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Abstract

The goal of texture synthesis is to generate an arbitrarily large high-quality texture from a small input sample.
Generally, it is assumed that the input image is given as a �at, square piece of texture, thus it has to be carefully
prepared from a picture taken under ideal conditions. Instead we would like to extract the input texture from any
surface from within an arbitrary photograph. This introduces several challenges: Only parts of the photograph
are covered with the texture of interest, perspective and scene geometry introduce distortions, and the texture is
non-uniformly sampled during the capture process. This breaks many of the assumptions used for synthesis.
In this paper we combine a simple novel user interface with a generic per-pixel synthesis algorithm to achieve
high-quality synthesis from a photograph. Our interface lets the user locally describe the geometry supporting
the textures by combining rational Bézier patches. These are particularly well suited to describe curved surfaces
under projection. Further, we extend per-pixel synthesis to account for arbitrary texture sparsity and distortion,
both in the input image and in the synthesis output. Applications range from synthesizing textures directly from
photographs to high-quality texture completion.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Digitizing and scanning;

1. Introduction

Texture synthesis from example has become an increasingly
interesting tool. While computer graphics applications now
require massive amounts of high-quality high-resolution tex-
tures, texture synthesis algorithms are able to quickly gen-
erate these textures from small example images. However,
synthesis algorithms expect a square image representing a
�at piece of texture as input. This requirement is sometimes
hard to enforce: We may only have access to a single photo-
graph showing the surface under an arbitrary viewpoint and
with occlusions or holes. For some objects, obtaining a �at
sample is impossible: An apple skin or a piece of tree bark
cannot be �attened without introducing new distortions. We
are thus interested in designing a method to synthesize a tex-
ture using any arbitrary photograph as input. Ideally, the user
would simply indicate from which surface to synthesize, and
the algorithm would be able to synthesize more of the same
texture. This process is depicted Figure1.

The main challenges are:

� The texture in the input image is distorted by the perspec-
tive view and the underlying geometry.

� The example surface may have an arbitrary outline as oc-
cluded areas need to be ignored. In other words, the set of
pixels on which we have useful information is sparse.

� The texture likely appears with varying amount of detail
in different parts of the image. A good example of this is
a wall photographed at an angle: More details are visible
in the foreground.

� We have no description or prior knowledge of the surface
geometry. Nevertheless, we need to de�ne pixel neighbor-
hoods in order to perform ef�cient texture synthesis.

It is worth noting that some existing algorithms perform
synthesisinto a distorted space [YHBZ01,LH06]. However,
to the best of our knowledge, no algorithm synthesizesfrom
a distorted input – which implies different challenges.

Our problem setting shares similarities with the work
on image completion [BVSO03, DCOY03, PSK06]. Image

c
 2008 The Author(s)
Journal compilationc
 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.



C. Eisenacher & S. Lefebvre & M. Stamminger / Texture Synthesis From Photographs

(a) User speci�ed patches (b) Generated Jacobian �eld

(c) Region of interest (ROI) (d) Synthesis result

Figure 1: A user speci�es patches to model texture distor-
tions (a) as a Jacobian �eld (b). Analyzing texture from a
user de�ned region of interest (c) we can directly synthesize
from distorted space into distorted space (d).

completion describes the �lling of holes in images – for in-
stance to remove an object from a photograph. Often, miss-
ing surfaces are seen at an angle and must be completed un-
der distortion, from distorted content. Note however that we
do not propose an image completion technique. Our goal is
to design a texture synthesis algorithm that can use a texture
under distortion as input and synthesize more of this texture
under any new distortion, may it be a �at piece of toroidal
texture, another photograph, or a texture atlas.

The �rst problem that needs to be tackled is to obtain
some knowledge about the surfaces present in the image. We
propose a simple user-guided approach based on the manual
speci�cation of a few curved patches covering the surface
of interest. This is detailed in Section3.1. Note that our tex-
ture synthesis scheme is not specialized to our user interface:
The required information about the surfaces could possibly
be obtained from a reconstruction technique.

