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Abstract

Audio rendering of impact sounds, such as those caused by falling
objects or explosion debris, adds realism to interactive 3D audio-
visual applications, and can be convincingly achieved using modal xi{
sound synthesis. Unfortunately, mode-based computations can be-_
come prohibitively expensive when many objects, each with many
modes, are impacted simultaneously. We introduce a fast sound
synthesis approach, based on short-time Fourier Tranforms, that
exploits the inherent sparsity of modal sounds in the frequency do-
main. For our test scenes, this “fast mode summation” can give Time-domain Modal Synthesis

Sparse Frequency-domain
Modal Synthesis

speedups of 5-8 times compared to a time-domain solution, with 8 116 mseer 116 mseor¢-116 msee> 116 msecr11.6 mseorc116 mseer -
slight degradation in quality. We discuss different reconstruction 2 2
windows, affecting the quality of impact sound “attacks”. Our g ' g
Fourier-domain processing method allows us to introduce a scal- < 1024 samples1024 samples 1024 samples Shins  Sbins  Sbins <
able, real-time, audio processing pipeline for both recorded and time + + frequency

modal sounds, with auditory masking and sound source clustering.

To avoid abrupt computation peaks, such as during the simultane- gD i L L
ous impacts of an explosion, we use crossmodal perception results 1024 sampiles 1024 samples 1024 samples. £ = = =
on audiovisual synchrony to effect temporal scheduling. We also . = e b e
conducted a pilot perceptual user evaluation of our method. Our + _|_
implementation results show that we can treat complex audiovisual
scenes in real time with high quallity. MWWWWWWWWWWWY

L

1024 samples1024 samples 1024 samples ;—;ms ;ins ‘;—;}ms
CR Categories: 1.6.8 [Simulation and Modeling]: Types of
Simulation—Animation, 1.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based model- [T one pr rame for vt sounc) |
ing 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and \ /

Realism—Virtual Reality
1024 samples1024 samples 1024 samples tlme

Cost per frame ~M x 1024  Cost per frame ~M x 5

Amplitude

Keywords: Sound synthesis, modal synthesis, real-time audio ren-
dering, physically based animation Output Sound

Figure 1: Frequency-domain fast mode summation: Top:
Frames of some of the test scenes our method can render in real
time. Bottom: (Left) Time-domain modal synthesis requires sum-
ming all modes at every sample. (Right) Our frequency-domain
modal synthesis exploits the inherent sparsity of the modes' discrete
®ourier transforms to obtain lower costs per frame.

1 Introduction

The rich content of today's interactive simulators and video games
includes physical simulation, typically provided by ef cient physics
engines, and 3D sound rendering, which greatly increases our sens
of presence in the virtual world [Larsson et al. 2002]. Physical
simulations are a major source of audio events: e.g., debris from
explosions or impacts from collisions (Fig. 1). In recent work sev- o ] o ) ]
eral methods have been proposed to physically simulate these audi®@nce. The user's audiovisual experience in interactive 3D applica-
events notably usinmodal synthesif0'Brien et al. 2002; van den tions is greatly enhanced when large numbers of such audio events
Doel and Pai 2003; James et al. 2006]. Such simulations resultare simulated.

in a much richer virtual expe_rience cc_)mpared to si_mpl_e recorded Previous modal sound approaches perfdime-domainsynthe-
sounds due to the added variety and improved audio-visual coher-SiS [van den Doel and Pai 2003]. Recent interactive methods pro-
gressively reduce computational load by reducing the number of
modesn the simulation [Raghuvanshi and Lin 2006; van den Doel
et al. 2004]. Their computational overload however is still too high
to handle environments with large numbers of impacts, especially
given the limited budget allocated to sound processing, as is typi-
cally the case in game engines.

e-mail: f Nicolas.BonnegGeorge.Drettakig@sophia.inria.fr

Interactive audiovisual applications also contain many recorded
sounds. Recent advances in interactive 3D sound rendering use
frequency-domaiapproaches, effecting perceptually validated pro-
gressive processing at the level of Fourier Transform coef cients
[Tsingos 2005]. For faster interactive rendering, perceptually based
auditory masking and sound-source clustering can be used [Tsin-



gos et al. 2004; Moeck et al. 2007]. These algorithms enable the physics engine (impact, contact etc.); we assume that this sound is
use of high-quality effects such as Head-Related Transfer Func- synthesized on-the-y.

tion (HRTF) spatialization, but are limited to pre-recorded sounds.
While the provision of a common perceptually based pipeline for
both recorded and synthesized sounds would be bene cial, it is no
directly obvious how modal synthesis can be ef ciently adapted to

There is extensive literature on sound synthesis and on spatializa-
ttion for virtual environments. We discuss here only a small selec-
tion of methods directly related to our work: contact sound synthe-

bene tfrom such solutions. In the particular case of contact sounds, SI|S in the gontext of wgtual l(Ienwronmen(;s,l audio rtgnderlﬂg ﬁf com-
a frequency-domain representation of the signal must be computed{) ex soutr;] scapest, ?n lna ylc(:rossmo al perception, which we use
on-the- y, since events causing the sounds are triggered and con-'C SMoOth computational peaks.

trolled in real-time using the output of the physics engine. Contact sound synthesis Modal synthesis excites the pre-

Our solution to the above problems is based on a fundamental intu-computed vibration modes of the objects by the contact force to
ition: modal sounds have an inherently sparse representation in theSynthesize the corresponding audio signal. In our context, this force
frequency domain. We can thus perform frequency-domain modal is most often provided by a real-time physics engine. The acoustic
synthesis by fast summation of a small number of Fourier coef- response of an object to an impulse is given by:
cients (see Fig. 1). To do this, we introduce an ef cient approxima- _ 23 ayt i .
tion to the short-time Fourier Transform (STFT) for modes. Com- S = ak‘ e " sin(wid); (1)
pared to time-domain modal synthesis [van den Doel and Pai 2003],
we observe 5-8 times speedup in our test scenes, with slight degrawheres(t) is the time-domain representation of the signal, is
dation in quality. Quality is further degraded for sounds with faster the angular frequency ara is the decay rate of mode a is the
decays and high frequencies. amplitude of the mode, which is calculated on the y (see below),
N ] ] and may contain a radiation factor (e.g., see [James et al. 2006]).
In addition to the inherent speed-up, we can integrate modal andgq. 1 can be ef ciently implemented using a recursive formula-
recorded sounds into a common pipeline, with ne-grain scalable tjon [van den Doel and Pai 2003] which makes modal synthesis
processing as well as auditory masking and sound clustering. To attractive to represent contact sounds, both in terms of speed and

