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Abstract. Let N be the result of an RSA modulus generation, i.e., a
random variable distributed according to some appropriate distribution
over the set of products of two primes, such that factoring N is believed
to be hard. The Strong RSA assumption states that, given an x chosen
uniformly at random from ZN , it is computationally infeasible to com-
pute a y ∈ ZN and an e ∈ N \ {1} such that ye ≡ x (mod N) . This
assumption is important in cryptography and has been used to construct
several cryptosystems.
Due to the lack of complexity-theoretic lower bound proofs for crypto-
graphic problems in a general model of computation, it is a common
practice in cryptography to give proofs of computational security in
meaningful restricted models of computation.
Some examples of restricted models that are interesting in cryptography
are the generic group model for proving lower bounds for the discrete
logarithm problem and related problems, and the random oracle model
for proving the soundness of protocols or hash function constructions. A
generic model captures that an algorithm does not exploit the bit rep-
resentation of the elements other than for testing equality. The security
of the RSA public-key cryptosystem can be analyzed in the generic ring
model.
In this paper, we prove that for almost all possible distributions of N ,
the problem of factoring N can be efficiently reduced to solving the
Strong RSA problem on ZN in the generic ring model of computation,
where an algorithm can perform ring operations, inverse ring operations,
and test equality.

1 Introduction

1.1 The Strong RSA Assumption

The RSA [12] public key cryptosystem is probably the most widely used public
key cryptosystem. Its security relies on the assumption that, given an RSA public

⋆ This version is an extended abstract of the paper.



18

key (n, e) and an x ∈ Zn , it is hard to compute a y ∈ Zn such that ye ≡ x
(mod n).

The Strong RSA assumption was introduced by Baric and Pfitzmann [2].
Cramer and Shoup [5] gave a signature scheme based on this assumption. This
assumption differs from the RSA assumption in that it states that it is hard to
compute e-th roots even if the adversary is allowed to choose e . Clearly, the
RSA assumption is potentially a weaker assumption. A still weaker assumption
is that factoring the modulus n is hard.

Before stating these assumptions, we define a non-negligible function. A func-
tion f : N 7→ R is called non-negligible if there exists c > 0 and k0 ∈ N such
that for all k > k0 , we have |f(k)| > k−c .

We consider a random variable N that is chosen according to a certain
probability distribution over a set of products of two primes. The set of primes
for which the result of this paper holds will be discussed in Section 2.1. The
Strong RSA problem is the problem of computing, given N and an element x
chosen uniformly at random from ZN , y ∈ ZN and e ∈ N\{1} such that ye ≡ x
(mod N). The assumptions are defined with respect to N and are formally
stated below:

Strong RSA Assumption for N : There exists no probabilistic polynomial-time
(PPT) algorithm that solves the Strong RSA problem for N with non-
negligible probability.

RSA Assumption for N and e : There exists no PPT algorithm that, given N ,
an element x chosen uniformly at random from ZN , and an integer e ∈
N \ {1} , computes y ∈ ZN such that ye ≡ x (mod N) with non-negligible
probability.

Factoring Assumption for N : There exists no PPT algorithm that, given N ,
finds a non-trivial factor of N with non-negligible probability.

It is easy to see that if the Strong RSA assumption holds then the factoring
assumption holds. However, it is not known whether the converse is true. In
this paper, we show that this converse holds with respect to a restricted class of
algorithms called generic algorithms. Our result thus subsumes the result of [1]
and proves a more general result.

Generic algorithms are algorithms that do not exploit the representation of
the elements. This class of algorithms was introduced by Shoup [13], based on the
work of Nechaev [10]. They proved lower bounds on the complexity of computing
discrete logarithms and some related problems in cyclic groups in the context of
generic algorithms. Maurer [9] provided a simpler and more general model for
analyzing representation-independent algorithms.

1.2 The Generic Ring Model of Computation

We give a brief description of the model of [9]. This is almost the same as the
description used in [1] and is sufficient for our purpose. The model is character-
ized by a black-box B which can store values from a certain set T in internal
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state variables V0, V1, V2, · · · . The initial state (the input of the problem to be
solved) consists of the values of [V0 , . . . , Vℓ ] for some positive integer ℓ , which
are set according to some probability distribution over T ℓ+1 .