The second major challenge is to adapt texture synthe-
sis to exploit this information. We build our work on the
fast per-pixel synthesis algorithm of Lefebvre and Hoppe
[LH06]. Our contributions are to adapt the analysis step of
the algorithm to take into account distortion, non-uniform
sampling and sparsity of the input texture data. We also im-
prove synthesis quality on anisotropic textures such as brick
walls or tree barks. These contributions are detailed Sec-
tion 3.2and Section3.3.

2. Related work

Traditional example based texture synthesis algorithms syn-
thesize a large �at piece of texture from a small input exam-
ple. Two main approaches exist: Per-pixel algorithms gener-
ate the texture pixel by pixel [EL99, WL00], while patch-
based algorithms cut and paste together large patches to
form the new texture [EF01,KSE� 03]. Both have many ex-
tensions, in particular to perform synthesis over a surface
[Tur01,MK03]. Both produce high-quality results. The key
observation which motivates our choice of per-pixel synthe-
sis is that it only requireslocal information around pixels.
This has been previously exploited to synthesize textures
into a distorted space [YHBZ01,LH06]. In these papers the
distortion is modeled by aJacobian �eld: At every pixel a
small matrix describes the local deformation. Our key in-
sight is that per-pixel synthesis will let us synthesizefrom a
photograph without having to reconstruct or unfold a piece
of surface: We only need to properly de�ne the shape oflo-
cal neighborhoods.

Texture synthesis techniques have been previously used in
photographs, for instance to complete holes or to replace tex-
tures. Some completion methods either ignore [IP97,CPT03,
BVSO03, SYJS05] or do not explicitly model [DCOY03]
distortions due to geometry and perspective. These ap-
proaches assume that the texture exists in the image at all
necessary scales. Because we have no prior knowledge of the
distortion in the output, we cannot make such an assumption.

The approach of Ofek et al. [OSRW97] extracts the tex-
ture of a known object from a sequence of photographs, tak-
ing into account geometry and perspective. However, it is
dif�cult to apply in our context where only a single pho-
tograph is available and the geometry is unknown. Synthe-
sizing a texture of similar appearance fortunately only re-
quires partial knowledge about the surfaces present in the
image. Guided texture synthesis [HJO� 01, Har01] let the
user control which regions of the input are used to synthe-
size regions of the output. Perspective distortion may thus be
captured by a gradient in the guidance �eld. This however
strongly restricts the search space. Often the user is asked
to identify how square regions get mapped into the �nal im-
age [IBG03,LLH04,PSK06], typically by overlaying a dis-
torted lattice over the photograph. This is used to re-project a
�at synthesis result into the image, giving the illusion it was
generated with the appropriate distortion. This has several
drawbacks: Manually specifying the lattice can prove dif�-
cult in absence of visual clues. Going back from �at to dis-
torted space involves re-sampling, possibly reducing quality
and wasting computations by synthesizing at a higher res-
olution than required in the image. Finally, and most im-
portantly, piecewise �at regions cannot properly capture a
curved surface under projection.

Fang et al. [FH06] limit user involvement and estimate
the surface normals from the shading. However normals are
not suf�cient for synthesis from a surface as we also need
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texture scale and orientation. Since most of the surfaces we
deal with are well captured by curved patches, it seemed un-
necessary to follow these more complex reconstruction ap-
proaches. We instead let the user describe pieces of geometry
through a simple, improved user interface.

3. Our approach

Figure1 depicts the main steps of our approach: Using our
interface a user speci�es a rough approximation of the scene
geometry in the input photograph (a) to modellocal distor-
tions as a Jacobian �eld (b). Intuitively, the Jacobian �eld de-
�nes two vectors in each pixel telling us where to �nd neigh-
boring texture elements in the image. The visualization out-
lines the streamlines of those two principal directions with
red and green anisotropic noise patterns obtained from a line
integral convolution [CL93]. Next the user selects a region
of interest (ROI) through a simple paint interface (c). We
use the Jacobian �eld to analyze the texture in the ROI and
synthesize directlyfrom distorted spaceto distorted space.
For example we can synthesize into the same photograph to
remove a window (d).

