
HAL Id: inria-00606721
https://inria.hal.science/inria-00606721

Submitted on 22 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive visualization of complex plant ecosystems
Oliver Deussen, Carsten Colditz, Marc Stamminger, George Drettakis

To cite this version:
Oliver Deussen, Carsten Colditz, Marc Stamminger, George Drettakis. Interactive visualization of
complex plant ecosystems. IEEE Visualization Conference (2002), Oct 2002, Boston, United States.
pp.219-226, �10.1109/VISUAL.2002.1183778�. �inria-00606721�

https://inria.hal.science/inria-00606721
https://hal.archives-ouvertes.fr


Interactive Visualization of Complex Plant Ecosystems

Oliver Deussen1 Carsten Colditz1 Marc Stamminger2,3 George Drettakis2

1 Faculty of Computer Science, Dresden University of Technology, Germany
2 REVES/INRIA, Sophia Antipolis, France,3 now at Bauhaus-Universität Weimar, Germany

Abstract

We present a method for interactive rendering of large outdoor
scenes. Complex polygonal plant models and whole plant popula-
tions are represented by relatively small sets of point and line prim-
itives. This enables us to show landscapes faithfully using only a
limited percentage of primitives. In addition, a hierarchical data
structure allows us to smoothly reduce the geometrical represen-
tation to any desired number of primitives. The scene is hierarchi-
cally divided into local portions of geometry to achieve large reduc-
tion factors for distant regions. Additionally, the data reduction is
adapted to the visual importance of geometric objects. This allows
us to maintain the visual fidelity of the representation while reduc-
ing most of the geometry drastically. With our system, we are able
to interactively render very complex landscapes with good visual
quality.

CR Categories: I.3.3 [Picture/Image Generation]: Display
algorithms— [I.3.7]: Three-Dimensional Graphics and Realism—
Animation

Keywords: Synthetic Plants, Ecosystems, Point-based rendering,
Level-of-detail Algorithms

1 INTRODUCTION

Interactive rendering of large outdoor scenes is an important task for
applications such as landscaping, architecture or computer games
as well as virtual reality and simulation. The display of rich natural
vegetation enhances comprehension of spatial relations in a planned
landscape, to judge the visual impact of new buildings or to imagine
the shape of a landscape in the future.

In recent years, a number of plant generation systems have been
developed that allow the user to generate the geometry of single
plants with high quality. Various aspects in designing plant shapes,
growth of plants and their interaction have been investigated by
Prusinkiewicz et al. [15] based on L-Systems. Other approaches
use parameterised algorithms [4] or a set of components like the
xfrog system [10].

Based on these models, it is possible to generate large landscapes
with many different plants. An open system architecture for such a

system as well as algorithms for distributing and rendering com-
plex scenes was presented by Deussen et al. [5], while com-
mercial products like Bryce (http://www.metacreations.com), Ani-
matek World Builder (http://www.digi-elements.com) use plants to
populate whole planets. The limiting factor for interactive render-
ing of scenes is the huge amount of geometry that has to be pro-
cessed for each frame.

Vegetation geometry differs from other objects in a significant man-
ner. While man-made objects such as houses, streets or cars are
usually represented by a limited set of relatively large connected
surfaces, vegetation usually consists of many small and isolated
surfaces. Thus, most traditional level-of-detail schemes cannot be
applied effectively to such scenes.

On the other hand, in recent years new rendering techniques have
been proposed that allow efficient rendering of complex objects us-
ing the most simple primitives one can imagine: points. These
methods seem to be appropriate for plant scenes because collections
of discrete points can convey the shape of distant plants naturally.

The importance ofinteractiveyet realistic rendering of these very
complex ecosystem models cannot be overstated. For landscape
design, or any kind of architectural or public works assessment,
interactive viewing opens enormous potential for interactive ex-
perimentation and trial-and-error evaluation, which has previously
been very hard to achieve for models of this scale and complex-
ity. Such an interactive renderer is an invaluable tool in all archi-
tecture/design applications, as well as for virtual reality or video
games.