compute our STFT we use a constant exponential approximation; memory. We de nem(t) as follows for notational convenience:
we also reconstruct with an Hann window to simplify integration in

the full pipeline. However, these approximations reduce the quality m(t) = e 3¢ sin(wt) )

of the onset of the impact sound or “attack”. We propose a method

to preserve the attacks (see Sect. 4.3), which can be directly usedrhe modal frequenciesy's and decay rates's can be pre-

for modal sounds; using itin the combined pipeline is slightly more computed by simulating the mechanical behavior of each speci ¢
involved. We use the Hann window since it allows better recon- object independently. Such simulations can be done through -
struction with a small number of FFT coef cients compared to a nite elements methods [O'Brien et al. 2002], spring-mass system
rectangular window. A rectangular window is better at preserving [Raghuvanshi and Lin 2006], or even with analytic solutions for
the attacks, but results in ringing. Our attack-preserving approach simple cases [van den Doel et al. 2004]. The only quantities which
starts with a rectangular subwindow, followed by appropriate Hann must be computed at run-time are the gaigsince they depend on
subwindows for correct overlap with subsequent frames. the contact position on the objects, the applied force, and the listen-
ing position. Other methods based on measurements of the modes
of certain objects are also possible [Pai et al. 2001], resulting in the
precomputation of the gains.

In contrast to typical usage of pre-recorded ambient sounds,
physics-driven impact sounds often create peaks of computation
load, for example the numerous impacts of debris just after an ex-
plosion. We exploit results from human perception to perform tem- » 4is rendering for complex soundscapes  There has been some

poral scheduling, thus smoothing out these computational peaks.,,or on modal sound synthesis for complex scenes. In [van den
We also performed a perceptually based user evaluation both forpe) 6t 51, 2004] a method is presented handling hundreds of im-
quality and temporal scheduling. In summary, our paper has the n, .t sounds. Although their frequency masking approach was vali-
following contributions: dated by a user study [van den Doel et al. 2002], the mode culling

A fast frequency-domain modal synthesis algorithm, leverag- &lgorithm considers each mode independently, removing those be-

ing the sparsity of Fourier transforms of modal sounds. low audible threshold. [Raghuvanshi and Lin 2006] proposed a
method based on mode pruning and sound sorting by mode ampli-

Afull, perceptually based interactive audio rendering pipeline tude; no perceptual validation of the approximation was presented
with scalable processing, auditory masking and sound source however. For both, the granularity of progressive modal synthesis
clustering, for both recorded and modal sounds. is the mode; in the examples they show, a few thousand modes are

. . synthesized in real time.
A temporal scheduling approach based on research in percep- y

tion, which smooths out computational peaks due to the sud- For pre-recorded sampled sounds, Tsingos et al. [2004] have pro-
den occurrence of a large number of impact sounds. posed an approach based on precomputed perceptual data which are
. . used to cull, mask and prioritize sounds in realtime. This approach
A pilot perceptual user study to evaluate our algorithms and 55 |ater extended to a fully scalable processing pipeline that ex-
pipeline. ploits the sparseness of the input audio signal in the Fourier domain
We have implemented our complete pipeline; we present interac- to provide scalable or progressive rendering of complex mixtures

tive rendering results in Sect. 7 and in the accompanying video for ©f Sounds [Tsingos 2005; Moeck et al. 2007]. They handle audio
scenes such as those shown in Fig. 1 and Fig. 6. spatialization of several thousands of sound sources via clustering.

One drawback related to precomputed metadata is that sounds syn-

. thesized in real time, such as modal sounds, are not supported.
2 Previous Work

Cross-modal perceptual phenomena  Audio-visual tolerance in
In what follows we will use the ternimpact soundo designate asynchrony can be exploited for improved scheduling in audio ren-
a sound generated as a consequence of an event reported by thdering. The question of whether visual and auditory events are



perceived as simultaneous has been extensively studied in neuroframes [Dlzer 2002]. At 44.1kHz, we thus process and reconstruct
science. Different physical and neural delays in the transmission our signal using 51:244100= 11msec-long frames.
of signals can result in “contamination” of temporal congruency.

Therefore, the brain needs to compensate for temporal lags to recal- ; iAr ; ;
ibrate audiovisual simultaneity [Fujisaki et al. 2004]. For this rea- 4 Ef cient Fourier-Domain Modal Synthesis

son, itis dif cult to establish a time window during which percep- We provide some numerical evidence of our intuition, that most of
tion of synchrony is guaranteed, since it depends both on the naturethe energy of a modal sound is restricted to a few FFT bins around

of the event (moving or not) and its position in space (distance and b e
- . . . the mode's frequency. We constructed a small test scene, containing
direction) [Alais and Carlile 2005]. Some studies report that delay- 12 objects with different masses and material properties. The scene

ing a sound may actually improve perception of synchrony with re- is shown in the accompanving video and in Fia. 6. We computed
spect to visuals [Begault 1999). One study [Guski and Troje 2003] the energy with the signalyre?:onstructed using.alll 512 bins? then

(among others [Sekuler et al. 1997; Sugita and Suzuki 2003]), re- progressively reconstruct with a small number of bins distributed

ports that a temporal window of 200 msec represents the toleranceSymmetrically around the mode's frequency, and measured the er-
of our perception for a sound event to be considered the conse-

X ) . ror. We compute percent error averaged over all modes in the scene,
guence of the visual event. We will therefore adopt this value as a pute p g

. . for 1 bin (containing the mode's frequency), then 3 bins (i.e., to-
threshold for our temporal scheduling algorithm. gether with the 2 neighboring bins on each side), then both these

together with the 2 next bins, etc. Using a single bin, we have
3 Our Approach 52.7% error in the reconstructed energy; with 3 bins the error drops
to 4.7% and with 5 bins the error is at 1.1%. We thus assume that
bins are sorted by decreasing energy in this manner, which is useful

