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Déconvolution pour la métrique de Wasserstein
et inférence géométrique

Résumé : La notion de fonction distance & une mesure récemment introduite
dans [4] permet de répondre a des problémes d'inférence géométrique dans un
cadre probabiliste : les propriétés topologiques d'un compack  RY peuvent
étre estimées a l'aide de la fonction distance a une mesure de probabilité connue

si celle-ci se trouve su samment proche (au sens de la distance de Wasserstein
W,) d'une mesure dont K est le support. En pratique lorsque les observations
sont corrompues par du bruit, la mesure empiriqgue associée aux observations
n'est généralement pas assez proche depour pouvoir étre utilisée directement.
Dans cet article, on propose une solution a ce probleme en considérant un modele
de convolution pour lequel la loi du bruit est supposée connue. On considére une
variante de l'estimateur par noyau de déconvolution classique dont on établit la
consistence et des vitesses de convergence. On illustre la méthode proposée et
ses applications en inférence géométrique sur di érentes formes géométriques et
di érentes distributions de bruit sur les observations.

Mots-clés :  Déconvolution, Distance de Wasserstein, Inférence géométrique,
Topologie algorithmique
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1 Introduction

Infering topological and geometric information from multivariate data is a prob-
lem which is attracting a lot of interest since a couple of decades. Many sta-
tistical methods have been developed to model and estimate geometric features
from point cloud data that are usually considered as independent observations
drawn according to a common distribution in an Euclidean spaceR¢. In low
dimensions, principal curves and principal surfaces have been early proposed by
[17] to study simple manifolds. More elaborated structures can be also studied
with density-based methods. For instance, lament estimation has been the
subject of several works, see for instancé€ [13] and]14] for recent contributions.
In a more general context, set estimation deals with problems in the interplay
between statistics and geometry. This eld includes estimation of supports,
boundaries and level sets, seé¢][8] for a large overview on this topic. Cluster
analysis algorithms also provide geometric information. One popular approach
of clustering proposed by [[16] consists in de ning clusters as connected compo-
nents of the levels sets associated to a densitfy, see for instance[[7] and[]1].
Another statistical work by [19] proposes estimators of the entropy dimension
of the support of and of the number of clusters of the support in the case of
corrupted data. The paper of [9] addresses estimation of the surface area of a
d-dimensional body, as de ned by the Minkowski measure. These above men-
tioned works propose e cient statistical methods for geometric inference but
they usually do not provide topological guarantees on the estimated geometric
guantities.

On the other hand many non stochastic methods have been proposed in
computational geometry to infer the geometry of an unknown object from a
set of data point sampled around it. In this context, distance functions to the
data have shown to be e cient tools to robustly infer precise information about
the geometry of the object. More precisely, [[5] and([3] show that the sublevel
sets of the distance function to the data can be used to recover the geometry
of the unknown object. These methods o er strong geometric and topological
guarantees but they rely on strong sampling assumptions that usually do not
apply in a statistical framework. In particular, they fail when applied on data
corrupted by outliers.

Recently, some e orts have been made to bridge the gap between the statisti-
cal and geometric approaches. For example, assuming that the observations are
independently drawn from a probability measure that is the convolution of the
uniform measure on a submanifoldM with a Gaussian noise measure supported
by the normals to M, [23] propose an algorithm to recover the Betti numbers of
M. A major limitation of this method is that the noise should verify a strong
variance condition.

In a di erent perspective [4] have generalized the approach of]3] by extend-
ing the notion of distance function from compact sets to probability measures.
This new framework allows to robustly infer geometric properties of a distri-
bution  using independent observations drawn according to a distribution ©°
close to where the closeness between probability distributions is assessed by
a Wasserstein distanceW, de ned by

Z
Wo(; 9= zi(nf_ kx ykP (dx;dy) ;

9% R¢ Rd

o=

RR n° 7678
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where ( ;9 is the set of probability measures orRY RY that have marginals
and © k:kkisanormandp 1is areal number (seel[26] or [28]).
Given a probability distribution in RY and a real parameter0 m 1,
[4] generalize the notion of distance to the support of by the function .
x2 RY7linffr> 0 : (B(x;r)) >mgwhereB(x;r) is the closed Euclidean
ball of center x and radius r. To avoid issues due to discontinuities of the map
7! .m , the distance function to  with paprameter mg 2 [0; 1] is de ned by
s : 7
‘RYI RY; x7! — ( m (x))2dm: (1)
Mo o

d.m

0

The function d., , shares many properties with classical distance functions
that make it well-suited for geometric inference purposes. In particular, the
map 7! d.n , is1= mg-Lipschitz, i.e.