The black box B allows two types of operations:

– Computation operations. For a set Π of operations on T , a computation
operation consists of selecting f ∈ Π (say t -ary) as well as the indices
i1, . . . , it+1 of t+1 state variables. The black-box B computes f(Vi1 , . . . , Vit

)
and stores the result in Vit+1

.
– Relation Queries. For a set Σ of relations on T , a query consists of selecting a

relation ρ ∈ Σ (say t -ary) as well as the indices i1, . . . , it of t state variables.
The query is replied by the binary output ρ(Vi1 , . . . , Vit

) that takes the value
1 if the relation is satisfied, and 0 otherwise.

An algorithm in this model is characterized by its interactions with the black
box B . The algorithm inputs operations (computation operations and relation
queries) to the black box, and the replies to the relation queries are returned to
the algorithm. The complexity of an algorithm for solving any problem can be
measured by the number of operations it performs on B .

For this paper, the set T is ZN . Also ℓ = 1 and V0 is always set to be the unit
element 1 of ZN and V1 is the value x that is the input to the algorithm. Also,
N is assumed to be explicitly given to the algorithm. A generic ring algorithm
(GRA) is an algorithm that is allowed only ring operations and equality queries,
i.e., Π = {+,−, ·, /} and Σ = {=} .

Note that division by non-invertible elements of ZN is not defined. This can
be modeled in the above generic ring model by having the black-box B send an
“exception” bit b to the algorithm and leaving the corresponding state variable
undefined whenever there is a division by a non-invertible element. For more
details on this, refer to [1].

1.3 The Strong RSA Problem in the Generic Ring Model of Computation

The difficulty in formulating the Strong RSA problem in the generic ring model
is that an algorithm for solving this problem should output e and y where e is
not an element of the ring ZN and hence cannot be computed in the black-box.
If we model the problem such that the algorithm outputs e explicitly, then e
does not depend on the input except possibly on the result of equality queries.
The natural solution to this problem is to model e as an element of the ring ZN

which is interpreted as an integer in {0, . . . , N −1} . In particular, for u, v ∈ ZN ,
the element uv ∈ ZN is defined as an element of ZN obtained from raising u to
the power corresponding to the integer representing v modulo N . The Strong
RSA problem in our model can thus be stated as the problem of computing
(y, e) such that ye ≡ x (mod N) when V0 = 1, V1 = x and Π = {+,−, ·, /}
and Σ = {=} .
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1.4 Comparison With the Model of Damg̊ard and Koprowski

The only result that looks at the Strong RSA problem with respect to generic
algorithms is due to Damg̊ard and Koprowski [6]. In [6], the authors show that no
generic group algorithm(GGA) can, given an x chosen uniformly at random from
a certain group G , efficiently compute y ∈ G and e ∈ Z such that ye = x for a
reasonable choice of the group G , where GGAs are algorithms that allow only
the multiplication operation, which in our model would correspond to Π = {·}
and Σ = {=} .

Their result is very restricted in the sense that they assume that e is com-
puted outside the black-box and hence does not depend on the input except
possibly on the result of equality queries. Thus, their result is not much more
general than proving the hardness of the RSA problem in this model (that is,
when e is fixed). In contrast, in our model, e can be computed in the black-box
as an element of ZN using a GRA which is given x as input.

In [6], they consider only GGAs while we prove the equivalence for GRAs.
Since both the ring operations, multiplication and addition modulo N , are easy
to perform on the ring ZN , it is more interesting to study the complexity of
Strong RSA problem for GRAs rather than for GGAs.

1.5 Other Related Work

In addition to the result [6] mentioned in Section 1.4, there have been some
other results studying the RSA and related problems with respect to generic
algorithms.

Boneh and Venkatesan [3] showed that any straight-line program that factors
N by making at most a logarithmic number of queries to an oracle solving the
Low Exponent RSA (LE-RSA) problem, which is the RSA problem when the
public exponent e is small, can be converted into a PPT algorithm for factoring
N . This result is, however, of limited interest because the complexity of the
factoring algorithm that does not use the oracle increases exponentially with the
number of oracle queries made by the algorithm that uses the oracle.