Overview The basic intuition behind our work is the fact that modal for our scalable processing stage (see Sect. 5).

sounds have a sparse frequency domain representation. We will
show some numerical evidence of this sparsity with examples, and This property means that we should be able to reconstruct modal
then present our fast frequency-domain modal synthesis algorithm.sounds by mixing a very small number of frequency bins, without
To achieve this we introduce our ef cient STFT approximation for signi cant numerical error; however, we need a way to compute the
modes, based on singular distributions. We then discuss our full STFT of modes ef ciently.

perceptual pipeline including scalable processing, auditory mask- . .

ing and sound source clustering. We introduce a fast energy esti- ON€ Possible alternative would be to precompute and store the FFTs
mator for modes, used both for masking and appropriate budget al-0f each mode and then weight them by their amplitude at runtime.
location. We next present our temporal scheduling approach which However, this approach would suffer from an unacceptably high

smooths out computation peaks due to abrupt increases in the numMemory overhead and would thus be impractical. The STFT of a

ber of impacts. After discussing our implementation and results, we Mode sampled at 44.1kHz requires the storage of 86 frames of 512
describe our pilot perceptual user study, allowing us to evaluate the ©0MPIex values, representing 352 Kbytes per mode per second. A
overall quality of our approximations and the perception of asyn- YPical scene of two thousand modes would thus require 688 Mb.

chrony. Analysis of our experimental results gives an indication of |5 what follows we use a formulation based on singular distribu-
the perceptual validity of our approach. tions or generalized functions [Hormander 1983], allowing us to

N ] ) develop an ef cient approximation of the STFTs of modes.
Fourier-domain mode mixing  Traditional time-domain modal

synthesis computes Eq. 1 for each sample in time. For frequency-
domain synthesis we use the discrete Fourier transform (FFT) of
the signal (we show how to obtain this in Sect. 4.1). If we use a
1024-sample FFT we will obtain 512 complex coef cientshins
representing the signal of a given audio frame (since our signals
are real-valued we will only consider positive frequencies). For
each such frame, we add the coef cients of each mode in the fre-
guency domain, and then perform an inverse FFT (see Fig. 1) once
per frame, after all sounds have been added together. The inverse - .

FFT represents a negligible overhead, with a cost of 0.023 msec = Rimit+ 9HO & @)
using an unoptimized implementation [Press et al. 1992]. If the The Fourier transfornfr, f f(t) g that we used corresponds to the
number of coef cients contributed by each mode is much less than e pition: 7

512, frequency-domain mixing will be more ef cient than an equiv- Eff(t)q= ¥ fe ' tdt 4

alent time-domain approach. However, this will also result in lossy if () g= v ®)e “)
reconstruction, requiring overlapping frames to be blended to avoid . . .

possible artifacts in the time-domain. Such artifacts will be caused NOte that the product in the time domain corresponds to the convo-
by discontinuities at frame boundaries resulting in very noticeable !ution in the frequency domain (see Eq. 19 in the Appendix). We
clicks. To avoid these artifactsyéndowfunction is used, typically ~ ¢&n use & polynomial expansion (Taylor series) of the exponential
a Hann window. Numerous other options are available in standard function: y

signal processing literature [Oppenheim et al. 1999]. Our method ) = il & ¢ (at)™; (5)
shares some similarities with the work of [Rodet and Depalle 1992] n=0

which uses inverse FFTs for additive synthesis.

4.1 A Fast Short-time FFT Approximation for Modes

We want to estimate the short-time Fourier transform over a given
time-frame of a moden(t) (Eq. 2), weighted by a windowing func-
tion that we will denoteH (t) (e.g., a Hann window). We thus pro-
ceed to calculate the short time transfasth) wherel is the fre-
quency, andp is the offset of the window:

wherecy, = 1=n!. Next, the expression for the Fourier transform of
In what follows we assume that our audio frames overlap by a 50% @ power term is a distribution given by:

factor, bringing-in and reconstructing only 512 new time-domain

samples at each processing frame using a 1024-sample FFT. We Fft"g= 2pi"d"(1); (6)
implemented the Hann window as a product of two square roots

of a Hann window, one in frequency to synthesize modes using whered is the Dirac distribution, and(™ its n'th derivative. From

few Fourier coef cients and the other in time to blend overlapping Eqgs. 5 and 6, we have the expression for the Fourier transform of



the exponential: domain is 5 or 6 multiplies and adds, using the recursive formula-
tion of Eq. 6 in [van den Doel and Pai 2003]. In our approach,
assuming an average 8&f bins per mode, the cost of a frame is
M B Csrtr7plus the cost (once per frame) of the inverse FFT.
The cosiCstfT Of evaluating Eq. 11, is about 25 operations. With
The Fourier transform of a sine wave is a distribution given by: @ value of8 = 3 (itis often lower in practice), we have a potential
theoretical speedup factor of 30-40 times. If we take into account
the fact that we have a 50% overlap due to windowing, this theoret-
ical speedup factor drops to 15-20 times.

n o 34
F et = et Z ca"2pi"d™(l): @)
n=0

Fif sin(w(t+to)) g= ip e Mod(l +w) &“d(l w) : (8)

We also know thad is the neutral element of the convolution (see We have used our previous test scene to measure the speedup of
Eq. 17 in the Appendix). Moreover, we can convolve the distribu- Our approach in practice, compared to [van den Doel and Pai 2003].

tions of the exponential and the sine since they both have compactWhen usingB = 3 bins per mode, we found an average speedup
support. From Egs. 7 and 8, we nally have: of about 8, and wittlB = 5 bins per mode about 5. This reduction

compared to the theoretical speedup is probably due to compiler
and optimization issues of the two different algorithms.