In this paper, we present a system for interactively rendering lage
outdoor scenes. Our contributions are the introduction of an appro-
priate method for pre-processing the model data, an efficient render-
ing algorithm using a point- and line-based level-of-detail approach
and optimization of the scene using hierarchies.

For pre-processing we introduce a combined polygon/point and line
representation; in contrast to previous methods we use lines in ad-
dition to points. Long and thin parts of plants such as leaves or
branches are represented by lines, while more compact objects are
approximated by points. This enables us to better convey the shape
for both object categories in distant views.

Using our representation, the number of displayed vertices per sec-
ond can be minimized keeping image quality high. Additionally, a
new method of importance reduction allows us to represent visual
important parts of a scene in a higher qualilty than others. Do-
ing so, we can drastically reduce unimportant parts of the scene
while keeping the visual impression stable. Although we focus on
representing plants, the method can be combined with other level-
of-detail approaches for different kinds of geometry to form a full
purpose system for interactive display of complex scenes.

For rendering, we introduce a novel approach for blending through
representations, which is both efficient and results in high quality
visual results. Blending is done in a way that more and more poly-
gons of a plant are represented by points and lines. Level-of-detail
is obtained by reducing the displayed number of points and lines
in correspondence to the viewing distance. Both polygonal data,



points, as well as line approximations are stored in vertex arrays
that allow us to efficiently display any desired portion of data.

We optimize the performance of our system using two types of hi-
erarchies: Single plants such as trees that have high geometric com-
plexity are spatially subdivided using an octree data structure. On
the other hand, collections of many small plants are grouped locally
and each group is entirely represented by a point and line represen-
tation. This enables us to display scenes of nearly arbitrary size
efficiently.

After discussing related work we proceed by giving a system
overview and describe how the data has to be pre-processed. The
two forms of hierarchy are then introduced and rendering issues
are presented. We conclude with results and some ideas of further
work.

2 RELATED WORK

Previous approaches that are related to our work can be divided
into two domains: level-of-detail representations and control for
complex data and point-based rendering methods.

Level-of-detail (LOD) control: Among the many existing LOD
methods one can distinguish between static methods that store an
object by a small set of discrete representations that are blended
into each other and dynamic methods that allow finer control of the
geometry generated. In combination with outdoor scenes, the most
simple way to form a discrete LOD is to use billboards that con-
tain images of single plants[1] and replace the plant geometry for
distant views. If the viewpoint changes, no parallax can be seen
which makes the scenes flat and unrealistic. Due to its simplicity,
this method is currently used in games and VR applications. Im-
provements are sets of impostors [19] and sprites with depth [20]
that offer a limited amount of parallax.

Max et al. [12, 11] hierarchically replace parts of trees by pre-
computed views and is able to smoothly blend between these. Un-
fortunately, the proposed technique is too inefficient for interactive
display. Perbert and Cani [13] explore an efficient rendering and
animation method for meadows based on impostors.

Dynamic LOD representations for smooth objects were presented
by Hoppe et al. [7]. Objects are represented by a base geometry and
a set of vertex split operations that refine the triangle mesh. Meth-
ods applied to terrain rendering were presented by Duchaineau et al.
[6] and by Hoppe [8]. Unfortunately, foliage cannot be processed
this way. The discrete structure of the leaves allows edge collapses
only to a very limited extend. Nevertheless, Rossignac and Borrel
reduced geometry by collapsing nearby vertices regardless of the
connection structure [17]. This can be applied to the foliage but
changes the visual appearance drastically.

Point rendering: The first general idea of using points as display
primitives was presented by Levoy and Whitted [9]. In the same
year, Reeves and Blau [16] rendered complex trees using a set of
small disks representing the foliage. Weber and Penn presented a
level-of-detail representation of trees using sets of points for the
leaves and lines for the tree skeleton [24]. As mentioned above, we
extend this idea to model whole plant populations. Shade et al. [20]
sampled geometric plant models using a modified ray tracing pro-
cedure. Based on the resulting point sets they were able to render
images from various view points. This works well for distant views
but results in holes and a grainy look for close-ups.

An LOD method based on points is presented by Rusinkiewicz and
Levoy[18]. A hierarchy of point representations allows smooth re-
duction of the amount of geometry for smooth surfaces. Pfister et
al. [14] present sophisticated rendering methods for point represen-

tations. Their method works in software and therefore is too slow
for interactive rendering highly complex scenes.

