORMULATION

The dual of PVD — the periodic Delaunay triangulation
— has also been studied. Caroli and Teillaud [20] presente i Sl ) e
an elegant solution for computing Delaunay triangulation in2 collection of periodic Voronoi cell$ ©igi; under the
3D periodic space based on directly de ning the geometricliStance metricir, where
predictors in periodic space (periodic kernel). This algorithm € = fx 2 R?j dr(x;X) dr(x;x;); 8 6 ig:
computes periodic Delaunay triangulation directly in 3D
periodic space, and guarantees that the obtained triangulation|t is €asy to see that the PVD iR? is the periodic

) it suf ces to con ne our study irDg. There are two types of
B. Outline Voronoi cells in a PVD, inner cells and boundary cells. An

We rst give some mathematical de nitions in Section Il. inner cell is the same as a Euclidean Voronoi cell, which is
We present a simple and ef cient algorithm for computing entirely insideDg. The cells across the periodic boundary are
periodic Voronoi diagram in Section Ill. We show how boundary cells. Each boundary cell is composed of several



visually disconnected polygons g (cf. Figure 1, where 1::n;j = 1::8. The Euclidean Voronoi diagram of all the

the boundary cells are shaded). sites is then computed. The periodic Voronoi diagranxof

. . . is obtained by intersecting all the Voronoi cells with domain

B. Centroidal Voronoi tessellation Dg. The intersecting results of mirror cells are assigned to
Centroidal Voronoi tessellation (CVT) is a special kind of the periodic Voronoi cells of the corresponding primary sites.

Voronoi tessellation, which is de ned as a critical point of The basic idea of the PVD computation based on full copies

the energy function [2] : is illustrated in Figure 3. This straightforward approach
o Z will become inef cient when the number of sites increases.
F(X)= (x)kx  xik?d; (1)
i=1 We notice that actu-
where (x) > 0is a user-de ned density function, att  &lly only a small set of
is the area differential. mirror sites contributes to
The partial derivative of the CVT energy function with the periodic Voronoi dia-
respect to each site is given by [21] : gram, which are the mir-
rors whose Voronoi cells
@F =2mi(xi gi); (2) intersect with the primary
R @i domain D,. Based on
wherem; =~ (x)d isthe mass of the cell;, andg; =  this observation, we de-
, (oxd rive a simple algorithm

0 is the weighted centroid. The CVT is uniform for computing PVD by
when the density is constant. The minimizer of this energy using only the necessary Figure 3. PVD computation based
is obtained when each site coincides with the mass centgferiodic mirror sites. on full copies.
of its Voronoi cell, i.e. when we have a CVT.
The CVT energy function in periodic space is de ned by B. Algorithm description
replacing the Euclidean distance metric in Egn. (1) with the OQur PVD computation algorithm consists of three steps,

periodic distance metridr : as shown in Figure 4. First, we build the Euclidean Voronoi
o £ diagram of input siteX based on Delaunay triangulation.

Fr(X)= (x)dr(x;x;)%d: (3)  Next, we detect the sites whose Voronoi cells intersect with

i=1 ©i the periodic domain boundary. Finally, we repeatedly insert

In this paper, we propose an algorithm to compute peri/1€cessary mirror _sites to build the PVD. We present in the
odic CVT inT2. Our algorithm has two main components (a) following the details of these steps.
compute the 2D periodic Voronoi diagram (Section Ill), and
(b) minimize the periodic CVT energy function (Section IV).
We shall explain the details of each component in the
following sections. The uniform density will be used in the
rest of this paper to study the properties of CVT in 2D
periodic space.

IlIl. PERIODIC VORONOI DIAGRAM COMPUTATION

We rst introduce the main idea of our approach, and then @)
present the details of the PVD computation algorlthm. Figure 4. Main steps for computing periodic Voronoi diagram : (a) De-
. launay triangulation; (b) compute clipped Voronoi diagram in the primary
A. Overview domain; (c) compute periodic Voronoi diagram by inserting periodic mirror