. . 1
supjdm o(X) dom,(X)j=kdm, dom,ks p=—W,(; 9:
x2 Rd Mo
This property ensures that the distance functions associated to close measures
(for the W, metric) have close sublevel sets. Moreover, the functiorujz;m , IS

semiconcave (i.e. x 7! kxk? dz;m ,(X) is convex) ensuring strong regularity
properties on the geometry of its sublevel sets - se&[24] for more informations
on the geometric properties of semiconcave functions. Using these propertiés [4]
(Corollary 4.11) prove, under some general assumptions, that if °is a proba-
bility distribution approximating , then the sublevel sets ofd o, provide a
topologically correct approximation of the support of . The statement of such

a result requires the following de nitions. A probability measures is said to have
dimension at mostk > 0 if there exits a constant C( ) such that for any point x

in the support of and any su ciently small "> Oone has (B(x;")) C( )"k.
Given a compact setG RY and a real number > Othe -reach ofG denoted
reach (G) is a geometric quantity related to the critical points of the (classical)
distance function dg to G, dg(x) =inf fd(x;y)y 2 Gg, that provides a measure
of the regularity of G (see [3] for the de nition).

Theorem 1. Let be a measure that has dimension at mo%t > 0 with compact

support G such that reach(G) R > 0 for some > 0. Let be another
measure and" be an upper bound on the uniform distance betweeds and

d.m,. Then, forany r 2 [4'= 2,R 3']and any 2]0;R][, the r-sublevel sets
of d., , and the -sublevel sets ofig are homotopy equivalent as soon as:

rRP mg

1=k 1=k+1 =2,
Erd= 2 C() My :

Wa(; )
Roughly speaking, this result means that if ones knows a measure that is
close to for the Wasserstein metric, the level sets ofl .., , can be used to infer
the topology of the sublevel sets of the distance function to the supporG of
. In practice if one observes a set of points independently sampled according
to the distribution  (resp. to some distribution ©° that is close to ), a nat-
ural candidate for is the empirical measure of the points cloud ,. Indeed,
E(W2Z( n; ) (resp E(WZ( n; 9)) converges to zero as tends to in nity, as
shown by [18].

RR n° 7678
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However, in many situations the data is contaminated by noise, namely
we observe some points drawn according to the convolution?  where is
supported by the unknown compact setG and is the distribution of the noise.
In such a situation, E(WZ( n»; )) does not converges to zero anymore, and,
may be too far from to apply Theorem[I. The aim of this article is to propose
a deconvolution estimator ~, close to for the Wasserstein metric, and then
to use the levels sets ofi~,.m, to infer the topology of the sublevel sets of the
distance function to G.

Many papers deal with the convolution model from a statistical point of view.
We focus here on works related to support estimation or geometric inference.
Support estimation in the convolution setting has been the subject of recent
works mostly in the univariate case. In [15] and [[10], the boundary of the
support is detectedvia the large values of the derivate of the density estimator
under the assumption that the density of has a discontinuity at the boundary.
An alternative method based on moment estimation is proposed by [22] without
assuming that the density is discontinuous at the boundary. For the multivariate
case, [[21] proposes an estimator of the support based on a resampling strategy,
that satisfy some consistency properties. Still in the convolution setting, [19]
gives estimates of the entropy dimension of the supportG and of the number
of clusters of G.

In this paper, we study the behavior of a deconvolution estimator with re-
spect to the Wassertein metricW,. In the applications we have in mind, is
typically supported by a submanifold of RY with dimension strictly less than
d. Consequently, we shall not assume that has a density with respect to the
Lebesgue measure oRY. In fact, except that it is compactly supported, we
shall make no further assumptions on .

Besides the geometric applications we have in mind, studying the properties
of probability estimators for the W, metric is also interesting in itself. Firstly,
contrary to the L,-distances between probability densities (except forp = 1,
which conincides with the total variation distance), the distances W, are true
distances between probability distributions. Secondly, many natural estimators
", of are singular with respect to  (think of the empirical measure in most
cases), and consequently the total variation distance betweert, and is equal
to 2 for any n. This is the case of our deconvolution estimator, if the supportG
is a submanifold in RY with dimension srictly less than d. Wasserstein metrics
appear as natural distances to evaluate the performance of such estimators.

The rst section of this paper is devoted to the theoretical aspects of the
paper. We rst de ne the deconvolution estimator ”, and then we give rates
of convergence forE(W2(”,; )). The second section presents some numerical
experiments with applications to geometric inference.