Cohen et al. [3] combine a LOD representation for polygonal ob-
jects with point rendering using a multi-resolution graph which de-
scribes simplification operations that lead to a point representation.
By displaying the prefix of this graph, geometry reduction is per-
formed. In this manner, they are able to smoothly blend between
geometry and point representations. A similar transition method
is presented by Chen and Nguyen[2]. However, for our highly
complex objects an explicit representation of refinement operations
seems to be too inefficient. Given a single tree with half a million
of leaves (see figure 7(b)) the resulting graph would need a large
amount of memory. Instead, we use vertex arrays that store the ge-
ometry of plants in an appropriate manner that allows us to reduce
geometry by showing only the first part of such an array.

Stamminger and Drettakis [21] present a point based method for
plants using random sample positions on the surface. Each plant
is described by a set of points obtained from these positions. A
similar approach is described in [23], where a plant is rendered by
a random set of points, which is just dense enough not to exhibit
holes. As the authors determine the point positions individually for
each frame, aliasing is introduced.

3 SYSTEM OVERVIEW

Plants for our system are generated from surface oriented plant de-
scriptions produced by the plant modellers described previously. In
a pre-processing step these models are converted into point and line
sets. Both the polygonal description and its point or line approxi-
mation are stored in a data file for each plant.

Figure 1: System structure, following the outline given in [5]

A separate editor, similar to the one described in [5], is used to com-
bine the plants to generate complex scenes. This involves model
quantization to reduce the number of different plant geometries. For
a single plant population in most cases a set of five to ten different
plant models is sufficient, the whole landscape may require several
dozens.

Our scenes are described by a set of plant models and so called
eco filesthat store positions of plants and instancing information.
Instances of the plant models are spread over the terrain to form the
plant population. Eco files can be used hierarchically, i.e., one eco
file may by a combination of reference to other eco files.

The rendering system reads in eco files and plant geometries. For
the entire content of each eco file a point approximation is deter-
mined. In distant views only this very sparse point representation is
used. When zooming in, all the plants of the eco file are displayed.
Visibility culling on the basis of bounding boxes is used to deter-
mine the visible plants. The system decides whether a polygonal
representation will be used or its approximation as a function of the
projected size of a plant. Figure 1 displays the system outline.

In the following, level-of-detail control is done with respect to the
vertex count. This count describes the number of vertices that max-



imally can be processed by the graphics processor per second. In
most cases, our scenes consist of many small triangles. The pixel
fill rate of the graphics processor does not play a significant role in
this case and the performance is thus fully determined by the vertex
count.

4 PRE-PROCESSING OF MODELS

During modelling of a plant, each plant is divided into elements
that are approximated by points and others that are approximated
by lines in distant views. The user decides which parts of a plant
model are represented by which primitive. This is only done during
modelling the plants in an early stage. If several instances of a plant
type with slightly varying geometry are used in a scene, modelling,
with its corresponding effort, is only performed once and therefore
is negligible. Another attribute that has to be set by the user is the
visual importance of the plant parts that is later used for showing
visually important plant parts with higher precision than others.

4.1 Point Representation

Point representations are typically used for leaves of a tree, petals
etc. By default, for an object ofn triangles,2n points are gen-
erated, reflecting the fact that a separate triangle requires about as
much time for rendering as three points and therefore an approx-
imation by two points needs less rendering time. The2n points
are distributed randomly over the object, in no particular order,
but in a way that equal surfaces receive equal numbers of points.
This means that small triangles might not be attributed any points,
whereas big triangles can be represented by many. All the random
points are stored in a single list. During rendering, only a prefix of
this list with length depending on the projected size of the plant is
drawn [21] (see Fig. 2).

Figure 2: Point representation of a pine. Polygonal model and rep-
resentation by 13,000, 6,500, 3,250, and 1,625 points. Low sam-
pling density has been selected to visualize the point models.