¥
Fif mt+1tp) g= pe?® § cpaim?! . . o .
i mt+ %) g= p a ¢t Finally, we examine the error of our approximation for a single

" ° : sound. We tested two different windows, a Hann window with 50%
e Mod™(l+w) Yod™( w) : (9) overlap and a Rectangular window with 10% inter-frame blending.
In Fig. 2 we show 3 frames, with the reference [van den Doel and
Convolution of Eq. 9 with a windowing functiod leads to the de- ~ Pai 2003] in red and our approximation in blue, takiig= 5 bins

sired short time Fourier transform of a mode. Using the properties per mode.

of distributions (Eq. 17, 18 in the Appendix), and Eq. 9, we have: Taken over a sequence including three impacts (a single pipe in the

¥ Magnet scene, see Sect. 7), for a total duration of about 1 sec., the
)= }eato é cranim™ 1 average overall error for the Rectangular window is 15% with 5
2 =0 bins, and 21% with 3 bins (it is 8% if we use all 512 bins). This
it " it " error is mainly due to small ringing artifacts and possibly to our
e "R ()W (I +w) YR (H)™( w) : (10) constant exponential approximation, which can be seen at frame
ends (see Fig. 2). Using the Hann window, we have 35-36% error
FI (H)(n)(| +w) is the n-th derivative of the (complex) Fourier for both 512 al.'ld 5 b_ins, and 36% with 3 bins. ThiS would indicate
transform of the windowH, taken at the valu@ + w). that the error is mainly due to the choice of window. As can be
seen in the graph (Fig. 2 (right)) the error with the Hann window
Note that Eq. 9 is still a distribution, since we did not constrain the is almost entirely in the rst frame, at the onset, or “attack”, of the
mode to be computed only for positive times, and the mode itself sound for the rst 512 samples (i.e., 11 msec at 44.1kHz). The
is not square-integrable for negative times. However, this distribu- overall quality of the signal is thus preserved in most frames; in
tion has compact support which makes the convolution of Eq. 10 contrast, the ringing due to the rectangular window can result in
possible [Hormander 1983]. audible artifacts. For this reason, and to be compatible with the
pipeline of [Moeck et al. 2007], we chose to use the Hann window.

—— Fast synthesis
6000) — Reference

2000]

For computational ef ciency, we truncate the in nite sum of Eq. 10,
and approximate it by retaining only the rstterm. The nal expres-

sion of our approximation to the mode STFT is thus:
— Reference

6000

) 2
e iWIoFl (H)(l +W) ei\I\ItOFI (H)(| W) . (11)

2000

Amplitude
Amplitude

o

Instead ofcy = 1,(Eq. 5), we takeg to be the value of the exponen-

tial minimizing t;"J’Dt(e at  ¢y)2dt, whereDx is the duration of a R e Com o0 e o o
frame, resulting in a better piecewise constant approximation:

Hann window - 5 bins Rectangular window - 5 bins
e atp e a(to+ Dt)
o= —— (12) Figure 2: Comparison of Reference with Hann window and with
aDt Rectangular window reconstruction using a 1024-tap FFT.

This single term formula is computationally ef cient since the
Fourier transform of the window can be precomputed and tabulated,
which is the only memory requirement. Moreover both complex ex-
ponentials are conjugate of each other meaning that we only need
to compute one sine and one cosine.

4.3 Limitations for the “Attacks” of Impact Sounds

Contrary to time domain approaches such as [van den Doel and Pai
2003; Raghuvanshi and Lin 2006], the use of the Hann window as
well as the constant exponential approximation (CEA) degrades the
onset or “attack” for high frequency modes. This attack is typically
contained in the rst few frames, depending on decay rate.

4.2 Speedup and Numerical Validation

Consider a scene requiring the synthesisvbimodes. Using a
standard recursive time-domain solution [van den Doel and Pai To study the individual effect of each of the CEA and the Hann win-
2003], and assuming 512-sample frames, the cost of the frame isdow in our reconstruction process, we computed a time-domain so-
M 512 Cy. The costCy of evaluating a mode in the time  lution using the CEA for the example of a falling box (Fig. 3(left))



and a time domain solution using a Hann window to reconstruct the mode: for the example shown in the video the additional cost of
signal (Fig. 3(right)). We plot the time-domain reference [van den the mixed window for attacks is 1.2%. However, the integration of

Doel and Pai 2003] in red and the approximation in blue. As we can this method with recorded sounds is somewhat more involved; we
see, most of the error in the rst 7msec is due to the Hann window discuss this in Sect. 9.

whereas the CEA error remains lower. The effect of these approx-

imations is the suppression of the “crispness” of the attacks of the 5 A Full Perceptually Based Scalable Pipeline

impact sounds.
) _ _ for Modal and Recorded Sounds
Use of the Hann window and the CEA as described previously has

the bene t of allowing seamless integration between recorded and An inherent advantage of frequency domain processing is that it
impact sounds, as described next in Sect. 5. In complex sound-gjiows ne-grain scalable audio processing at the level of an FFT
scapes containing many recorded sounds, this approximation maypin. |n [Tsingos 2005], such an approach was proposed to perform
be acceptable. However, in other cases the crispness of the attackgqualization and mixing, reverberation processing and spatializa-
of the modal sounds can be important. tion on prerecorded sounds. Signals are prioritized at runtime and a
number of frequency bins are allocated to each source, thus respect-
— Reference

.AAJ\A{\AA.AA
WVVVVVVV"VV

ing a prede ned budget of operations. This importance sampling
strategy is driven by the energy of each source at each frame and
used to determine the cut-off point in the list of STFT coef cients.

o
T

Given our fast frequency-domain processing described above, we
can also use such an approach. In addition to the fast STFT synthe-
sis, we also require an estimation of energy, both of the entire im-

pact sound, and of each individual mode. In [Tsingos 2005] sounds
were pre-recorded, and the FFT bins were precomputed and pre-

0 10 20 30 0 10 20 30 i
Time (n) Tima (ms) sorted by decreasing energy.