Brown [4] showed that if factoring is hard then the LE-RSA problem is in-
tractable for straight-line programs (SLPs), i.e., where Π = {+,−, ·, /} . More
precisely, he proved that an efficient SLP for breaking LE-RSA can be trans-
formed into an efficient factoring algorithm. Leander and Rupp [8] generalized
the result of [4] to GRAs which, as explained earlier, can test for equality of
elements in addition to the computation operations. Aggarwal and Maurer [1]
further generalized these results to show that any GRA for computing e-th roots
(for any e) can be transformed into an efficient factoring algorithm.

2 Preliminaries

2.1 Notation

Let n be some value taken by the random variable N .
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By Zn[X] , we denote the ring of polynomials in x with coefficients in the
ring Zn of integers modulo n .

Let τ(k) denote the number of positive integer divisors of an integer k ≥ 2.
For η > 0, we define Lη as the set of primes ℓ with τ(ℓ − 1) ≤ (log ℓ)1+η .

Let π∗
η(L) = #(Lη ∩ [1, L]) and let π(L) be the number of primes ℓ ≤ L .

The following result states that for any constant η > 0, π∗
η(L) is almost as large

as π(L), i.e., Lη contains almost all primes. The proof is deferred to the full
version.

Lemma 1. For any fixed η > 0 , we have

π∗
η(L) = π(L)

(

1 − O
(

(log L)
−η

))

.

Thus, for any η > 0, the set Lη contains almost all sufficiently large primes
that are used for RSA. In particular, it includes all safe primes, i.e., primes ℓ
such that (ℓ − 1)/2 is also a prime which are the primes most often used for
RSA.

Let n be the product of primes p and q . Without loss of generality, we can
assume that q < p . In this paper, we assume κ to be the security parameter
and the term non-negligible is with respect to κ . We define a set Nη as follows:

Nη = {n = p · q : p, q are primes, 2κ ≤ n < 2κ+1, q < p, and p, q ∈ Lη} .

The set of RSA moduli considered in this paper are elements of the set Nη .

2.2 Definitions: SLPs and GRAs

In this section, we define two classes of algorithms, namely Straight Line Pro-
grams (SLPs) and Generic Ring Algorithms(GRAs). These definitions and the
corresponding interpretation is taken from [1] and the reader should refer to [1]
for a more detailed description.

An SLP corresponds to Π = {+,−, ·, /} and Σ = {} in the model of [9] and
is defined as follows:

Definition 1. An L-step straight-line program (SLP) S is a sequence of L −
1 triples (i2, j2, ◦2), . . . , (iL, jL, ◦L) such that 0 ≤ ik, jk < k and ◦k ∈
{+,−, ·, /} .

The interpretation of an SLP is that if x is considered a variable, then the
SLP S computes a sequence of rational functions f2, . . . , fL , where, f0 = 1,
f1 = x and fk = fik

◦k fjk
for 2 ≤ k ≤ L . The rational functions fi can be

interpreted as a pair of polynomials (ai, bi) representing the numerator and the
denominator of fi .

A (randomized) GRA is a generalization of an SLP and is defined as follows:
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Definition 2. An L-step (randomized) GRA G is an algorithm that, in the kth

step, for 2 ≤ k ≤ L , outputs an operation of the form (ik, jk, ◦k), where 0 ≤
ik, jk < k and ◦k ∈ {+,−, ·, /,=} and if ◦k is =, it takes an input bit (as the
result of the equality query).3

3 Generic Strong RSA vs Factoring

3.1 The Statement of the Main Result

As mentioned earlier, in this paper we restrict our attention to the case where
the adversary is only allowed to use a GRA to solve the Strong RSA problem.
We refer to the Strong RSA assumption in this case as the Generic Strong RSA
assumption for the random variable N :

Generic Strong RSA Assumption for N : For any L bounded by a polynomial
in the security parameter, there exists no L-step randomized GRA thatsolves
the Strong RSA problem for N with non-negligible probability.

Theorem 1. Let η > 0 be fixed. Let N be a random variable taking values in the
set Nη . If the Factoring Assumption for N holds, then the Generic Strong RSA
Assumption for N holds.

It should be noted that this theorem is proved for any distribution of N over
the set Nη . Also, n is a value taken by the random variable N .

3.2 The Proof for Straight-Line Programs

Here we obtain a version of Theorem 1 in the case when a randomized GRA is
replaced by an SLP in the definition of the Generic Strong RSA Assumption.