A different sampling technique is applied if all triangles of the ob-
ject have about the same area. In this case, we generate two sam-
ple points on each of the triangles. This corresponds to stratified
sampling and leads to more even sampling. Furthermore, the tri-
angles and points are randomly reordered in the same order, so we
still know the point-triangle correspondence. This allow us to ren-
der part of the object by triangles, and the rest by points. In this
manner, we can blend between polygonal and point representations
smoothly, largely avoiding popping artefacts, as we will describe
later.

4.2 Line Representations

Thin and long structures like twigs or several types of leaves are
better represented by a line than by a set of points [24]. We generate
a line set for these object parts already in the modelling phase, when
all information about the object structure is available. The line set
is also randomly reordered, and stored in a list. In the same manner
as for the points, for each view only a prefix of this list is rendered,
according to the current viewing distance. We will discuss this issue
further in the rendering section.

Figure 3: Representing a small palm by lines. Upper row: polyg-
onal model and representation with 106 lines. Lower row: 1,500
plants distributed on a plane, original scene size is 12M triangles.

4.3 Importance Reduction

Best visual results can be achieved if the plants are not uniformly
reduced. Visual important parts like petals or other plant elements
with special colors should be reduced more slowly than than the rest
of the plant. In Figure 4 an example is shown. The daisies in the
meadow are visually important even though their geometry is small
in comparison to the rest. If all geometry is reduced uniformly, the
reduction is more noticeable, and the perceived quality much worse
than if these elements are handled separately.

Currently, an importance factor is set interactively by the user. In
the future this might be automated by color analysis of the geomet-
ric primitives: in most cases objects seem to be important if their
color is clearly distinguishable from the majority of element colors
in a plant.

(a) (b)

Figure 4: Importance reduction: a) uniform reduction; b) im-
portance reduction, the visually important daisies are represented
polygonally.

4.4 Memory Requirements

The additional point and line data roughly doubles the memory re-
quirements for storing our models. This is why we will try to fully
automate the entire pre-processing step. In this case the plant mod-
els can be stored as procedural plant descriptions in the form of



Figure 5: Left column: Influence of sampling distanced′ and splat factorcp: a) Sampling distance of about one pixel. Plants in the front are
drawn by polygons, those in the back by points. b) With a larger sampling distance, more plants are rendered by points. An insufficient splat
factor leads to holes in the rendering. c) Same sample distance as in b), but a larger splat factor leads to bigger splats, such that holes are
reduced. Right column: Mixed representation of plants. d) a tree rendered by triangles, e) a mix of triangles and points, f) points only.

L-Systems or xfrog-files with very low memory needs. The ex-
traction and approximation process then has to be done for each
run in a pre-processing step. However, the memory needs for our
plant models should are not very high, due to the approximate in-
stancing mechanism in which a complex scene needs about several
dozens of different models requiring usually less than a hundred
megabytes of memory. For the scenes shown on the accompanying
video, the entire geometric data was compact enough to be stored in
AGP memory, which increases the rendering throughput by a factor
of almost two.

5 RENDERING PLANT MODELS

After eco files and plant models are input into the rendering system,
the geometry (polygons, points and lines) is stored in vertex arrays.
During display, for each part of a plant its representation—triangles
or points and lines—and the number of displayed primitives is de-
termined dynamically.

Before rendering an object, visibility culling is applied. First, the
culling is performed on each of the eco files, then on the plant model
instances. If eco files are organized in a hierarchy, the culling is also
applied hierarchically.

In the following, we assume that the original plant model consists of
n trianglesT1, .., Tn with areaA in world space. Some of these tri-
angles are approximated bynl linesL1, .., Lnl with overall length
l, others are approximated bynp pointsP1, .., Pnp . We now split
the set of trianglesT1, .., Tn of the model description into two sets,
one setTP = T1, .., Tk that is approximated by points and the set
TL = Tk+1, .., Tn approximated by lines. The setTL has an area
Al, the setTP has an areaAp in world space. Clearly we have:
A = Ap +Al.

5.1 Rendering Points

In the rendering stage, point and line representations are handled
separately: For the point approximation the number of points is
calculated that is required to render the current object faithfully,



i.e. without holes and with correct coverage. Here each point of the
approximation is represented by a small subimage, a so called splat,
usually one pixel in diameter.