2 Deconvolution for the Wasserstein metric

We start with some notation. The inner product < ; > from RY RYto R
is de ned as follows: forx = (x1;:::5;%g)t and'y = (yq;::5ya)t, < Xy > =

X1Yy1 + + XqYq. The euclidean norm ofx is denoted by kxk = P <X X> .

RR n° 7678
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In the following, we denote by  (respectively f ) the Fourier transform of

the probability measure (respectively of the integrable function f ), that is:
Z Z
(x) = €™ (dt) and f (x)= <> f (t)dt:
Rd Rd

For two probability measures ; on RY, we denote by ?  the convolution
product of and , that is the image measure of by the application
(x;y)! x+yfromRY R9to RY. If has a densitygonRY, we denote by
?g the density of ? ,thatis

Z

?79(x) = y g(x 2z) (d2):
2.1 The multivariate convolution model

with values in RY in the model

Y= X+ " 2

ing to an unknown probability measure supported on an unknown compact
subsetG of RY. The random vectors”; = (" 1;:::"iq)!'s are also i.i.d. random
and distributed according to a probability measure - which is supposed to be
known and symmetric (that is "; has the same distribution -). Hence, the
distribution of the Y;'sis given by = ?
Since - is symmetric, its Fourier transform . is a real-valued function. We
also assume that 4
kxk® -« (dx) < 1 ; ©)
Rd
which implies in particular that . is six times continuously di erentiable. Fi-
nally, we assume that . is positive on RY.
Let , be the empirical measure of the observations, that is
1 X
n= - Yi - (4)

n.
i=1

Under suitable assumptions, it follows from [18] that
lim E(WZ( s )= WE(2 )

and the term on right hand is nonzero if - is not the Dirac measure at0. Our
aim is to provide an estimator ", of the unknown distribution  such that

lim E(WZ("n; ))=0:

2.2 Deconvolution estimators

Let K be a symmetric density probability on R? such that
z

kxk?K (x)dx < 1 :
Rd

RR n° 7678
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Assume moreover that its Fourier transformK is compactly supported and two
times di erentiable with Lipschitz second derivatives. We shall give an example
of such a kernel in Sectior Z}.

Let H be an invertible matrix from RY to RY, H! be the transpose ofH,
and jH| be the absolute value of the determinant ofH. De ne the preliminary
estimator

xo
£ = nleji:l Ku(H Y1) (5)
where 1 Z K (u)
— i<u;x> 7“ .
W= @2y EGEDI M ©

The kernel Ky is called the deconvolution kernel. It is well de ned sinceK is
compactly supported and . is continuous and positive. MoreoverK'y belongs
to L1(RY): this follows from the fact that the function u! K (u)= .((H 1)tu)
is compactly supported and two times di erentiable.

The estimator (B) is the multivariate version of the standard deconvolution
kernel density estimator which was rst introduced in [2] and [27]. This esti-
mator has been the subject of many works, in particular in the non-parametric
univariate setting. Only few papers study the multidimensional deconvolution
problem, seel([B6] for a recent work on this subject.

Note that f}, is not necessarily a density, since it has no reason to be non
negative. Since our estimator has to be a probability measure, we de ne

G (x)= of7(x); where n=R1— and f}' =maxf0;fyg:
ra T (X)dx

The estimator ~, of s then the probability measure with density @, .

The rst step is to prove a consistency result for this estimator, and to do
this, we need to specify a loss function. The pointwise (semi-) metric and the
L, metric between probability densities are the most currently used (see for
instance the monograph of[[20]). Mean consistency results with respect to the
L; loss have also been proved by [12]. However, these loss functions are not
adapted to our context, since we do not assume that has a density.

In this paper we take W7 as our loss function, and we give rates of conver-
gence for the quantity E(WZ(*n; )).

2.3 A general decomposition

In this section, we shall always assume that
z p
(1 + kxk?) Var(fn(x))dx< 1 ;
Rd

which implies that E(W$(*,; )) is nite. More precisely, we shall prove the
following bias-variance" decomposition:

Proposition 1. Let
Z Z

B(H) = kHuk?K (u)du and C(H)= B(H)+ kxk? (dx) :
Rd Rd

RR n° 7678
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The following upper bound holds:
z
E(WZ(%; ) 2B(H)+4 (2C(H) + kxk2)p Var(fn(x))dx:
Rd
Proof of Proposition 1. [] We rst de ne the kernel Ky by
Ku(x) = iK(H 1x):
T H] '

As usual in deconvolution problems, the estimatorf}, is build in such a way
that E(f,(x)) = ?K 4 (x). Indeed, by Plancherel's identity