The key idea for existing anisometric texture synthe-
sis [YHBZ01,LH06] is the comparison of thedistortedsyn-
thesis neighborhood withregularneighborhoods in a �at ex-
emplar (Figure2(c) and2(b)) searching for the best match.
We generalize this idea and directly comparedistortedsyn-
thesis neighborhoods todistortedexemplar neighborhoods
(Figure2(c)and2(a)).

(a) Distorted exem-
plar space (DES)

(b) Flat exemplar (c) Distorted synthe-
sis space (DSS)

Figure 2: Anisometric synthesis compares distorted synthe-
sis neighborhoods (c) with regular neighborhoods (b). We
compare them directly to distorted exemplar neighborhoods
(a). Representative neighborhood shapes are outlined in red.

A key element in understanding our approach is that we
only work with two spaces: The distorted exemplar space
(DES) – the input – and the distorted synthesis space (DSS)
– the output. A �at exemplardoes not existin our case. For
neighborhood comparison we build regular square neighbor-
hoods expressed in the same frame of reference: The regu-
lar neighborhood frame (RNF). While these neighborhoods
have a regular, square shape in the RNF they of course have
arbitrarily distorted shapes in DES and DSS. We use the Ja-
cobian �eld to compute the distortion of the neighborhoods
and fetch the colors at the appropriate locations around each

pixel in the images. This amounts to implicitly �atten local
neighborhoods for comparison. Note that it is different from
a global �attening of the exemplar which would introduce
distortions in the general case.

3.1. User interface

Our synthesis scheme assumes we have a Jacobian �eld to
model the distortions of the input texture. Obtaining such a
�eld for a given photograph is challenging, since it results
from the combination of several factors: Projection onto the
image plane, surface geometry, texture orientation and scale.

In practice, many interesting textured surfaces are pla-
nar or curved – with a curvature that is small compared to
the scale of the texture. This has been exploited by sev-
eral approaches relying on a user interface [LLH04,DTM96,
IBG03,PSK06]: The user speci�es the distortion of the tex-
ture by placing a few primitives in the view. However we
have seen that these interfaces have disadvantages when
dealing with curved surfaces. Hence we propose a new im-
proved interface for this task. A key issue is that the prim-
itives should have a reasonably low number or degrees of
freedom to allow easy interaction, yet be powerful enough
to describe planar and curved surfaces under projection.

(a) Photograph (DES) (b) Flat (c) Jacobian �eld

Figure 3: In the planar case we use the 2D homography
between (a) and (b) to de�ne a Jacobian �eld JDES (c).

Planar geometry: In the planar case we build on the 2D ho-
mography approach of Pavić et al. [PSK06]. The user places
four corner points to de�ne a 2D homography between the
DES and a �at rectangle. We use a Direct Linear Transfor-
mation (DLT) to obtain a homogeneous 3� 3 projection ma-
trix MDLT between the two polygons. However, while Pavić
et al. use it to �atten the texture and operate in �at space,
we do the opposite. We use it to transform the identity frame
from the �at space into the DES. As shown in Figure3(c)
these projected vectors de�ne the Jacobian �eld used as in-
put for our synthesis from distorted space algorithm.

Curved geometry:Unfortunately, the piecewise �at approx-
imation of curved surfaces causes high order discontinuities
like the `zig-zag' distortions in Figure4(b), which are bad
for synthesis as they de�ne wrong neighborhoods. Previ-
ous UIs attempt to lessen such distortions using very �ne
grids [LLH04, PSK06]. However, placing that many nodes
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is tedious for the user, especially for textures that provide
few visible clues for their placement.

Fortunately, de�ning smooth curved surfaces with a few
control points (CPs) is exactly what Bézier curves were de-
signed for. We are most interested inrational Bézier curves,
which have an additional user controllable weightwi at each
CPbi :

x(t) =
å n

t= 0 wibiB
n
i (t)

å n
t= 0 wiBn

i (t)
(1)

While interaction with a 2D rational Bézier curve is a 2D
process – CPs are moved around and weights are modi�ed
until the resulting curve has the desired shape – it is well
known, that the 2D CPsbi and their weightswi in fact de-
�ne 3D CPs [ wibi wi ]T and a 3D Bézier curve that is
projected onto the planew = 1 [Far02]. This is exactly our
scenario, making rational Bézier patches the ideal tool to de-
scribe curved objects in photographs as shown in Figure4.