The user controls the speed versus quality tradeoff by setting a sam-
ple distance parameterd′, that defines the average distance between
two neighboring point samples on the image plane. A large value
of d′ results in a larger distance and thus fewer samples and vice
versa. Consequently, the required point splatting area isA′sp = d′2

(in practice, we will use slightly bigger splat areas to avoid holes;
see below).

The number of points that is needed for representing the plant faith-
fully depends on the surfaceAp, as well as its average distance to
the virtual camerar. In order to avoid scaling factors, we define
the image plane to be at distance one from the camera. The ap-
proximate projected areaA′p of the triangle setTP on the image
plane and the required point numberp can be calculated by (see
also [21]):

A′p =
1

2

Ap
r2

p = cp
A′p
A′sp

np (1)

In this formula it is assumed that the triangles are double sided,
i.e., a leaf is modelled by a single surface and not two separate sur-
faces for front and back. The factor 1/2 accounts for leaf orientation
under the assumption that all leaves are randomly distributed.1/r2

corresponds to perspective foreshortening. The splat factorcp al-
lows us to increase the splat size in order to avoid gaps that appear
due to the random sampling. Values from 1.2 to 1.5 are usually suf-
ficient. If the number of required pointsp > np the model part is
rendered polygonally, otherwise by its point approximation usingp
points.

5.2 Rendering Lines

For the plant part that is to be approximated by lines the approach
is slightly different. Here we have two requirements for the approx-
imation: the projected area needed to represent the object faithfully
and the geometric approximation error of the lines. This is due to
the fact that two line sets with equal projected area can approximate
the object differently.

Let the line setL1, .., Lnl approximate the triangle setTL with a
maximum distanceεl in world space. In image space the value is
compared with the sampling distance. Ifεl/r ≥ d′ we render the
set by triangles, otherwise – as in the point case – we compute the
image area if all lines were drawn. Doing so we need the projected
areaA′l of the polygonal representation of corresponding triangle
setTL. This is determined by projecting it similarly to Eq. (1). If
l is the length of all lines in world space, the lines will have length
l/2r in the image plane, where again1/2 accounts for the (random)
orientation, and1/r for the perspective foreshortening (1/r instead
of 1/r2, because we project length and not area!). The image plane
area covered by the lines drawn with line widthd′ is thus

A′sl = l′ d′ =
ld′

2r
, (2)

We are now able to determine the ratio between projected area of
TL and its line approximationql = A′l/A

′
sl. If ql ≤ 1 we draw

ql nl lines, otherwise the model part is drawn using polygons. Note
that this assumes, that all line segments have about the same length,
which is the case for the lines generated by our modelling tool.

5.3 Blending Representations

In the above section we described how and when to switch between
a polygonal description and its approximation by points or lines.
Depending on the selected sample distanced′, this switch in repre-
sentations may become visible (popping). However, this effect can
easily be avoided by not switching between point and triangle rep-
resentations immediately, but instead continuously replacing more
and more triangles by points or vice versa.

As described above, for certain objects, we determined two random
points on each triangle for the point representation. The point list
is scrambled in the same way as the triangles, so that the first2n
points always correspond to the firstn triangles. The selected level
of detail depends onp, the number of requested points (see Eq. (1)
and also Fig. 6).

Figure 6: Rendering a plant in mixed polygon/line/point represen-
tations

If p is larger than three times the number of trianglesk, that form
the part of the plant that is to be approximated by points, the full
triangle set is rendered. On the other hand, ifp < 2k, we render
the firstp points of the point array. For2k ≤ p < 3k, we blend
between both representations by rendering the firstp−2k triangles,
and the points corresponding to the remaining triangles. Due to
the ordering enforced during the pre-process, these points can be
rendered efficiently as vertex arrays.

If we count the number of rendered vertices (number of rendered
points plus three times the number of triangles), we see thatp ver-
tices are always rendered, but never more than3k, so the rendering
time is roughly linear in the number of pixels covered by the object,
and essentially independent of object complexity.

The blending between polygons and their approximation works par-
ticulary well for the isolated surfaces which constitute plants. In
Figure 5(d)-(f) the representation change is presented. While sub-
figure (d) shows the polygonal model, in (e) a mixed representation
is given and in (f) a point approximation.