Amplitude
_ Amplitude

. ) ) ... Forour scalable processing approach, we rst x an overall mix-
Figure 3: Comparison of Constant Exponential Approximation in ing budget, e.g., 10,000 bins to be mixed per audio frame. At each
the time domain (TD) and Hann window reconstruction in the TD, frame we compute the enerds of each impact sound over the
with the reference for the sharp sound of a falling box. frame and allocate a budget of frequency bins per sound propor-

tional to its energy. We compute the eneffy of each mode for
To better preserve the attacks of the impacts sounds, we treat themhe entire duration of the sound once, at the time of each impact,
in a separate buffer and split the rst 1024-sample frame into four and we use this energy weighted by the mode's squared amplitude
subframes. Each subframe has a corresponding CEA and with ato proportionally allocate bins to modes within a sound. After ex-
specialized window. In what follows, we assume that all contact perimenting with several values, we assign 5 bins to the 3 modes
sounds start at the beginning of a frame. with highest energy, 3 bins for the next 6 and 1 bin for all remaining

We design a windowing scheme satisfying four constraints: 1) modes. We summarize these steps in the following pseudo-code.

avoid “ramping up” to avoid smoothing the attack, 2) end with a

512 sample square root of Hann window to blend with the buffer 1

for all frames other than the attack, 3) achieve perfect reconstruc- 5 foreach mode of S

tion, i.e., all windows sum to one, 4) require a minimal number of 3 compute total energy En

bins overall, i.e., use Hann windows which minimize the number of ‘51- Sort modes of S by decreasing En
6

bins required for reconstruction [Oppenheim et al. 1999]. gg&’fﬁ‘; tgt?(') regféglsé’fn gs for cutoff

. PerlmpactProcessinglmpactSound S) // at impact noti cation

The rst subframe is synthesized using a rectangular window for the
rst 128 samples (constraint 1) followed by half of a Hann window
(“semi-Hann” from now on) for the next 128 samples and zeros in
the remaining 768 samples; this is shown in blue in Fig. 4. The
next two subframes use full 256-sample Hann windows, starting at
samples 128 and 256 respectively (red and green in Fig. 4). The last
subframe is composed of a semi-Hann window from samples 384 to
512 and a square root of a semi-Hann window for the last 512 sam-
ples for correct overlap with the non-attack frames, thus satisfying
constraint 2 (black in Fig. 4). All windows sum to 1 (constraint
3), and Hann windows are used everywhere except for the rst 128 : A
samples (constraint 4). These four buffers are summed before per-5'1 Ef cient Energy Estimation
forming the inverse FFT, replacing the original 1024 sample frame
by the new combined frame. We use 15 bins in the rst subframe.

ScalableAudioProcessing // called at each audio frame

foreach sound S

Compute Eg

Allocate FFT bin budget based on Eg

Modes my; mp; mg get 5 bins

Modesmy; mg get 3 bins

1 bin to remaining modes until end of budget
endfor

ONoOGOAWNE

To allocate the computation budget for each impact sound, we need
to compute the energks, of a modal soundin a given frame, i.e.,
from timet to timet + Dt:

oL X\\/ SR 7 ES_ZthSZ(X)dK (13)

0 100 200 300 400 500 600 700 800 900 1000 -

Figure 4: Four sub-windows to better preserve the sound attack. From Ed. 1and 2, we expreBs as:

. , . . L . . M M
The increase in computational cost is negligible, since the addi- Es= <ss> = & & aaj<m;m>: (14)

tional operations are only performed in the rst frame of each i=0j=0



For a given frame, the scalar productmy;m; > has an analytic 12000
expression (see Eq. 22 in the additional material). Because this
scalar product is symmetric, we only have to compute half of the
required operations.

10000 -

8000
In our experiments, we observed that most of the energy of an im-
pact sound is usually concentrated in a small nunibef modes
(typically 3). To identify theN modes with highest energy, we com-

6000

40001

Audio Processing Time Per Frame fec

pute the total energ¥n,, of each mode as: No delay
200ms tolerance
2000 —— 400ms tolerance |
2y 2. 1w LN
Em = sin(wx)e & “dx= - ———— (15) ‘
0 4a(as+ w?) % 100 150

50
Frame Number (Magnet Sequence)

After computing theEn's for each mode, we weight them by the
square of the mode's amplitude. We then sort the modes by de-
creasing weighted energy. To evaluate Eq. 14 we only consider the
N modes with highest energy. We re-use the result of this sort for
budget allocation.

Figure 5: Effect of temporal scheduling; computational peaks are
delayed, the slope of increase in computation time is smoothed out
and the duration of peaks is reduced. Data for the Magnet se-
quence, starting just before the group of objects hits the oor.

We also compute the total energy for a sound, which is used to

determine its duration, typically when 99% of the energy has been |ist of sounds currently processed by the audio engherSound-
played back. We use Eq. 14 and an expression for the total energys| is. At the beginning of each audio frame, we traveTeenp-
(rather than over a frame), given in the additional material (Eq. 21). SoundsLisand add up to 20 new sounds@airrSoundsListf one

) of the following is true:
Numerical Validation We use the test scene presented in Sect. 4.1

(Fig. 6) to perform numerical tests with appropriate valuesNor CurrSoundsListontains less than 50 sounds
We evaluated the average error of the estimated energy, compared

to a full computation. Using 3 modes, for all objects in this scene, Sounds has been iffempSoundsLisor more thariT msec.

the error is less than 9%; for 5 modes it falls to 4.9%. The values 20 and 50 were empirically chosen after experimenta-
tion. We use our perceptual tolerance to audio-visual asynchrony
5.2 A Complete Combined Audio Pipeline by manipulating the threshold valdefor each sound. In particular

we setT to a desired value, for example 200 msec corresponding
In addition to frequency-domain scalable processing, we can alsot0 the results of [Guski and Troje 2003]. We then further modulate
use the perceptual masking and sound-source clustering approache§ for sounds which are outside the visible frustumis increased
developed in [Tsingos et al. 2004; Moeck et al. 2007]. We can thus Progressively as the direction of the sound is further from the center
mix pre-recorded sounds, for which the STFT and energy have beenof the eld of view. For sounds completely behind the viewer the
precomputed, with our frequency domain representation for modal delayT is set to a maximum of 0.5 seconds. Temporal scheduling
sounds and perform global budget allocation for all sounds. As a only occurs for impact sounds, and not for recorded sounds such as
result, masking between sounds is taken into account, and we can2 gun ring which are time-critical and can have a remote effect.
cluster the surviving unmasked sources, thus optimizing the time
for per-sound source operations such as spatialization. In previ-

ous work, the masking power of a sound also depends on a tonal'smaller and/or sharper, i.e., occur over a single frame (see Fig. 5).
ity indicator describing whether the signal is closer to a tone or a

. T . Since our interactive system uses buffered audio output, it can sus-
noise, noisier signals being stronger maskers. We computed tonal-

ity values using a spectral atness measure [Tsingos et al. 2004] for tain such sparse peaks over a single frame, while it could not sustain
y gasp . 9 ’ .such a computational overload over several consecutive frames.
several modal sounds and obtained an average of 0.7. We use this

constant value for all modal sounds in our masking pipeline.

