
HAL Id: inria-00607772
https://inria.hal.science/inria-00607772

Submitted on 11 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A variant of the McEliece cryptosystem with increased
public key security

Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, Davide
Schipani

To cite this version:
Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, Davide Schipani. A variant of
the McEliece cryptosystem with increased public key security. WCC 2011 - Workshop on coding and
cryptography, Apr 2011, Paris, France. pp.173-182. �inria-00607772�

https://inria.hal.science/inria-00607772
https://hal.archives-ouvertes.fr


A variant of the McEliece cryptosystem

with increased public key security

Marco Baldi1, Marco Bianchi1, Franco Chiaraluce1,
Joachim Rosenthal2, and Davide Schipani2 ⋆
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Abstract. We propose a new variant of the McEliece cryptosystem
which ensures that the code used as the public key is not permutation-
equivalent to the secret code. This allows to increase the security of the
public key, and to reconsider possible adoption of classical families of
codes, like Reed-Solomon codes. A reduction in the key size or, equiva-
lently, an increased level of security against information set decoding are
the main advantages of the modified cryptosystem. As a drawback, the
domain of intentional error vectors must be restricted, but we show that
this has no significant impact on the security level.
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1 Introduction

The McEliece cryptosystem [8] is one of the most promising public-key cryptosys-
tems able to resist attacks based on quantum computers. In fact, differently from
cryptosystems exploiting integer factorization or discrete logarithms, it relies on
the hardness of decoding a linear block code without any visible structure [3].

The original McEliece cryptosystem adopts the generator matrix of a bi-
nary Goppa code as the private key, and exploits a dense transformation matrix
and a permutation matrix to disguise the secret key into the public one. No
polynomial-time attack to the system has been devised up to now; however, the
increased computing power and the availability of optimized attack procedures
have required to update its original parameters [4].

The main advantage of the McEliece cryptosystem consists in its fast encryp-
tion and decryption procedures, which require a significantly lower number of
operations with respect to alternative solutions (like RSA). However, the origi-
nal McEliece cryptosystem has two main disadvantages: low encryption rate and
large key size, both due to the binary Goppa codes it is based on. When adopting
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Goppa codes, a first improvement is obtained through the variant proposed by
Niederreiter [10], which uses parity-check matrices instead of generator matrices.

A significant improvement in both these aspects would be obtained if other
families of codes could be included in the system. In particular, the use of Reed-
Solomon (RS) codes could yield significant advantages. In fact, RS codes are
maximum distance separable codes, which ensures they achieve maximum error
correction capability. In the McEliece system, this translates into shorter keys
for the same security level, or a higher security level for the same key size, with
respect to binary Goppa codes (having the same code rate).

Many attempts of replacing Goppa codes with other families of codes have
exposed the system to security threats [13], [18]. Some recent proposals based on
Quasi-Cyclic and Quasi-Dyadic codes have also been broken [17]. Low-Density
Parity-Check (LDPC) codes, in principle, should offer high design flexibility and
compact keys. However, also the applicability of such a class of codes may expose
the system to flaws [9], [11]. Nevertheless, it is still possible to exploit Quasi-
Cyclic LDPC codes to design a variant of the system that is immune to any
known attack [1].

The idea in [1] is to replace the permutation matrix P, used in the original
McEliece cryptosystem, with a dense transformation matrix Q. The matrix Q

used in [1] is a sparse matrix and its density must be chosen as a trade-off
between two opposite effects: i) increasing the density of the public code parity-
check matrix so that it is too difficult to search for low weight codewords in its
dual code and ii) limiting the propagation of the intentional errors so that they
are still correctable by the legitimate receiver.

We improve this approach by introducing a more effective class of Q matrices
and by generalizing their form also to the non-binary case. The new proposal is
based on the fact that there exist some classes of dense Q matrices that have
a limited propagation effect on the intentional error vectors. The use of these
matrices allows to better disguise the private key into the public one, with a
controlled error amplification effect. So, we propose a modified cryptosystem
that can restore the use of advantageous families of codes, as RS codes, by
ensuring increased public key security. In the proposed cryptosystem, the domain
of possible error vectors needs to be restricted depending on the choice of Q.
However, we will show that this restriction has a limited effect on the system
security.

2 Description of the cryptosystem

The main features of the proposed system are as follows. Bob chooses his secret
key as the k×n systematic generator matrix G of a linear block code over GF(p).
He also chooses other two secret matrices: a k×k non-singular scrambling matrix
S and an n × n non-singular transformation matrix Q. The public key is:

G′ = S−1 · G · Q−1. (1)
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So, in general, differently from the original McEliece cryptosystem, the public
code is not permutation-equivalent to the private code.