5.4 Implementation Issues

Image display can be altered by two parameters: the sampling dis-
tanced′ and the splat factorcp in Eq. 1. Fig. 5(a)-(c) demon-
strates the influence of both parameters. If the sampling distance
is increased, elements are converted into points earlier, resulting in
fewer, but larger points. If the splat size is enlarged, resolution is
decreased but the larger area of the splats allows a stronger reduc-
tion.

A noteworthy side effect of calculating the representations in the
described way is that the sampling distanced′ can be varied dy-
namically to ensure a desired vertex complexity. This enables ani-
mations with nearly constant frame rates.

Another nice aspect of our rendering method is that due to the fixed



size of the display elements a point representation often causes
fewer aliasing artefacts than a polygonal representation with very
small polygons. In this sense, our point representation causes alias-
ing due to its discrete structure, but due to the stable display of
points in animations the point approximations of plants are visually
more stable than their polygonal representation.

6 OPTIMIZATION

As mentioned above, in our system vegetation is represented by
plant models and eco files with instancing information. In order to
deal with the huge complexity of nature, we introduced hierarchical
data structures in two ways: for the efficient rendering of complex
individual plants and for the representation of very large numbers
of small plants.

Since our rendering system is tightly coupled to the modeller, we
directly work on its output, and need to get fast visual feedback.
Resorting the objects, building completely new scene hierarchies,
or prefiltering of the point sets is thus not possible. We essentially
have to use the structure of the scene as provided by the modeller,
and enhance it with lightweight hierarchical information. In the
following we describe our solution, which adds hierarchical infor-
mation even to complex scenes in a few seconds.

6.1 Representation of Complex Plants

Eqs. 1 and 2 provide a global mechanism for representing a plant
geometry polygonally or by points and lines. This is in contrast to
the local schemes presented in [3, 2]. The advantage of the global
decision is that it is very efficient. Nonetheless, this approach has
a drawback for large and complex plant models: If the viewer is
close to a single leaf of a complex tree, due to Eq. (1) all the leaves
are displayed polygonally because of the large projected size of the
nearby leaves. This is not optimal for the distant leaves of the same
plant that might be better represented by points or lines.

To reduce this effect, large and complex objects are spatially sub-
divided by an octree of small depth. All the triangles in a cell are
represented by a polygon set and a point and line set. If the cam-
era comes closer, the content of nearby cells is shown polygonally
while distant cells can be approximated. The maple in Figure 7(b)
is a typical example of a tree that benefits from such a structure.

6.2 Grouping of Plants

Rendering large scenes requires the storage and display of millions
of plants. In this case, the iteration over all plants tends to be the
limiting factor even if each plant is displayed by only a single point
or line.

To deal with plant models of such size, vast plant populations are
stored in a set of quadratic tiles that fit together. This results in a
local grouping of plants. If a single tile has too many instances, it is
further subdivided into sub-tiles, until a given number of instances
per tile is achieved.

Each tile is represented by an eco file. For each eco file a rough
point representation for the geometry of the entire tile is computed
by randomly collecting points from the geometry approximations
of the plant instances. Additionally, eco files can be organized hier-
archically i.e., an eco file contains several eco files with positional
information. If this is the case, the rough point approximations of
the children are merged to form a point approximation of the over-
all content of the eco file. Doing so, we are able to display large
areas.

In contrast to a quad-tree data structure this model-oriented spa-
tial data structure gives us more freedom to organize different plant
populations by several eco files that, for instance, obtain different
importance parameters. This is why we prefer this data organi-
zation. Nevertheless, it is relatively easy to use a quad-tree data
structure for the same purpose.

6.3 Caching

For performance reasons it is very important to load as much data as
possible into memory which is quickly accessible by the graphics
processor. Free AGP memory is usually quite limited, e.g., about
18MB on our GeForce3. Therefore, we determine how often a
plant model is used in the current scene. The geometric data of
frequently used models is primarily loaded into AGP memory. The
previously described instancing scheme that limits the number of
different models in our scenes helps in this respect by minimizing
the amount of geometry needed. We are thus able to achieve a ver-
tex rate of about eleven million vertices per second for rendering
our scenes on a GeForce3.