The following result is a slight generalization of [1, Lemma 6] and we need
this to prove the result for straight line programs.

Lemma 2. For all µ > 0 and L ∈ N , there exists an algorithm that takes as input
n and, for every L-step SLP S that computes the rational function f(x) ∈ Zn[x]
not identically 0 such that Prx∈RZn

(f(x) ≡ 0 (mod n)) ≥ µ , returns a factor of
n in expected time O(L4/µ) .

This proof is almost the same as the proof of [1, Lemma 6].

Now, we prove the main technical result of this section. It shows that any
SLP that, given x , computes a y and an e such that ye ≡ x (mod n) for some
e > 1, can be used to factor n .

3 The choice of the operation at each step may be randomized.
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Lemma 3. For all η > 0 , α > 0 and L ∈ N , there exists an algorithm that
takes as input n and an L-step SLP S , and satisfies the following property. If
S computes the rational functions P1 (x)/Q1 (x) and P2 (x)/Q2 (x) such that
the cardinality of the set 4

{

x ∈ Zn :

(

P1 (x)

Q1 (x)

)P2(x)/Q2(x)

≡ x (mod n) ∧ P2(x) 6≡ Q2(x) (mod n)

}

is at least 3n(log n)−α , then the algorithm returns a factor of n in expected time
O

(

log2α+2η+3 n
(

L4 + log4 n
))

.

Proof. We define two events E1 and E2 .

– Let E1 be the event that there exists c ∈ Zn (c 6= 1) such that

#

{

x ∈ Zn :
P2 (x)

Q2 (x)
− c ≡ 0 (mod n)

}

≥ n

(log n)
α+1+η (1)

– Let E2 be the event that there exists c ∈ Zn (c 6= 1) such that

#

{

x ∈ Zn :
P2 (x)

Q2 (x)
− c ≡ 0 (mod q)

}

≥ 2n

(log n)
α+1+η (2)

For an event E , we use E to denote the complementary event of E .

We split the proof into three cases that are mutually exhaustive. In the first
two cases, we give an algorithm for factoring n , and in the third case, we show
that the inequality in the statement of Lemma 3 is not satisfied.

CASE 1: E1 holds.

In this case, P2(x)/Q2(x) is a constant c with non-negligible probability, i.e.,
P2(x)−cQ2(x) ≡n 0 with non-negligible probability. Thus, if P2(x)−cQ2(x)
is not identically zero, then, using Lemma 2, we can obtain a factor of n .
If P2(x) − cQ2(x) is identically zero, then P1(x)c − xQ1(x)c ≡n 0 with
non-negligible probability and thus, we can use Lemma 2 for the polynomial
P1(x)c − xQ1(x)c , thus obtaining a factor of n .

CASE 2: The events E1 and E2 hold.

In this case, as can be seen from the definitions of E1 and E2 , the expression
P2 (X) /Q2 (X) behaves differently modulo p and modulo q for a random
X . Thus, it can be shown that gcd (P2 (X1)/Q2 (X1) − P2 (X2)/Q2 (X2), n)
for randomly chosen X1, X2 returns a factor of n with non-negligible prob-
ability. The details of the proof of CASE 1 and CASE 2 is deferred to the
full version of the paper.

4 Note that P2 (x)/Q2 (x) is understood as being computed modulo n .
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CASE 3: The event E2 holds.
In this case, we bound the cardinality of the set
{

x ∈ Zn :

(

P1 (x)

Q1 (x)

)P2(x)/Q2(x)

≡ x mod n, P2(x) 6≡ Q2(x) mod n

}

.