(a) Quad-grid (b) Planar representation

(c) Rational Bézier patch (d) Flat parameter space

Figure 4: Comparison with [PSK06]: Piecewise �at approx-
imation (a) causes C1 discontinuities on curved surfaces (b).
Rational Bézier patches (c) capture them correctly (d). Im-
ages (a) and (b) with permission of [PSK06].

In general a Bézier patch will describe a non-developable
surface. To obtain a Jacobian �eld we compute the deriva-
tives of each patchin homogeneous coordinatesand normal-
ize them before projection onto the image plane.

Because our approach works directly in distorted space, it
avoids resampling of the exemplar into a �at image and is
capable of handling non-�attenable curved surfaces like the
apple in Figure17. Additionally, it enables the use of mul-
tiple patches in a very robust way: As we do not �atten the
texture, we only have discontinuities in the Jacobian �eld,
i.e. the �rst derivative.C0 continuity is always maintained
and no relaxation algorithm [PSK06] needs to be applied to

recover from imprecise user input. Our patches can overlap,
be disjoint, and may in general not perfectly match. Simply
averaging the Jacobians of overlapping patches and closing
gaps by extrapolating with a pull-push algorithm [GGSC96]
suf�ces for texture synthesis as shown in Figure5.

(a) Multiple overlapping patches (b) Jacobian �eld

(c) Synthesis result

Figure 5: The user inputs multiple overlapping patches (a).
Still the Jacobian �eld shows no discontinuities across patch
borders (b) and a convincing texture is synthesized (c). Note
that a single patch (four interactions) would suf�ce here.

In practice, we ask the user to arrange CPs and adjust
weights until an overlaid grid roughly matches the distortion
in the image. A good initialization is essential in reducing in-
teraction time. Hence, we start with a rough planar approxi-
mation of the surface. We take four user speci�ed points, per-
form a DLT, obtain a projection matrixMDLT and use it for
the initial placement of the CPs at regular positions in the �at
parameter space. Our key insight is thatMDLT delivers the
exemplar position of the CPs inhomogenous coordinates.
While most applications just perform de-homogenisation,
we realize that the homogenous components are exactly the
initial weightswi; j for our rational Bézier patch. In addition,
assuming square pixels in the camera and a square parame-
ter space, we can extract the aspect ratio of the user speci�ed
rectangleand adjust the subdivision of our overlaid grid like
in Figure3(a). In the �nal interface, the user moves the four
corners of the patch until the overlaid grid gives the same
feeling of perspective as the photograph. If the user wants to
describe a plane, interaction is complete. If a curved surface
is desired, the user has to move the individual CPs and in
rare cases adjust the CP weights.

In our experiments we found that rational Bézier patches
of degree three, i.e.cubic rational Bézier patches, were most
suitable for our task. They are a good trade-off between com-
plexity for the user – 4� 4 = 16 CPs are already a lot – and
the possible power of expression.
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It is important to note that the matrixMDLT is only unique
up to a scaling factorl . While this is irrelevant for de-
homogenisation, it may lead to unpredictable UI behavior
with our approach and is especially confusing ifMDLT pro-
duces negative weights, i.e. some CPs are behind the camera.
We solve this pragmatically by scalingMDLT so that all CPs
have positive weight and the closest edge has a user speci�ed
length. The latter also lets us de�ne multiple patches while
ensuring a consistent scaling.

Region of interest: The last step for the user is to de�ne
which areas should be used for synthesis. This is done on a
per-pixel basis with a simple paint interface like Figure1(c).

3.2. Exemplar analysis

While our ideas do not depend on a particular synthesis
scheme, we chose to base our work on the recent algorithm
of Lefebvre and Hoppe [LH06]. Like many synthesis algo-
rithms, it splits the workload into a slow analysis step and
a fast synthesis step [ZG02]. Most of the changes we made
are related to exemplar analysis. In order of processing, we
adapt the following steps:

� We compute adistorted feature distancefor structured
(i.e. non stochastic) textures.

� We compute asparse distorted Gaussian stack: A multi-
scale description of the input texture, discarding areas not
usable due to lack of detail.

� We fetch thedistorted neighborhoods.