As discussed in Section I-A, existing methods need to e
duplicate 9 copies in 2D (or 27 copies in 3D, respectively) 1) Voronoi diagram constructionWe build the Delaunay
for computing the periodic Voronoi diagram (e.g. in [4]-[9]). triangulation of the input siteX (Figure 4(a)). The Voronoi
After this full duplication, the PVD can be easily computed diagramf ;g of X is deduced from the Delaunay triangu-
in the Euclidean space instead of the periodic space, dation.
explained below. 2) Boundary sites detectionin this step, we detect the
Suppose that we now hawve input sitesX = fx;gL; initial candidates of boundary sites. Since both the Voronoi
located in the 2D primary domaidy = [0;1) [0;1). cells and the domaibg are convex, the cells that have non-
Existing methods rst duplicate the sites in all the 8 empty intersection with the domain can be easily detected.
neighboring domain$D ; gf‘:l of the primary domain. The The Voronoi cells of the sites on the convex hullXfare
duplicated sites (or mirror sites) are denoted &g g;i = in nite, and those cells are rst marked as boundary cells.



the Voronoi cell ofx, intersects
with &:e; and vs, the corre- | V'~ Ds| &> Ds
sponding mirror sites,.g; X2.2 v:—> D7 | 2= Ds
and x,.1 are inserted, respec- | Vs— Di| €= D:
tively. Each time after inserting | va—» Ds | €+— D.
mirror sites, we update the Eu-
clidean Voronoi diagram for all the sites (both primary sites
and mirrors) based on the efcient incremental Delaunay
triangulation algorithm of CGAL [23], and the intersections
@ (b) of the cells withDo are computed. If the Voronoi cells
of the inserted mirror sites intersect with the boundary
edgese -1 .4 Or verticesvj-1 .4, we insert new mirrors of
those intersecting mirror sites if the new mirrors are not

) _ in the diagram. The insertion process is still guided by the
Then we traverse the adjacent Delaunay triangles of eacg'forementioned two rules. However, the specic mapping

unmarked site. If a site has one or more adjacent tria”gleﬁetween boundary elements and neighboring domains is

whose cwcgmcente.r is outside of the domélp, then the ._relevant to the belonging domain of the intersecting mirror
corres'pondmg cell is marked as a boundary Ce,”',OtherW'Sgite and thus is different from that for the primary sites.

as an inner cell. We compute the clipped Voronoi diagram by The insertion process terminates when there is no more
clipping the boundary Voronoi cells against domain bound-

; 2 . mirror that can be inserted, as for example in Figure 5(b).
ary using the Sutherland-Hodgman clipping algorithm [22]'The termination of our algorithm is guaranteed, since in the

as shown n F|gure 4(b). T_he sites of boundary cells ar%yvorst case each primary boundary site will be duplicated 8
tagged as initial boundary sites. times in all the neighboring domains. The resulting clipped
3) Periodic mirrors insertion:Once the initial boundary \pronoi cells inD of the mirror sites are assigned to their
sites are tagged, we are ready to insert periodic mirrors oforresponding primary sites, as shown in Figure 4(c). Since
them to build the PVD. Actually, only the mirrors of the we use only a small set of mirror sites, our method is more
initial boundary sites may contribute to the nal PVD. The ef cient than existing methods based on full copies when
reason is that we insert mirror sites in neighboring domainghe number of sites increases (see Section V). We give a

which are outside of the convex hull of the primary si¥s  prief proof of the correctness of our algorithm in Appendix.
therefore the initial inner cells are kept unchanged during

the insertion process and do not contribute to the PVD. The |v. PERIODIC CENTROIDAL VORONOI TESSELLATION
insertion of mirror sites is guided by the following two rules :

Figure 5. lllustration of mirror sites insertion : (a) clipped Voronoi
diagram; (b) periodic Voronoi diagram after inserting 11 mirror sites.

We use the L-BFGS method to minimize the periodic
(a) If the Voronoi cell of a site intersects with the horizontal cy/T energy function (Egn. (3)). L-BFGS method needs to
periodic boundary edge (resp.es), we insert a mirror  evajuateF(X X)) and @K (X X)) in a series of iterations
copy in the upper (resp. nether) neighboring domain24]. The evaluation for an inner site is the same as in
of the site’s belonging domain; similarly, if the cell the minimization of conventional Euclidean CVT energy,
intersects with the vertical edge (resp.e;), we insert  gince its Voronoi cell lies completely in the primary domain.
a mirror copy in the left (resp. right) neighboring For the boundary sites, we simply transform the periodic
domain of the site's belonging domain (see Figure 5).\/oronoi cell to Euclidean space to form a single connected
(b) 1f the Voronoi cell of a site contains a periodic boundary ce||, so that the computation can be done ef ciently without

vertexv;=1 .4, We insert a mirror copy in the diagonal modifying the solver. This process is illustrated in Figure 6.
neighboring domain of the site's belonging domain

that is incident to the verte; 1+2) modaj+1 , i-€. the
diagonal opposite vertex of in Do.