6.4 Shadow Computation

Shadows are very important for correct light interaction in outdoor
scenes. In combination with our interactive system we implemented
two shadow map mechanisms. The first is to obtain a standard
shadow map in a pre-processing step. This can be used efficiently
during rendering but does not allow any dynamic objects and results
in pixelisation artifacts for the large scenes we want to show.

The second possibility is to use the perspective shadow map pro-
posed by Stamminger and Drettakis recently [22]. In this case, the
map is obtained for each image in a way that the pixel resolution
is concentrated to areas where it is needed. This is done by com-
puting the map after the perspective projection of the scene. The
approach allows us to use a relatively small map without visible
artefacts. On the other hand, the map has to be obtained for each
frame, which reduces performance. When computing a conven-
tional high resolution shadow map the scene has to be used without
any level-of-detail approximation –a procedure that might last for
some seconds– the perspective shadow map can be generated in
level-of-detail mode seen from the camera. The frame rate is thus
about 50% of the frame rate without shadow computation.

7 RESULTS AND FUTURE WORK

We have applied the method to a number of plant models and eco
systems. With modern graphics hardware based on PC’s –we used
a 1,2 GHz Pentium with NVidia Geforce3 graphics processor– over
eleven million vertices per second can be drawn. The vertex rate
is enough for interactively displaying a number of fairly complex
plant scenes as can be seen in the accompanying video.

In Figure 7(a) an outdoor scene is shown, that consists of over 120
million polygons. The original scene generated by Deussen et al.
[5] is a part of what we use in our system. Their conventional ren-
derer needed about 75 minutes for image generation of 30 million
triangles computing 9 samples per pixel. In our system we achieve
eight to ten frames per second for the much larger scene albeit with-
out anti-aliasing.

Figure 7(b) shows another scene with a large tree and 13 thousand
sunflowers, 70 million triangles in total. This scene is displayed
typically at three to four frames per second. The relatively low
performance stems from the models that allow no strict reduction



(a) (b)

Figure 7: a) Outdoor scene, rendered with typically 8-10 Hz, original model size: 120 million triangles, image: 795x700 ; b) sunflower field,
rendered with 3-4 Hz average, original model size: 70 million triangles, image: 729x536

without visual artefacts. The line-approximated scene of Figure 3
consists of 12 million triangles and is typically displayed with five
to ten frames. In Table 1 some values are given.

Table 1: Complexity of different scenes and count of elements in
average during interactive rendering. Typical frame rates; if camera
is very close smaller rates can result.

Size LOD LOD LOD Frame
Model (triang) Triang. Lines Points rate

(av.) (av.) (av.) (av.)
640 trees

as in Fig. 2 10M 500K 100K 400K 9-16 Hz
Fig. 3 12M 560K 40K 0 12-20 Hz

Fig. 7(a) 120M 460K 400K 300K 8-10 Hz
Fig. 7(b) 70M 450K 220K 400K 3-4 Hz

Future work will include the automatic texture synthesis for dis-
tant eco files and a simple approach for simulating wind. Using the
ingredients described, a variety of users from fields like such archi-
tecture, landscaping, simulators, and game design can use scenes
with rich vegetation for a real virtual reality.

8 ACKNOWLEDGEMENTS

Marc Stamminger has been supported by a Marie-Curie postdoc-
toral fellowship while doing this work.

References

[1] Iris performer programmer’s guide, 1995.

[2] B. Chen and M. Nguyen. Pop: A hybrid point and polygon
rendering system for large data. InIEEE Visualization 2001.
IEEE, 2001.

[3] J. Cohen, D. Aliaga, and W. Zhang. Hybrid simplification:
Combining multi-resolution polygon and point rendering. In
IEEE Visualization 2001. IEEE, 2001.

[4] P. de Reffye, C. Edelin, J. Francon, M. Jaeger, and C. Puech.
Plant models faithful to botanical structure and development.
In J. Dill, editor, Computer Graphics (SIGGRAPH ’88 Pro-
ceedings), volume 22, pages 151–158. ACM SIGGRAPH,
August 1988.