We describe each of these steps in the following.

Distorted feature distance: An important information to
add to the neighborhoods of structured exemplars is the fea-
ture distance (FD) [LH06]. At each pixel it describes the
distance to the border of the current feature, hence guiding
the synthesis algorithm. It is obtained from a binary feature
mask by computing the signed euclidean distance transfor-
mation. The example mask in Figure6 was obtained by man-
ually editing the result of an edge-detection �lter.

Figure 6: For a given photograph (top) the user de�nes a
binary feature mask (bottom). Using the Jacobian �eld, we
compute a distorted feature distance (right).

We adapt an ef�cient algorithm [Dan80] to operate
through the distortion �eld. This only involves a simple mod-

i�cation: The Jacobian is taken into account when updating
per-pixel distance labels from their neighbors. The result is
the distorted feature distance illustrated in Figure6. Note
that while the distant stones cover less pixels than the stones
in the foreground, they have similar size in reality and indeed
comparable feature distances.

(a) Binary (b) Exemplar (c) Multi-channel

(d) Synthesis with (a) (e) Synthesis with (c)

Figure 7: Simple feature distance fails on this alternating
pattern (d). Multiple channels succeed (e).

We found that feature distance fails to improve synthesis
in certain cases: Interleaved features of different kind and
anisotropic textures. We improve the �rst by using multiple
channels to capture the distance to different features. This
is inspired by the texture-by-number approach described by
Hertzman et al. [HJO� 01]. Note how we are able to pre-
serve the alternating pattern of bright and dull dots in Fig-
ure 7(e). We address the second issue by encoding the dis-
tancealong certain directionsin multiple channels. Indeed,
the key observation is that standard feature distance fails to
capture asymmetric features like the bricks in Figure9 be-
cause it encodes distance to theclosestfeature only. Instead
we encode the distance to the closest featurealong multiple
directions, typically the two principal directions de�ned by
the Jacobian �eld. As shown in Figure8 and 9, quality is
signi�cantly improved by this simple extension.

(a) Feature distance (b) Exemplar (c) Directional FD

(d) Synthesis with (a) (e) Synthesis with (c)

Figure 8: Standard Feature Distance (a) produces artifacts
with anisotropic textures (d). Directional Feature Distance
(c) solves this problem (e).
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(a) Standard mask (b) Exemplar (c) Extended mask

(d) Standard directional FD (e) Extended directional FD

(f) Synthesis with plain FD (g) Synthesis with extended FD

Figure 9: De�ning a feature mask only for the ROI intro-
duces errors into the FD (d) and results in artifacts (f). Ex-
tending the mask (c) avoids these errors and artifacts (g).

A last point we want to emphasize is the need to de�ne
the feature mask beyond the boundaries of the ROI. Without
this extension, the feature distance within the circled brick in
Figure9(d) becomes arbitrarily large and introduces wrong
information into the analysis. This can be corrected by man-
ually extending the feature mask beyond the ROI boundary,
as shown in Figure9(c).

Sparse distorted Gaussian stack:Like most texture syn-
thesis algorithms, ours relies on a multi-scale process. The
input image is �ltered at different scales and the texture is
synthesized progressively, using coarse results as a guide to
synthesize �ner results.

In order to follow this approach, we need to �lter the
texture in the input image. Our goal is to de�ne a Gaus-
sian stack [LH05]: An array of images containing succes-
sively low-pass �ltered versions of the texture. We face two
main challenges: First, we have to �lter in distorted space.
As Figure10(a) illustrates, convolving the complete image
with a �xed size Gaussian kernel is incorrect in the context
of distorted exemplars. The input texture is sampled non-
uniformly and an image space convolution does not corre-
spond to a convolution in the �at texture space. Second, the
image is likely to contain a texture already �ltered at differ-
ent scales due to geometry and perspective. We have to de-
tect and discard pixels that are already low-pass �ltered by
the capture process and do not provide enough information
for the �ner levels of the stack.

(a) Low-pass �ltered (b) Local low-pass �ltered

Figure 10: Low-pass �ltering the complete photograph is
incorrect: distant areas are overly blurred (a). Our local �l-
tering technique solves this issue (b).