The idea behind these two rules is that we (only) need to
insert the mirrors whose cells may intersect the equivalent
classes of the intersected periodic boundary elements. Also
note that the above rules are applicable to the mirror sites
insertion of both the primary sites and the already inserted
mirrors.

The mapping between intersected boundary edge/vertex to

neighboring domains for primary sites is given in the inset
of this paragraph_ For example, as shown in Figure 5(a)Eigure 6. Periodic energy function evaluation and gradient computation.



After each iteration, the obtained new positim(]k”) is
mapped to the primary domain, and nally we set this
primary point as the new position of the boundary site

V. EXPERIMENTAL RESULTS

We present some results of our periodic CVT compu-
tation algorithm. All the experiments were conducted on
a laptop PC with a 2.4GHz Intel Duo-Core processor and
3GB memory. We use CGAL [23] for computing Delaunay
triangulation in Section III.

Ef ciency. Our PVD algorithm is very ef cient since it
only uses a small set of periodic mirror sites, instead of g

using the full copies. Once the 2D Delaunay triangulation \“

AL N
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is built in the primary domain, it is ready to compute PVD ‘_ N
ef ciently. The timing curve of the PVD computation and \\ ““g““‘
that of the Delaunay triangulation against increasing number_ = O

of sites are shown in Figure 7.

(c) (d)
Figure 8. Results of CVT and periodic CVT for 150 sites. (a) Input sites;
(b) result of standard CVT (green cells are clipped boundary cells and blue
cells are non-hex cells); (c) periodic CVT result of Lloyd's method [25]
after 3k iterations; (d) result of periodic CVT with 80 Newton iterations
(see also the accompanied videos).

approaches using full copies, as illustrated in Figure 7. More
precisely, our method can accelerate the PVD computation
by roughly a factor of 8, as shown by the red and blue curves
We use the presented PVD algorithm in a fast CVTin the gure.
computation framework [24] with a slight modi cation of  Note that one can also implement a 2D version of the 3D
the PVD for gradient computation and function evaluationperiodic Delaunay triangulation provided in CGAL [20] for
under Euclidean metric. We observed that periodic CVTcomputing PVD, but our algorithm computes PVD directly
always has more regular patterns than standard CVT, sincejiy Eyclidean space, which is an alternative simpler solution.
has more freedom in periodic space and simpler homotopy. pservation. With the fast convergence of our algorithm,

Sever_al results are shown in Figure 8. The energy of peri_odigve observed that for most values of the number of sites
CVT is always smaller than that of standard CVT during g, |_hexagonal pattern is obtained (see Figure 11 at the end

iterations as shown in Figure 9. _ _ of the paper). We evaluate several minimizers of the periodic
~Comparison. We compare our PVD algorithm with pre- oy energy function and compare them with the theoretical

vious approaches that use full copies. The statistic result f,yer bound [26] in Table |. For some speci ¢ values rof

the number of mirrors used by our PVD algorithm against,, reqular patterns were obtained. The theoretical analysis

increasing number of sites is shown in Figure 10(a). It caryt this observation will be published in a further paper.
be seen that only a small number of mirror sites is used even

Figure 7. Timing of PVD computation against number of sites.

for very large point sets. Figure 10(b) shows the percentage Table |

of the mirror sites with respect to the number of primary Periobic CVT EVALUATION . Frey 1S THE THEORETICAL LOWER

sites. The percentage decreases when the number of sites BOUND -P= [26].

increases. Furf[her_more, it is not surprising to see that the— Fovr Frovr =

number of copies is approximately of the same order as the 3 6:6180 10 5:9671 10 ° 5:3458 10 °
. . . . B 3 3 B 3

squared root of the number of primary sites, since in our_3° 55454 10 5:3482 10 5:3453 10

) he initial sit iformlv distributed in thel—= 2:9520 10 2:8639 10 2:8638 10

experiments the initial sites are uniformly distributed in the| 55 10519 10 3 10606 10 3 10605 10 3

primary domain. Our algorithm is able to compute PVD for[ 168 9:7361 10 ° 9:5464 10 ° 9:5461 10 °

very large data set as ef ciently as Delaunay triangulation| 224 7:2769 10 * 7:1508 10 ° 7:1596 10 *

300 5:4255 10 * 5:3481 10 7 5:3458 10 *

while the computation cost will increase quickly for the




APPENDIX

In this appendix, we will prove the correctness of the
presented PVD computation algorithm (Section Ill). The key
point is to prove that our algorithm actually inserts all the
mirror sites whose Voronoi cells intersect with the primary
domainDg. Our proof is based on the following property of
the Voronoi diagram.