Our approach reduces the number and density of computational
peaks over time. Although some peaks still occur, they tend to be

7 Implementation and Results
6 Temporal Scheduling Our system is built on th©gre3D+ game engine, and uses the
PhysX? real-time physics engine simulator. Throughout this pa-
per, we use our own (re-)implementations of [van den Doel and
Pai 2003], [O'Brien et al. 2002] and [Raghuvanshi and Lin 2006].
For [van den Doel and Pai 2003], we u$e= 512 samples at
44.1KHz; the size of the impact Iter with a force prole of
coq2pt=T) is T = 0:37msor 16 samples (Eq.17 of that paper).

One problem with systems simulating impact sounds is that a large
number of events may happen in a very short time interval (debris
from an explosion, a collapsing pile of objects, etc.), typically dur-
ing a single frame of the physics simulation. As a result, all sounds
will be triggered simultaneously resulting in a large peak in system
load and possible artifacts in the audio (“cracks”) or lower audio
quality overall. Our idea is to spread out the peaks over time, eX- For objects generating impact sounds, we precompute modes using
ploiting results on audio-visual human perception. the method of O'Brien et al. [2002]. Sound radiation amplitudes

As mentioned in Sect. 2, there has been extensive study of audio_ggeagr:ngwsgfa?rgo%sgi;lwated with a far- eld radiation model (Eq.
visual asynchrony in neuroscience which indicates that the brain is = . )

able to compensate for the different delays between an auditory andaudio processing was performed using our in-house audio engine,
a visual event in causal inference. To exploit this property, we in- with appropriate links between the graphics and audio. The audio
troduce a scheduling step at the beginning of the treatment of each

audio frame. In particular, we maintain a list of sound events pro-  http://www.ogre3d.org
posed by the physics engine (which we d@mpSoundsLisand a 2http://www.ageia.com




engine is described in detail in [Moeck et al. 2007]. In total we run | Scene | Total | Mixing | Energy | Masking | Clustering
three separate threads: one for each of the physics engine, graphics Magnet | 3.2 13 0.6 1.0 0.3
and audio. All timings are reported on a dual-processor, dual-core |_Truck 2.7 15 0.9 03 01

Xeon running at 2.3Ghz.
Table 2: Cost in milliseconds of each stage of our full pipeline.

7.1 Interactive Sessions Using the Pipeline

Full Combined Pipeline The above comparisons are restricted to
Mmodal sounds only. We also present results for other scenes, aug-
mented with recorded sounds. These are rendered using our full
pipeline, at low overall budgets but with satisfactory quality.

We have constructed four main scenes for demonstration purposes
which we refer to as “Oriental”, “Magnet”, “Truck” and “Boxes”;

we show snapshots of each in Fig. 1 (Truck and Oriental) and 6.

The goal was to construct environments which are similar to typical

simulators or games settings, and which include a large number of\ye present statistics for our approach in Table 2, using a budget
impact sounds, as well as several prerecorded sounds. All soundsf 8000 bins. First we indicate the cost (in milliseconds) of each
were processed in the Fourier-domain at 44.1kHz US|ng 1024-tapcomponent Of our new Combined pipe”ne: mixing, energy com-
FFTs and 50% overlap-add reconstruction with Hann windowing. putation, masking and clustering, as well as the total cost. As we
The “Oriental” and “Box” scenes contain modal sounds only and can see there is a non-negligible overhead of the pipeline stages;
thus use the attack preserving approach (Sect. 4.3). Hence, ouhowever the bene t of being able to globally allocate budget across

audio thread runs at 83Hz; we then output reconstructed audio modal and recorded sounds, and of course all the perceptually based
frames of 512 samples. The physics thread updates object motionaccelerations, justi es this cost.

at 140Hz, and the video thread runs at between 30-60Hz depending

on the scene and the rendering quality (shadows, etc.). The number of sounds at each frame over the course of the interac-
tive sequences shown in the video varied between 195 and 970. If

The Magnet scene contains prerecorded industrial machinery andno masking or culling were applied there would be between 30,000

closing door sounds, while the Truck scene contains traf ¢ and he- to 100,000 modes to be played per audio frame on average in these

licopter sounds. Basic scene statistics are given in Table 1, for thesequences. We use 15,000 to 20,000 frequency bins in all inter-

demo versions of the scenes shown in the video. active sessions. The percentage of prerecorded sounds masked was
around 50% on average and that of impact sounds was around 30%.

Scene (e} T P M; M=o

Oriental | 173 | 730K | 0 | 665 | 214 8 Pilot Perceptual Evaluation

Boxes 200 | 200K | O | 678 | 376

Magnet | 110 | 300K | 16 | 971 | 164 Despite previous experimental studies for perceptually based au-
Truck 214 | 600K | 15 | 268 | 221 dio rendering foipre-recordedsounds [Moeck et al. 2007; Tsingos

et al. 2004], and the original neuroscience experiments for asyn-
Table 1: Basic statistics for example scenes. O: number of objects chrony [Guski and Troje 2003], we consider it imperative to con-
simulated by the physics engine producing contact sounds, T: total duct our own pilot study, since our context is very different. We
number of triangles in the scene, P: number of pre-recorded sounds have two conditions in our experiment: the goal of the rst condi-
in the scene and Mmaximum number of impasbunds playeger tion is to evaluate the overall audio quality of our approximations
frame. M=o: average number of modes/object. while that of the second is to evaluate our temporal scheduling.