Our local �ltering technique relies on the separability of
the Gaussian kernel and performs two successive line in-
tegral convolutions [CL93] along the local streamlines de-
�ned by the two principal directions of the Jacobian �eld.
As shown in Figure10(b) the result is a low-pass �lter that
is non-uniform and anisotropic in image space – areas close
to the viewpoint are blurred stronger than distant areas. Yet
it is uniform with respect to the texture features: The mor-
tar remains visible over the complete wall. It is important
to note that this method works for non-developable surfaces
as well. This approach may lead to artifacts at the border of
the �ltered region. However, this is not a problem for texture
synthesis since neighborhoods partially outside the ROI will
be ignored.

To detect whether the texture is already �ltered in the in-
put image, we again rely on the Jacobian �eld. Our way is
similar to [IBG03], however we use a different texture qual-
ity metric. The key observation is that the determinant detJxy
equals the area in image space spanned by the two vectors of
the JacobianJxy. We re-scale the Jacobian �eld so that the
largest occurring determinant ofJ0 equals a one pixel area.
This corresponds to the highest frequency detail captured by
the image and de�nes the size of one 'texture element'. The
determinant of the inverse, detJ0� 1

xy , is the number of texture
elements per pixel and pixels containing multiple texture el-
ements have been low-pass �ltered in the photograph.

Following this idea, we want to detect whether a pixel
should be included in a particular stack levelSL. By de�-
nition, at level 0 one texture element maps to one pixel. At
level 1 four texture elements (2� 2) map to one pixel. More
generally, we obtain the stack level from the Jacobian as:

SLxy = log4

�
detJ0� 1

xy

�
(2)

When building the �nal sparse distorted Gaussian Stack we
only keep pixels that have anSLlower or equal to the current
level of the stack, as all other pixels lack the necessary high
frequency content. The resulting stack is shown Figure11.
Notice how �ner levels lack information in areas that are too
far away from the viewpoint.
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(a) Level 0 (�nest) (b) Level 1 (c) Level 2

(d) Level 3 (e) Level 4 (f) Level 5 (coarsest)

Figure 11: The combination of local �ltering and stack level
technique results in a sparse distorted Gaussian stack. Only
the �rst 6 levels are shown.

Distorted neighborhoods:The key element of pixel-based
texture synthesis is the search for the best matching exem-
plar neighborhood. Similarly to algorithms synthesizing into
distorted space, we use a relative local neighborhood de�ni-
tion shown in Figure12(a). In our terminology this regular
5� 5 reference neighborhood is de�ned in RNF using offset
vectors from the centre to the neighboring texture elements.

We build the neighborhoods of the pixels in DES and DSS
one entry at a time. For each entry in the neighborhood, we
start from the center and march along the offset, following
the Jacobian �eld as illustrated in Figure12(b). We always
advance at most by one pixel in distorted space, until the
entire offset has been processed. If one neighbor falls outside
the ROI, the neighborhood is only partially valid – which
hinders pre-computation – and hence it is ignored.

(a) Relative de�nition (b) Distorted nbh.

Figure 12: The offsets of the relative neighborhood de�ni-
tion in RNF (a) are distorted by the Jacobian �eld of the
DES and the DSS to obtain distorted neighborhoods (b).

3.3. Texture synthesis

At this point we have seen all the required elements to
adapt a standard per-pixel synthesis algorithm to our ap-
proach. The main changes to the synthesis part, which we
describe below, concern the construction of the neighbor-
hoods, handling of the exemplar sparsity, and antialiased
synthesis when targeting a distorted space.

Neighborhoods: Neighborhoods are built from the DSS
during synthesis in the same way they are constructed from
the DES during the analysis. Neighborhoods are all ex-
pressed in RNF and are directly compared to the DES neigh-
borhoods built during the analysis step.

Border jumps: One feature of the synthesis scheme we use
is that it synthesizes exemplar coordinates. Once a result is
obtained at a given resolution, the resolution is increased by
coordinateupsampling: Every synthesized coordinate is re-
placed by the coordinates of its four children in the next �ner
level of the analysis stack. Neighborhood matching is then
performed on this upsampled result.