Incremental property. Assume that we have established
a Euclidean Voronoi diagram of sitefs<ig}‘=1 , whose cells
are denoted ad ig}‘zl. We now insert a new Sitey+1
and obtain an updated Voronoi diagram composed of cells
f ?gikjll . Then, it can be deduced that the updated Voronoi
cells of the old site§x; g}‘zl are subsets of their initial cells.
We have the relation T i fori=1:k.

In order to make it easy to understand, we prefer to take
a single boundary cell as example to proceed the proof.
Suppose that a PVD is correctly constructed based on full
copies of the primary sites and that is a boundary site
whose cell 1 intersects with the domaindy, Ds andDg, as
shown in Figure 12(a). This means that the cells of mirrors
X1:1 andXj., intersect withDy and that we need to insert
these two copies. In our PVD algorithm, we rst compute the

Figure 9. The CVT energy of 30 sites (top) and 150 sites (bottom). Voronoi diagram of the primary sites, without any mirrors.
Based on the above incremental property of the Voronoi
diagram, we know that after this rst step, the obtained cell
of x1, denoted by (11) (cf. Figure 12(a)), is a superset of .
Therefore, (11) certainly intersects witle;, and accordingly
our algorithm insertxi., in D,. Next, based on the same
argument, we can deduce that in the updated diagram, the
cell of x1.,, denoted by (12)2 certainly intersects witte,,
and xq.1 is thus inserted. Notice that;.; may also be

inserted in the rst step if (11) intersects withe,.

Figure 10. The number of mirror sites against number of sites (left), and
the percentage of mirror sites (right).

VI. FUTURE WORK

In the future, we would like to study the properties of
the periodic CVT, which is also related to the problem on
nding the global minimal of CVT energy function. We
aim to nd the connection with Gersho's conjecture and
study the dependence on the numberAnother direction

is the extension of our approach to 3D periodic space, @ ®)
and the development of practical algorithms for periodiCrigure 12. (a) Our algorithm can insert all the necessary mirrors of a
surface/volume mesh generation. boundary site for a correct PVD computation (for clarity we show only

the cells ofx1 and its mirror copies); (b) Some typical boundary cells
(they are not necessarily in the same diagram) and the process of “polygon

ACKNOWLEDGMENTS ooding”.

This work is partially supported by the European Actually, one can easily prove that for any boundary cell
Research Council (GOODSHAPE FP7-ERC-StG-205693])cf. Figure 12(b) for some typical examples), our algorithm
and ANR/NSFC (60625202,60911130368) Program (SHANcan insert all the necessary mirror sites for computing a
Project). correct PVD, as explained in the following. As shown in



Figure 12(b), a boundary cell correctly computed with full [11] S. Fortune, “Voronoi diagrams and Delaunay triangulations,”
copies is split by the domairi® ; g into several polygons. In

the

between boundary cell andy, which is a superset of the

rst step of our algorithm, we compute the intersection

polygon numbered by “1” in Figure 12(b). The algorithm
then inserts at least the mirrors whose cells contain the

primary domain images of all the incident polygons of the[13]

polygon “1”, i.e. those numbered by “2” in Figure 12(b). The
reason is that the celdy intersection certainly contains the
periodic boundaries shared by polygon “1” and its neighbors.

The process continues until all the polygons are “ ooded”.[14]

This is guaranteed due to a) the incremental property of the
Voronoi diagram, b) the guiding rules for the mirror sites
insertion of our algorithm, and c) the fact that PVD cells in

our case are convex and connected. O
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Figure 11. Hexagonal patterns of periodic CVT for different number of sites. The blue cells are non-hexagonal cells. For each mumbgresform

5000 runs. The percentage of the appearance of full-hexagonal patterns is also given.