8.1 Experiment Setup and Procedure
7.2 Quality and Performance

In our experiment we used the Magnet and Truck (Sect. 7) environ-
We performed two comparisons for our fast modal synthesis: the ments, but with fewer objects, to avoid making the task too hard for
rst was with the “standard” time-domain (TD) method of [van den the subjects. We used two 6 second pre-recorded paths for each of
Doel and Pai 2003] using recursive evaluation, and the second withthe two scenes. To ensure that all the stimuli represent the exact
the mode-culling time-domain approach of [Raghuvanshi and Lin same sequence of events and to allow the presentation of a refer-
2006], which is the fastest TD method to date. We used the “Orien- ence in real-time, we synchronize all threads and store the output
tal” scene for this comparison, containing only modal sounds. audio and video frames of our application to disk. Evidently any

other delay in the system has to be taken into account. We choose
Comparison to “standard” TD synthesis In terms of quality, we the parameters of our simulation to be such that we do not perceive

bins per mode, together with a time-domain reference, shown in the get settings. Video sequences are then played back during the study.

erence. The observed speedup was 5-8 times, compared to [van deime-domain and no perceptual processing is applied when mix-
Doel and Pai 2003]. ing with the recorded sounds in the frequency domain. We use

non-individualized binaural rendering using Head Related Transfer

Comparison to mode-culling TD synthesis ~ To compare to mode- Functions (HRTFs) chosen from théstendatabase

culling, we apply the mode truncation and quality scaling stages The interface is a MUSHRA-like [ITU 2001-2003] slider panel (see
of [Raghuvanshi and Lin 2006] at each audio frame. We then per- the accompanying video), in which the user can choose between a
form fast frequency domain synthesis for the modes which have not reference and ve different approximations (A, B, C, D, E), each
been culled. For the same mode budget our frequency processingyith a different budget of frequency bins. The subject uses a slider
allows a speedup of 4-8 times; the difference in speedup with the g rate the quality of each stimulus. One of the ve stimuli is a

“standard” TD synthesis is due to implementation issues. The qual- higden reference. The radio button above each slider allows the
ity of the two approaches is slightly different for the same mode

budget, but in both cases subjectively gives satisfactory results. 3http://recherche.ircam.fr/equipes/salles/listen/




Figure 6: From left to right, snapshots of the large Magnet scene, the Boxes scene, the test scene used for numerical validation and our

prototype rolling demo. Please see and listen to the accompanying video showing these scenes.

Budget FFT bins Audio Delay (msec) is clear that audiovisual asynchrony was perceived less than 25% of

Scene | G | & | G |G [T | T | T | T the time, for delays under 200msec.
Magnet | 700 | 15K | 25K | 4K || 0 | 120 | 200 | 400

Truck | 1K | 2K | 4K | 8K || O | 120 | 200 | 400 Overall, we consider these results to be a satisfactory indication that
~our approximations work well both in terms of progressive pro-
Table 3: Budget and delay values used for the perceptual experi- cessing and for our temporal scheduling algorithm. In particular,

ments. €and T are the budget and delay conditions used. there is a strong indication that increasing the budget does result
in perceptually improved sounds, and that only a small percentage
Percent Perceived Quality % Perceived Asynchron of users perceive asynchrony with temporal scheduling with delays
Scene G | C | G | C [ReF| W] 2| ] T less than 200ms.
Magnetl | 51.1 | 64.7 | 78.0 | 831 | 849 || 0 | 24 | 48| 71
Magnet2 | 48.8 | 70.1 | 765 | 852 | 889 | 10| 5 | 0 | 10 ; ; ;
Truckl | 263 | 418 | 542 | 66.0 | 87.3 || 24 | 24 | 14 | 38 9 Discussion and Conclusions
Truck2 | 24.8 | 286 | 42.7 | 66.0 | 89.0 || 14 | 14 | 38 | 29

We have presented a new frequency-domain approach to modal
sound rendering, which exploits sparseness of the Fourier Trans-
form of modal sounds, leading to an 4-8 speedup compared to
time-domain approaches [van den Doel and Pai 2003; Raghuvan-
shi and Lin 2006], with slight quality degradation. Furthermore,

) ) our approach allows us to introduce a combined perceptual audio
subject to (re)start the corresponding sequence. For the synchropipeline, treating both prerecorded and on-the- y impact sounds,

nization condition, we choose one budget which has a good rating and exploiting scalable processing, auditory masking, and cluster-
in the quality condition (typicallys in Table 3), and delay the au-  jng of sound sources. We used crossmodal results on perception
dio relative to graphics by a variable threshdldThe budgets and  of qudiovisual synchronization to smooth out computational peaks
thresholds used are shown in Table 3. A tick box is added under \yhich are frequently caused by impact sounds, and we performed a

each soqnd for synchrony_judgment. The experiment interface canpilot perceptual study to evaluate our combined pipeline.
be seen in the accompanying video.

Table 4: Results of our experiments: average quality and percent
perceived asynchrony for the 2 scenes and 2 paths.

. o . Use of the Hann window allows direct integration of modal and
The subject listens to the audio with headphones and is instructed torecorded sounds (see Sect. 5), but leads to lower quality attacks
attend to both visuals and audio. There are 8 panels, correspondingyf impact sounds. We have developed a solution to this problem,
to all the conditions; stimuli are presented in random order. De- gpjitting the treatment of the rst frame of each attack into four sub-
tailed instructions are given on screen to the user, who is asked tofrgmes with appropriate windows. This solution can be easily used
rate the quality and tick if asynchrony between audio and visuals iy scenes exclusively containing modal sounds. For the pipeline
is detected. Rating of each panel is limited to 3 minutes, at which combining recorded and modal sounds, and in particular for clus-

point rating is disabled. tering, we would need a separate buffer for attacks in each cluster
thus performing twice as much post-processing (HRTF processing
8.2 Analysis of the Experiments etc.). The rest of the pipeline would remain unchanged.

We developed an initial solution for rolling sounds in our pipeline,
using a noise-like sound pro le, similar in spirit to [van den Doel

et al. 2001]. To simulate the continuous rolling excitation, we pre-
compute a noise pro le in the Fourier domain, and perform dy-
namic low-pass ltering based on velocity. Convolution with the
As we can see, for the Magnet scene, the budget of 4,000 binsexcitation is a simple product in the Fourier domain, making our
was sufcient to give quality ratings of 83-85% very close to approach ef cient. The accompanying video contains a rst exam-
the hidden reference rated at 84-89%. An analysis of variance ple. Nonetheless, a general solution to continuous excitation in our
(ANOVA) [Howell 1992] with repeated measures on quality ratings framework requires mixing delayed copies of past frames, incurring
shows a main effect of budget on perceived quality (F(4,20)=84.8, additional costs. We expect masking and progressive processing to
p<0.00001). For the Truck scene the quality rating for 8,000 bins limit this overhead, similar to the reverberation in [Tsingos 2005].
was lower. This is possibly due to the fact that the recorded sounds
require a signi cant part of the frequency bin budget, and as a result
lower the overall perceived quality.