Let us consider the natural homomorphism from Zn to Zq and define

R = max
c∈Zq

#

{

x ∈ Zq :
P2(x)

Q2(x)
≡ c (mod q)

}

≤ 2q(log n)−(α+1+η) , (3)

where the inequality follows from the fact that E2 holds.
Each x = 0, . . . , n − 1 can be uniquely written as m + pk with m =
0, . . . , p − 1 and k = 0, . . . , q − 1. We also note that for any polynomial P ,

P (m + pk) ≡ P (m) (mod p). Thus, the congruence
(

P1(x)
Q1(x)

)P2(x)/Q2(x)

≡ x

(mod n), taken modulo p is

(

P1 (m)

Q1 (m)

)

P2(m+pk)

Q2(m+pk)

≡ m (mod p), 0 ≤ m ≤ p−1, 0 ≤ k ≤ q−1. (4)

The number of solutions with m = 0 is at most q . Now, we bound the
number of solutions if m 6= 0. In this case, for (4) to hold, P1(m) 6≡ 0
and Q1(m) 6≡ 0 (mod p). Hence, in order to give an upper bound on the
cardinality of X , we also assume that P1(m) and Q1(m) are not 0 modulo
p .
We now fix a primitive root g modulo p . Then, for all m , there exist um

and vm such that

m ≡ gum (mod p),
P1(m)

Q1(m)
≡ gvm (mod p), 0 ≤ um, vm ≤ p − 2 .

From (4), we get that

vm · P2(m + pk)

Q2(m + pk)
≡ um (mod p − 1). (5)

Let tm = gcd (p − 1, vm, um) and sm = p−1
tm

.
Then, (5) is equivalent to

vm

tm
· P2(m + pk)

Q2(m + pk)
≡ um

tm
(mod sm) . (6)

Clearly, if gcd(vm/tm, sm) > 1, then the above congruence has no solutions.
Therefore, gcd(vm/tm, sm) = 1 must hold. Then, by multiplying (6) by

(vm/tm)
−1

modulo sm , it leads to a congruence of the type

P2 (m + pk)

Q2 (m + pk)
≡ wm (mod sm), (7)
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with some integer wm depending only on m and not on k . Thus P2(m +
pk)/Q2(m+pk) can take at most one value modulo sm for a fixed m . Also,
P2(m+pk)/Q2(m+pk) takes a unique value modulo p for a fixed m . Thus,
by the Chinese Remainder Theorem, P2(m+ pk)/Q2(m+ pk) takes at most
one value modulo psm . This implies (using q < p) that, for a fixed m , there
are at most pq

psm
= qtm

p−1 ≤ tm possible values for P2(m+pk)/Q2(m+pk).
Note that m + pk is uniformly random in Zq if m is fixed and k is chosen
uniformly at random in Zq . So, from (5), P2(m + pk)/Q2(m + pk) takes any
of these possible values for at most R possible values of k .
Since tm | gcd(um, p − 1), tm = t for at most (p − 1)/t values of m .
Collecting together the values m such that tm = t for all t | p − 1 and
counting q possible values of x for m = 0, we obtain that

#X ≤ q +
∑

t|p−1

p − 1

t
· tR = q + (p − 1)R

∑

t|p−1

1

= q + (p − 1)Rτ(p − 1) ≤ q + 2(p − 1)q(log n)−(α+1+η)(log n)1+η

< q + 2n(log n)−α < 3n(log n)−α ,

where the third last inequality follows from the fact that p ∈ Lη and us-
ing (3), and the last inequality follows from the fact that q <

√
n (since

p > q ) and
√

n is larger than (log n)α for n large enough. However, this
contradicts our assumption.

⊓⊔

3.3 Generalizing the Proof from SLPs to GRAs

In this section we state how to obtain a factoring algorithm that, given access
to a GRA that solves the Strong RSA problem in Zn , outputs either a factor of
n or an SLP that solves the Strong RSA problem in Zn with almost the same
success probability.

Definition 3. For a GRA G , let λn(G) denote the probability that G , when run
on an x chosen uniformly at random from Zn , computes a pair y, e such that
ye ≡ x (mod n).

Note that λn(S) for an SLP S is implicitly defined by the above definition, since
an SLP is a special type of a GRA.

Lemma 4. For all ε > 0 and L ∈ N , there exists an algorithm of time complex-
ity O((L/ε)5/2) that, given access to an L-step randomized GRA G such that
λn(G) = µ , with probability µ/2 − ε , either outputs a factor of n or an L-step
SLP S such that λn(S) ≥ µ/2 .

The proof of Lemma 4 is the same as the proof of [1, Lemma 8]. Note that
the statement of Lemma 4 is different from [1] because of different definitions of
λn(G), but this does not change anything in the proof.

Combining Lemma 4 and Lemma 3, we can obtain the proof of Theorem 1.
The details of this proof can be found in the full version of the paper.
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