Abstract : We investigate Berlekamp's negacyclic codes and discover that these codes, when considered over the integers modulo 4, do not su er any of the restrictions on the minimum distance observed in Berlekamp's original papers [2, 3]. We present an algebraic decoding algorithm for this class of codes that corrects any error pattern of Lee weight t. Our treatment uses Grobner bases, the decoding complexity is quadratic in t.
https://hal.inria.fr/inria-00607733 Contributor : Assia SaadiConnect in order to contact the contributor Submitted on : Monday, July 11, 2011 - 10:23:04 AM Last modification on : Monday, March 29, 2021 - 11:50:03 AM Long-term archiving on: : Monday, November 12, 2012 - 10:40:23 AM
Eimear Byrne, Marcus Greferath, Jens Zumbragel, Jaume Pernas. Algebraic Decoding of Negacyclic Codes over Z4. WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.101-110. ⟨inria-00607733⟩