Alice, after obtaining Bob’s public key, applies the following encryption map:

x = u · G′ + e, (2)

where x is the ciphertext corresponding to the cleartext u, and e is a vector of
intentional errors. After receiving x, Bob inverts the transformation as follows:

x′ = x · Q = u · S−1 · G + e · Q, (3)

thus obtaining a codeword of the secret code affected by the error vector e · Q.
Bob shall be able to correct all the errors and get u·S−1, thanks to the systematic
form of G. He can then obtain u through multiplication by S.

2.1 Choice of Q

In general, the use of a transformation matrix Q in place of a permutation matrix
causes an error propagation effect. However, if Q is chosen within a given class
of matrices, this effect can be controlled or even eliminated, when needed. For
the latter purpose, let us consider a first form of Q, called Q1, obtained as the
sum of a permutation matrix P1 and a rank-1 matrix R, that is:

Q1 = R + P1, (4)

with
R = aT · b =

[
a1 a2 · · · an

]T

·
[
b1 b2 · · · bn

]
, (5)

where a and b are two random vectors over GF(p) and T denotes transposition.
If Q1 is full rank, Q−1

1 can be used to generate the public code.
In the choice of Q1 it is important to avoid some special cases which could

allow an attacker to derive a code that is permutation-equivalent to the secret
one, thus bringing security back to that of the classical McEliece system.

Let us suppose the j-th element of b is zero and that P1 has a symbol 1 at
position (i, j). In this case, the j-th column of Q1 is completely null, except for

its element at row i. Since Q−1
1 = Q̂/ |Q|, where Q̂ is the adjoint matrix and |Q|

is the determinant of Q1, it follows from the definition of Q̂ that the i-th column
of Q−1

1 is completely null, except for its element at row j (that is not necessarily
equal to 1, except for the binary case). So, the i-th column of Q−1

1 has the effect
of a column permutation (apart from multiplication by a constant), like in the
original McEliece cryptosystem.

In order to avoid such a flaw, we impose that all the elements of b are
non-zero. We then restrict the generation of intentional error vectors to vectors
e = [e1, e2, . . . , en] such that:

n∑

i=1

aiei = 0. (6)
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This requires that a is disclosed as part of the public key, and ensures that
the product e · R gives the all-zero vector, so that the legitimate receiver gets:

e′ = e · Q1 = e · R + e · P1 = e · P1. (7)

So, the weight of e′ is exactly coincident with that of e. If we work on GF(p), with
p > 2, we can replace the permutation matrix with a generalized permutation
matrix with non-zero values randomly selected among the p−1 non-zero elements
of GF(p). More generally, we can consider to use m matrices of the latter type,
the ith one being denoted by Πi. So, in place of (4), we have:

Qm = R + Π1 + Π2 + . . . + Πm. (8)

Provided that only intentional error vectors that satisfy (6) are used, a ma-
trix Qm as in (8) allows to amplify the number of intentional errors (at most)
by a factor m. Such controlled error amplification effect can be compensated
by using codes with a high error correction capability, as it occurs for LDPC
codes [1]. Moreover, the use of Qm (through its inverse) allows to disguise the
private matrix of a code over GF(p) in a way that, at least in principle, is much
stronger than what can be done by using a permutation matrix (as in the orig-
inal McEliece system). An even more general form of Qm can be designed by
replacing the rank-1 matrix R with a rank-z (z ≥ 1) matrix, thus modifying
condition (6) accordingly with a set of z constraints.

2.2 Design issues

As we have seen in Section 2.1, null elements must be avoided in b to prevent
the public code from being (almost) permutation-equivalent to the secret one.

Focusing on the binary case, this imposes that b is the all-one vector. How-
ever, in such a case, further issues exist in the design of Q. For example, let
us consider a as an all-one vector too, so that R = 1, and suppose that only
one random permutation matrix is used (as in (4)). It is easy to verify that the
public code has the following parity-check matrix:

H′ = H · QT , (9)

where H is the parity-check matrix of the private code. In the special case of
Q1 = 1 + P1, we have H′ = H · 1 + H · PT

1 . By assuming a regular H (i.e. with
constant row and column weights), two cases are possible:

– If the rows of H have even weight, H · 1 = 0 and H′ = H · PT

1 .
– If the rows of H have odd weight, H · 1 = 1 and H′ = 1 + H · PT

1 .