We ran the experiment with 21 subjects who were members of our
research institutes, and were all naive about the goal of our exper-
iments. We show the average quality ratings and the percent per-
ceived asynchrony averages for the experiment in Table 4.

Another limitation is the overhead of our pipeline which is not neg-

ligible. For practical usage of real-time audio rendering, such as
game engines, we believe that the bene ts outweigh this drawback.
In terms of asynchrony, the results have high variance. However, it In addition to the perceptually based accelerations, we believe that
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Acknowledgments This research was partly funded by the EU FET SEKULER, R., SEKULER, A. B., AND LAU, R. 1997. Sound alters
project CROSSMOD (014891-2 http://www.crossmod.org). We visual motion perceptionNature 3856614, 308.

thank Autodesk for the donation of Maya and Alexandre Olivier-

Mangon and Fernanda Andrade Cabral for modeling the examples.SUGITA, Y., AND SUZUKI, Y. 2003. Audiovisual perception: Im-
We thank the anonymous reviewers whose suggestions made this a Plicit estimation of sound-arrival timeNature 421 6926, 911.
much better paper. The last author acknowledges a fellowship from

the Alfred P. Sloan Foundation. TSINGOS N., GALLO, E.,AND DRETTAKIS, G. 2004. Perceptual

audio rendering of complex virtual environmen&CM Trans-
actions on Graphics (ACM SIGGRAPH),23(July), 249-258.

TSINGOS N. 2005. Scalable perceptual mixing and ltering of au-
o ) dio signals using an augmented spectral representatid?rom
ALAIS, D., AND CARLILE, S. 2005. Synchronizing to real events: 2 )
subjective audiovisual alignment scales with perceived auditory Int. Conf. on Digital Audio Effect277-282.
depth and speed of sounilroc Natl Acad Sci 102, 2244-7. VAN DEN DOEL, K., AND Pal, D. K. 1998. The sounds of physical

BEGAULT, D. 1999. Auditory and non-auditory factors that poten- shapesPresence 74, 382-395.
tially in uence virtual acoustic imagery. IRroc. AES 16th Int. VAN DEN DOEL, K., AND Pal, D. K. 2003. Modal synthesis for

References

Conf. on Spatial Sound Reproductjdr8—26. vibrating objects Audio Anecdotes
FuJisakl, W., SHIMOJO, S., KASHINO, M., AND NISHIDA, S. VAN DEN DOEL, K., KRY, P. G.,AND Pal, D. K. 2001. FoleyAu-
2004. Recalibration of audiovisual simultaneityature Neuro- tomatic: physically-based sound effects for interactive simula-
science 77, 773-8. tion and animation. IfProc. ACM SIGGRAPH 200537-544.
Guskl, R., AND TROJE N. 2003. Audiovisual phenomenal VAN DEN DOEL, K., Pal, D. K., ADAM, T., KORTCHMAR, L.,
causality.Perception and Psychophysics, & 789—-800. AND PICHORA-FULLER, K. 2002. Measurements of perceptual
. . o . quality of contact sound modellitl. Conf. on Auditory Display,
HORMANDER, L. 1983.The Analysis of Linear Partial Differential (ICAD), 345-349.
Operators | Springer-Verlag.
o VAN DEN DOEL, K., KNOTT, D., AND Pal, D. K. 2004. In-
HOweLL, D. C. 1992 Statistical Methods for Psycholog?WsS- teractive simulation of complex audiovisual scen&esence:
Kent. Teleoperators and Virtual Environments, 113 99-111.

ITU. 2001-2003. Method for the subjective assessment of inter- 74 7R, U. 2002.Digital Audio Effects (DAFX) chapter. 8\iley.
mediate quality level of coding systems, rec. ITU-R BS.1534-1,

http://www.itu.int/. Appendix

JAMES, D. L., BARBIC, J.,AND PaIl, D. K. 2006. Precomputed
acoustic transfer: Output-sensitive, accurate sound generationa 1 Some Elements of Distribution Theory
for geometrically complex vibration sourcesSCM Transactions
on Graphics (ACM SIGGRAPH) 23 (July), 987-995. Applying a distributionT to a smooth test function with local sup-

LARSSON, P., VASTFJALL, D., AND KLEINER, M. 2002. Better port f, implies the following operation:

presence and performance in virtual environments by improved Zy

binaural sound renderingroc. AES 22nd Intl. Conf. on virtual, <T,f>= T f(x)dx (16)
synthetic and entertainment audidqune), 31-38. ¥

A commonly used distribution is the Dirac distribution (note that
VIAUD-DELMON, I., AND ALOZA, D. 2007. Progressive per- this is not the Kronecker delta) which has value 0 everywhere, ex-

ceptual audio rendering of complex scenesAGM SIGGRAPH ~ Ceptat 0.< di; f >= f(k) is commonly used in signal processing
Symp. on Interactive 3D Graphics and Games (I3039—196. (Dirac combs). We use the following properties of distributions:

MoOECK, T., BONNEEL, N., TsINGOos N., DRETTAKIS, G.,

O'BRIEN, J. F., $iEN, C., AND GATCHALIAN, C. M. 2002. do2f=f dV2f= 0 17)
Synthesizing sounds from rigid-body simulations AGM SIG-
GRAPH Symp. on Computer Animatidir5-181.

OPPENHEIM, A. V., SCHAFER, R. W., AND Buck, J. R. 1999.

wheref(™ denotes theth derivative off.

Discrete-Time Signal Processing (2nd editioRyentice-Hall. d®2fM)=ft a d®2fm= O a (18)
Pal, D. K., vaN DEN DOEL, K., JAMES, D. L., LANG, J., 1 R
LLOYD, J. E., RCHMOND, J. L.,AND YAU, S. H. 2001. Scan- F (f(Ha) = ij(f(t)) ?F (9(t) (19)

ning physical interaction behavior of 3d objects.Aroc. ACM
SIGGRAPH 200,187-96.