[5] O. Deussen, P. Hanrahan, M. Pharr, B. Lintermann, R. Měch,
and P. Prusinkiewicz. Realistic modeling and rendering of
plant ecosystems.Computer Graphics, 32(3), SIGGRAPH
98 Conference Proceedings.

[6] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller,
C. Aldrich, and M. Mineev-Weinstein. ROAMing terrain:
Real-time optimally adapting meshes.IEEE Visualization
1997, 1997.

[7] H. Hoppe. Progressive meshes. In Holly Rushmeier, editor,
Proceedings of SIGGRAPH 96, pages 99–108, August 1996.

[8] Hugues Hoppe. View-dependent refinement of progressive
meshes. In Turner Whitted, editor,SIGGRAPH 97 Confer-
ence Proceedings, pages 189–198. ACM SIGGRAPH, Addi-
son Wesley, August 1997.

[9] M. Levoy and T. Whitted. The use of points as display prim-
itives. Technical Report TR 85-022, Univ. of North Carolina
at Chapel Hill, 1985.

[10] B. Lintermann and O. Deussen. Interactive modeling of
plants.IEEE Computer Graphics and Applications, 19(1):56–
65, 1999.

[11] N. Max, O. Deussen, and B. Keating. Hierarchical image-
based rendering using texture mapping hardware.Eurograph-
ics Rendering Workshop 1999, pages 57–62, June 1999.

[12] N. Max and K. Ohsaki. Rendering trees from precomputed
Z-buffer views. InEurographics Rendering Workshop 1995.
Eurographics, June 1995.



[13] F. Perbert and M. Cani. Animating prairies in real-time. In
2001 ACM Symposion on interacive 3D Graphics, pages 103–
110, March 2001.

[14] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Sur-
fels: Surface elements as rendering primitives. InSIGGRAPH
2000 Conference Proceedings, pages 335–242.

[15] P. Prusinkiewicz and A. Lindenmayer.The Algorithmic
Beauty of Plants. Springer-Verlag, New York, 1990.

[16] W. T. Reeves and R. Blau. Approximate and probabilistic
algorithms for shading and rendering structured particle sys-
tems. InComputer Graphics (SIGGRAPH ’85 Proceedings),
volume 19, pages 313–322, July 1985.

[17] J. Rossignac and P. Borrel. Multi-resolution 3D approxima-
tions for rendering complex scenes. In B. Falcidieno and T.L.
Kunii, editors,Geometric Modeling in Computer Graphics,
pages 455–465. Springer Verlag, Genova, Italy, 1993.

[18] S. Rusinkiewicz and M. Levoy. Qsplat: A mulitresolution
point rendering system for large meshes. InSIGGRAPH 2000
Conference Proceedings, pages 343–352.

[19] Gernot Schaufler and Wolfgang Strzlinger. A three dimen-
sional image cache for virtual reality.Computer Graphics
Forum, 15(3):227–236, August 1996. ISSN 1067-7055.

[20] J.W. Shade, S.J. Gortler, L. He, and R. Szeliski. Layered depth
images.Proceedings of SIGGRAPH 98, pages 231–242, July
1998.

[21] M. Stamminger and G. Drettakis. Interactive sampling and
rendering for complex and procedural geometry. In S. Gortler
and C. Myszkowski, editors,Rendering Techniques 2001,
pages 151–162. Eurographics, Springer-Verlag, Vienna, 2001.

[22] M. Stamminger and G. Drettakis. Perspective shadow maps.
In SIGGRAPHH 2002 Conference Proceedings. ACM Sig-
graph, 2002.

[23] Michael Wand, Matthias Fischer, Ingmar Peter, Fried-
helm Meyer auf der Heide, and Wolfgang Straßer. The ran-
domized z-buffer algorithm: Interactive rendering of highly
complex scenes. InSIGGRAPH 2001 Conference Proceed-
ings, pages 361–370.

[24] J. Weber and J. Penn. Creation and rendering of realistic trees.
In R. Cook, editor,Computer Graphics (SIGGRAPH ’95 Pro-
ceedings), pages 119–128. ACM SIGGRAPH, August 1995.