In both cases, the public code has a parity-check matrix that is simply a per-
muted version of that of the secret code (or its complementary). This reduces the
security to that of the original McEliece cryptosystem, that discloses a permuted
version of the secret code. Such security level is not sufficient when adopting, for



177

example, LDPC codes, since the permuted version of the secret H matrix can be
attacked by searching for low weight codewords in the dual of the secret code.

A more general formulation of the flaw follows from the consideration that
Q1 = 1 + P1 has a very special inverse. First of all, let us consider that Q1

is invertible only when it has even size. This is obvious since, for odd size, Q1

has even row/column weight; so, the sum of all its rows is the zero vector. If we
restrict ourselves to even size Q1 matrices, it is easy to show that their inverse
has the form Q−1

1 = 1 + PT

1 , due to the property of permutation matrices (as
orthogonal matrices) to have their inverse coincident with the transpose.

So, Q−1
1 has the same form of Q1 and, as in the case of H, disclosing G′ =

S−1GQ−1
1 might imply disclosing a generator matrix of a permuted version

of the secret code or its complementary (depending on the parity of its row
weight). Therefore, the form Q1 = 1 + P1 might reduce the security to that of
the permutation used in the original McEliece cryptosystem.

Based on these considerations, one could think that adopting a vector a

different from the all-one vector could avoid the flaw. However, by considering
again that Q−1

1 = Q̂/ |Q|, it is easy to verify that a weight-1 row in Q1 produces
a weight-1 row in Q−1

1 and a weight-(n−1) row in Q1 produces a weight-(n−1)
row in Q−1

1 . It follows that Q−1
1 contains couples of columns having Hamming

distance 2. Since their sum is a weight-2 vector, the sum of the corresponding
columns of the public matrix results in the sum of two columns of S−1G. Starting
from this fact, an attacker could try to solve a system of linear equations with
the aim of obtaining a permutation-equivalent representation of the secret code,
at least for the existing distance-2 column pairs.

So, our conclusion concerning the binary case is that the choice of Q as in
(4) should be avoided. A safer Q is obtained by using an R matrix with rank
z > 1 and by adding more than one permutation matrices to it (i.e. m > 1). This
obviously has the drawback of requiring codes with increased error correction
capability; so, in this work, we will focus on non-binary codes and m = 1.

3 Comparison with previous cryptosystems

Other proposals for increasing key security have been made in the past, such
as using a distortion matrix together with rank codes in the GPT cryptosystem
[5] and exploiting the properties of subcodes in variants of the McEliece and
the GPT cryptosystems [2]. Unfortunately, cryptanalysis has shown that such
approaches exhibit security flaws [13], [18].

The idea of using a rank-1 matrix with the same structure we consider can
also be found in [6]. However, such a matrix was added to the secret matrix
(rather than multiplied) and no selection of the error vectors was performed, so
that a completely different solution was implemented.

Instead, the idea of replacing the permutation in the McEliece cryptosystem
with a more general transformation matrix is already present in the variant of the
GPT cryptosystem adopting a column scrambler [12], [16] and in cryptosystems
based on full decoding [7, sec. 8.3]. These proposals are shortly examined next.
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3.1 Comparison with the modified GPT cryptosystem

Apart from the code extension and the inclusion of an additive distortion ma-
trix, in the modified GPT cryptosystem the public generator matrix is obtained
through right-multiplication by a non-singular matrix that is not necessarily a
permutation matrix. So, in principle, it is the same idea of a more general trans-
formation matrix as in the proposed cryptosystem. However, in order to preserve
the ability to correct the intentional error vectors, the GPT cryptosystem works
in the rank metric domain and adopts rank distance codes, as Gabidulin codes.

Unfortunately, the properties of Gabidulin codes make it possible to exploit
the effect of the Frobenius automorphism on the public generator matrix in order
to mount a polynomial-time attack [13]. Differently from the GPT cryptosystem,
the proposed solution still exploits Hamming distance codes and is able to replace
the permutation matrix with a more general transformation matrix by properly
selecting the error vectors.

3.2 Comparison with full-decoding cryptosystems

The main idea behind full-decoding cryptosystems in [7] is to let the intentional
error vectors have any arbitrary weight. This way, an attacker would be forced
to try full-decoding of the public code, that is known to be a NP-complete task.
Obviously, the legitimate receiver must be able to decode any intentional error
vector with reasonable complexity; so, the problem of full decoding must be
transformed from a one-way function to a trapdoor function. For this purpose,
the main idea is to use a transformation that maps a set of error vectors with
weight ≤ t into a set of arbitrary weight intentional error vectors.