For a �at square exemplar, upsampling is a trivial com-
putation on the coordinates. However, when using a sparse
exemplar, the computed position may fall outside the user-
de�ned ROI. We solve this issue by marching along the
offset between parent and child coordinate, similarly to the
march performed for gathering a neighborhood. Care has to
be taken to correctly transform the offset from DSS to DES.
Whenever we encounter a neighborhood that does not com-
pletely lie inside the ROI, the walk will be 'teleported' to a
valid location. The target of thisborder jumpis precomputed
to be the neighborhood entirely inside the ROI most similar
to the partially de�ned neighborhood at the boundary. A nice
implementation detail is that we can hide this mechanism in-
side the k-coherence search [TZL� 02] used by most texture
synthesis algorithms. Figure15 shows a synthesis result ob-
tained from a sparse exemplar.

Antialiased synthesis:For synthesis into a space with dis-
tortions that model a scaling, the scale of texture features and
neighbourhood size are decoupled from the level of the syn-
thesis pyramid. Strong aliasing effects may occur. Figure13
shows an example where the Jacobian �eld for DSS is a scal-
ing ramp from 1 to 0. Aliasing appears as detJ approaches
0, implying that an increasingly large number of texture el-
ements map to a single pixel. Instead of showing the aver-
age color of these texture elements, the pixel displays only
one of them, producing aliasing. Similarly to the mechanism
described Section3.2, we compute the number of texture el-
ements in each pixel of the synthesis pyramid. Note that at
coarser levels, pixels enclose the texture elements of their
children. We then compute the stack level to be used at each
pixel using this number.

4. Results and applications

For all the examples shown in the paper the user interaction
to describe the distortions took between 10 seconds and two
minutes (Figure1). Feature masks were obtained using an
edge-detector – a Difference of Gaussian �lter – and thresh-
olding. Except for the arti�cial examples in Figures7 and9
the feature masks naturally extend outside of the ROI. In
Figures6 and8 noise artifacts were manually removed. The
clusters in Figure7(c)were created with the GIMP �ller tool.

c
 2008 The Author(s)
Journal compilationc
 2008 The Eurographics Association and Blackwell Publishing Ltd.



C. Eisenacher & S. Lefebvre & M. Stamminger / Texture Synthesis From Photographs

Figure 13: Synthesis using a[1::0] ramp as Jacobian �eld.
Top: Ordinary synthesis; bottom: Antialiased synthesis. Tex-
ture from Figure17(a).

Analysis time for the results displayed in this paper ranges
from 2 to 10 minutes on a single core Intel P4 3.2 GHz.
Synthesis time ranges from 1 to 5 minutes depending on
the synthesized area size. Both analysis and synthesis cost
grow linearly in number of pixels. While this is an accept-
able speed, it is slow compared to state-of-the-art synthesis
performance. Most of the cost currently comes from neigh-
borhood gathering. However, these measurements are for our
CPU implementation. None of our changes prevent the GPU
implementation of [LH06], and we believe much faster syn-
thesis can be achieved if necessary.

The naive approach to synthesize from a photograph
would be to ignore texture distortions, cut out a square piece
of the image and use it for synthesis. As illustrated in Fig-
ure 14, this fails if the image contains a distorted surface.
For the same example we ask the user to specify a rough
approximation of the underlying geometry. After less then
30 seconds of interaction, our approach synthesises a much
more faithful result.

As illustrated in Figure15, we can synthesize from sparse
exemplars and are able to perform synthesis under severe
distortion while maintaining synthesis quality. Notice that
synthesized content is properly antialiased where features
become small. Figure16 shows a challenging case of low-
pass �ltering during image capture. The 1282 example was
generated by rendering a polygon with a checkerboard tex-
ture, using hardware anisotropic �ltering. Even though only
few un�ltered checkerboard cells exist in the foreground, our
scheme synthesizes an almost perfect checkerboard.

A �rst straight forward application of our approach is
to prepare �at, square, toroidal textures from a photograph.
These �at samples can later be used as input exemplars for
any `�at' synthesis scheme.