If this transformation is represented by the n×n matrix M, the public code
(as proposed first in [7]) would be G′ = G · M. The basic point for obtaining
a trapdoor function is to make Alice use only those error vectors that can be
expressed as e′ = e ·M, where e is a weight-t error vector. This way, when Bob
uses the inverse of the secret matrix M to invert the transformation, he re-maps
each arbitrary weight error vector into a correctable error vector. Unauthorized
users would instead be forced to try full-decoding over arbitrary weight error
vectors; so, the trapdoor is obtained.

In order to exploit the full-decoding problem, Alice must use, for encryption,
only those error vectors that can be anti-transformed into correctable error vec-
tors. So, some information on the transformation used to originate them must
be disclosed. A solution is that the first p < n rows of M are made public
[7]. However, it has been proved that, this way, the security reduces to that of
the original McEliece cryptosystem, and an attacker does not have to attempt
full-decoding, but only normal decoding.

Further variants aim at better hiding the secret transformation matrix in
its disclosed version [7]. In the last variant, a generator matrix of a maximum
distance-t anticode is used to hide the secret transformation. This way, after
inverting the secret transformation, the error vector remains correctable for the
legitimate receiver. To our knowledge, the latter version has never been proved
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to be insecure nor to reduce to the same problem of the original McEliece cryp-
tosystem. However, the construction based on anticodes seems quite unpractical.

Differently from full-decoding cryptosystems, our proposal still relies on the
same problem as the original McEliece cryptosystem (that is, normal decoding);
so, we need to perform only a selection of the random error vectors (without
any transformation). For this reason, the information “leakage” on the secret
transformation that is needed in the proposed cryptosystem is considerably lower
with respect to what happens in full-decoding cryptosystems.

4 Attacks against the proposed cryptosystem

A first concern about the proposed cryptosystem is to verify that it is actually
able to provide increased key security, with respect to previous variants of the
McEliece cryptosystem, in such a way as to allow the use of widespread families
of codes (as RS and Generalized RS codes) without incurring in the attacks that
have prevented their use up to now.

From the comparison with the variants described in Sections 3.1 and 3.2,
we infer that previous attacks targeted to those cryptosystems do not succeed
against the proposed one, due to the differences in the family of codes used and
in the information leakage on the secret transformation. Concerning the latter
point, we observe that, even if the whole matrix R (and not only the vector a)
were public, an attacker would not gain much information. In fact, in this case,
he could compute x · R = u · G′ · R. However, R has rank z ≪ n, so G′ · R is
not invertible. Moreover, multiplication by G′ · R only provides a dimension-z
syndrome of u, whose decoding is known to be a hard problem [3].

The most powerful attack procedures seem to be those techniques that at-
tempt information set decoding (ISD) on the public code; so we estimate the
security level of the proposed cryptosystem against them.

4.1 ISD attacks

In [4] the authors have proposed some smart speedup techniques to reduce the
Stern algorithm work factor (WF) over the binary field, this way obtaining a
theoretical WF close to 260. Their attack was implemented on a big cluster of
computers that was able to break the McEliece cryptosystem with original pa-
rameters (n = 1024, k = 524, w = 50). As a consequence, the authors have pro-
posed some new set of system parameters in order to increase the security level.
The information set decoding attack is not polynomial in the code dimension,
since it aims at decoding a random linear code without exploiting any structural
property (even if present) and this task is notoriously non-polynomial. One of
the biggest improvements presented in [4] is a smart way to find k independent
columns in the public generator matrix at each iteration without performing
Gaussian reduction on all such columns. A further improvement consists in the
pre-computation of the sum of some rows during the reduction.
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In [15], Peters points out that these speedups are efficient on very small
fields. As it results from the table available in [14], for q > 16 these speedups
are not relevant and the algorithm is quite similar to Stern’s one. The difference
relies on guessing not only p error positions but also p error values in the k
independent columns, due to the field cardinality. Finiasz and Sendrier have
proposed a further improvement that could yield a slight modification in the
WF, resulting in a maximum increase of 26 or a maximum decrease close to 23.

In Table 1 we report some values of the WF when using RS codes in the
variant of the McEliece cryptosystem we propose. They were computed through
the PARI/GP script available in [14], that allows the estimation of the security
level, although it is not extremely accurate (it can be about 4-8 times higher
than the actual value). The reported WF values are the lowest ones obtained
for each set of parameters. Based on Table 1, we can compare the proposed
cryptosystem with the instances of the McEliece system presented in [4].