Another application is the completion of textures in pho-
tographs. We de�ne a ROI for the texture, a target area and
use the overlapping area as constraint. This is achieved by
�xing the value of constraining pixels in the synthesis pyra-
mid. As illustrated in Figure17, we successfully complete
textures on both planar and non-�attenable surfaces. This
procedure can also be used to handle partial occlusions for
subsequent processing.

(a) Flat (b) Exemplar (c) Distorted

(d) Flat result (e) Our result

Figure 14: Photograph of a curved exemplar (b): Using a
�at portion of the image (a) synthesis fails (d). Modeling the
distortions with a rational Bézier patch (c) synthesis works
well (e). Note that (d) and (e) have the same resolution.

(a) Exemplar (b) Synthesis result

Figure 15: Anisometric, antialiased synthesis of pebbles
from a sparse exemplar.

As we synthesize pixel coordinates, we can easily verify
that the algorithm is not limited to using pixels from areas
with similar distortion in the input. In Figure18, pixels from
both the foreground and the background are used for syn-
thesis in the back. A texture-by-number approach [HJO� 01]
would miss these opportunities by over-constraining the
search space. Note that synthesis in the front does not use
pixels from the back as they do not contain enough details.

Another strength of our approach is that we are not lim-
ited to the content of a single image. We can synthesize
arbitrary amounts of texture from one image into another.

(a) Exemplar (b) Result

Figure 16: Few un�ltered checkerboard cells exist in the
foreground (a), still our scheme synthesizes an almost per-
fect checkerboard (b).
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(a) Patch (b) ROI (c) Patch (d) ROI

(e) Result (f) Result

Figure 17: The user speci�es a patch for distortion (a, d), a
ROI and a target area (b, e) to complete an image (c, f).

Figure 18: The color map in the bottom left encodes in red
and green the position the texture was taken from in synthe-
sized areas. Green is foreground, red is background. We use
all available textures as long as it has enough details.

Figure 19: We can use the texture from Figure17(b) and
place it onto the geometry of Figure1 (shown inset).

Figure19 shows an example where the synthesized texture
did not exist anywhere with the appropriate distortion in the
input. Still, since we explicitly model distortion, our result
follows the surface nicely. Note however that we focus on
texture synthesis and did not try to preserve shading in the
target image. This is, of course, an interesting avenue for fu-
ture research.

Our scheme produces lower quality results in some ex-
treme situations. For instance, using sparse exemplars con-
taining large features like the `brick wall E' in Figure9
will lead to artifacts as too few complete neighborhoods are
available at coarse resolution. Similarly if too few pixels
contain high resolution information in the input, it is dif�-
cult to synthesize large high-resolution areas in the output,
due to lack of data.

5. Conclusion

We introduced a method to synthesize new textures using
any surface from any photograph as input.

We let the user roughly describe the surfaces present in the
image by combining rational Bézier patches through a sim-
ple interface. Rational Bézier patches are particularly well
suited for this task as they directly correspond to 3D Bézier
patches projected onto a plane. Thanks to a good initializa-
tion of the control points, placing new patches in the image
is easy for the user. Our interface outputs a Jacobian �eld
which locally de�nes, in each pixel, the distortion of the tex-
ture in the image.

Using only this local information as input, we build upon
an existing state-of-the-art synthesis algorithm to synthe-
size from a sparse, distorted input texture. We showed how
to adapt each key synthesis step: Computation of a dis-
torted feature distance to guide synthesis of structured pat-
terns, multi-scale analysis of the texture content, gathering
of distorted neighborhoods, border jumps for upsampling in
sparse exemplars and antialiased synthesis.

The end result is a per-pixel synthesis algorithm which
can extract a texture from any surface in a photograph, and
synthesize a new texture under arbitrary distortion. Applica-
tions range from texture synthesis to texture completion.

Possible future directions of research include:

� Using neighborhood approximations similarly to [LH06]
and targeting a GPU implementation for real-time synthe-
sis from distorted input.

� Respect shading for better texture replacement.
� Using an interface similar to the one shown by Fang

et al. [FH07] to obtain curvelinear coordinates. One chal-
lenge will be to capture perspective effects.

� Replacing the user interface with a shape from shading ap-
proach or using a few markers in the image. One challenge
is to determine the texture scale and orientation from the
photograph.
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