Example 1 To reach WF > 280, the (1632, 1269) Goppa code is suggested,
resulting in a public-key size of 460647 bits (that is the lowest possible value for
this code, obtained by storing the non-systematic part of H, as in the Niederreiter
cryptosystem). With the new variant we can consider the RS code with n = 255,
k = 195, t = 30, having an estimated WF ≈ 286.06 and an actual WF ≈ 284.18

(found through the C program available in [14]). The public key size for this
code, due to storing the 195×255 matrix G′ and the 1×255 vector a, both with
elements over GF(256), is 399840 bits, that is about 13% less than (the minimum
size of) that obtained by the revised McEliece cryptosystem [4]. The security
level of the two systems remains comparable when the constraint expressed by a

is imposed on the intentional error vectors of the modified cryptosystem. In fact,
as it will be shown in the next subsection, the introduction of each constraint
results in a decreased WF for the ISD attack of 23 at most.

Example 2 As another example, we can consider the Goppa code suggested in
[4] to achieve WF ≥ 2128, which has n = 2960, k = 2288, yielding a key length
of 1537536 bits. An RS code with the same rate (0.77), defined over GF(512),
is reported in Table 1 and has n = 511, k = 395. The corresponding key size
for the proposed McEliece system is 1821204 bits (that is slightly bigger than
the one in the Niederreiter system proposed in [4]), but the security level grows
up to 2158.67 (more precisely, it is estimated as 2155.89 with the C program from
[14]). This value remains very high even when we consider the presence of the
constraint expressed by a on the intentional error vectors.

4.2 Exploiting the knowledge on error vectors

It is important to assess whether the constraints imposed on the intentional error
vectors used in the proposed cryptosystem have consequences on its security.

For this purpose, a conservative approach consists in considering, in the WF
computations, a reduced number of intentional errors, that is, t′ = t − z, where
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Table 1. Work factor (log
2
) of ISD attacks on RS codes.

RS codes with n = 127 defined over GF(128)

Rate 0.75 0.73 0.72 0.70 0.69 0.67 0.65 0.64 0.62 0.61 0.59 0.57 0.56 0.54 0.53

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

WF 49.2 50.1 51.0 51.7 52.3 52.8 53.3 53.7 54.0 54.2 54.3 54.4 54.4 54.4 54.2

RS codes with n = 255 defined over GF(256)

Rate 0.81 0.80 0.78 0.76 0.75 0.73 0.72 0.70 0.69 0.67 0.65 0.64 0.62 0.61 0.59

t 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

WF 79.0 81.6 83.9 86.1 87.9 89.6 91.1 92.4 93.5 94.4 95.2 95.8 96.2 96.5 96.7

RS codes with n = 511 defined over GF(512)

Rate 0.94 0.93 0.91 0.90 0.89 0.88 0.87 0.86 0.84 0.83 0.82 0.81 0.80 0.78 0.77

t 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

WF 81.3 90.1 98.1 105.6 112.4 118.8 124.7 130.2 135.3 140.0 144.3 148.4 152.1 155.5 158.7

z is the number of constraints we impose on the intentional error vectors. This
approach is conservative in the sense that we assume that the attacker exactly
knows both the position and value of z errors, while he actually knows only
their values. This has been done in Table 2. As we can observe from the values
obtained (and their comparison with those reported in Table 1, corresponding
to z = 0), we have a WF decrease close to 23 when z is increased by 1. So, the
security level for the considered parameters does not vary significantly for low
values of z.

Table 2. Work factor (log
2
) of ISD attacks on RS codes with n = 255, defined over

GF(256), when z = 1 or z = 2 constraints are imposed on the error vectors.

Rate 0.81 0.80 0.78 0.76 0.75 0.73 0.72 0.70 0.69 0.67 0.65 0.64 0.62 0.61 0.59

t 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52

WF (z = 1) 75.9 78.6 81.1 83.3 85.3 87.0 88.6 90.0 91.2 92.2 93.0 93.7 94.2 94.6 94.8

WF (z = 2) 72.8 75.6 78.2 80.5 82.6 84.5 86.1 87.6 88.9 89.9 90.9 91.6 92.2 92.6 92.9

5 Conclusion

We have introduced a variant of the McEliece cryptosystem that, by replacing
the secret permutation matrix with a more general transformation matrix, is
able to avoid that the public code is permutation-equivalent to the secret code.
This allows to prevent attacks against classical families of codes, as RS codes,
and to reconsider them as possible good candidates in this framework.

We have assessed the security level of the proposed cryptosystem by consid-
ering up-to-date attack procedures, and we have compared it with the classical
McEliece cryptosystem and the Niederreiter variant. Our results show that the
proposed solution, by exploiting RS codes, is able to guarantee the same security
level with reduced key size or, equivalently, an increased security level with a
similar key size.
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