Z
Efh(x) = ﬁ Ku(H Yx 2) ? -(2)dz
- 1 1 1 .
= Gy R ) @ @) -

SinceKy is symmetric, we have that
1 . o
R T ) (W)= @ Ky (CHIY = Ry (H);

and by de nition of Ky,
Z

f/\n = 1 i<u;x> LHtU) )
E( (X)) (21)d ZRd € ) - (U) (U) (u)du
= W " EK (H l(X ) (U) (u)du = ?Ky (X) :

Now, by the triangle inequality
W2(™n; ) 2W2E( 2K i )+2W2(M; 2K i) )

The rst term on the right hand side of () is deterministic, and can be easily
bounded as follows: letYy be a random variable with distribution Ky and
independent of X1, in such a way that the distribution of X1+ Yy is ?K 4.
By de nition of W5, one has

W2( 2K ;) E(kX1+ Yy X1k?) = E(kYuk3)= B(H): (8)

To control the second term of G), we shall use the following lemma

Lemma 1. Let and be two probability measures orRY, and let j j be
the total variation measure of . Then
Z
W2(; ) 2min  kx ak?j j(dx)
a2zRd  Rd

In particular, if and have respective densities and g with respect to the
Lebesgue measure

z

WZ(; ) 2min  kx ak%f(x) g(x)jdx: (9)
a2Rd  Rd

RR n° 7678
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Remark 1. The inequality (9) has been proved by [29] with the constant 4, and
by [18] with the constant 3. We give here a very elementary proof which provides
a better constant.

Remark 2. If has a densityf with respect to the Lebesgue measure dRY,
we can use the inequality ) to obtain the following upper bound for the rst
term of ([7)
z
W2( 2K y; ) 2 kxk3jf (x) 2K y(x)jdx: (10)
Rd

Now, as in density deconvolution, iff is smooth enough, this upper bound may
be more precise than the simple upper boun?/2( ?K ; ) B(H). However,
the fact that f exists and is smooth onRY is a very restrictive assumption in
our context. Indeed, the basic case that we want to recover is that whereis
uniformly distributed on the compact setG. In that case, the densityf may
not exist at all, and if it exists, it is not regular at the boundary of G, so that the
upper boundW?( ?K y; ) B(H) is always better than ). Note also that
the upper boundW2( ?K ; ) B(H) is in fact an equality if is a Dirac
measure, and hence it cannot be improved without additional assumptions on

Proof of Lemma 1[] Let = 4 be the Hahn-Jordan decomposition
of . From the proof of Theorem 2.6.1 of [26], we know that

WG )= W3+ )
By the triangle inequality, for any a2 RY,

W2( 45 ) 2W2( 4+ (RY a5 +)+2W2( (RY o ):

Now Z
W2( 4 (RY a5 +)=  kx ak?® ,(dx)
Rd
and Z
WZ( (R a )= kx ak® (dx):
Rd
Finally,
z

WP )= WZ(+; ) 2 ke ak’( .+ )(dx);

and the result follows.
We continue the proof of Proposition[]. Applying Lemma[], we have suc-
cessively

Z
WZ(%n; ?Kw) 2 kxk?j ofy(x)  E(Fh(x)jdx
Z R Z
2 0 kxR () E(OQjdx+2(1 n)  kxKPE(fh (x))dx
z K Z R

2 kxkjfa(x) E(fn(x)j+2@ ) kxKPE(fR(x)dx:  (11)
Rd Rd

RR n° 7678
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Note that
Z 4

kxk®E(fh(x))dx  2C(H) and (1 ) (f 00 fr(x))dx;
Rd Rd

and consequently
Z Z
E@ a) kxk*E(fh(x)dx 2C(H)E (i (x) E(fn(x))dx
Rd Z Rd
2C(H)E  jfa(x) E(fn(x)jdx :(12)
Rd

Since E(jfn(x) E(fn(x))j)  (Var(fy(x))) =2, Proposition [1] follows from (7),

®). (L) and (L2).

2.4 Errors with independent coordinates

In this section, we assume that the random variables("1;); ; ¢ are indepen-
dent, which means that"; has the distribution - = 2 d-
In this context, we shall use the kernel

3  4sinx=4) *

K=k "; where k(x)= 3 » (13)

Note that k (x) = 3 g(4jtj)=16, with

t3 16 t3 32
g(t) = > 2t% + 3 Lio.or(t) + T‘*th 8t + 3 Lp.aq(1):

The kernel K is a symmetric density, andK is supported over[ 1;1]%. More-
over, sincet ! g(jtj) is two times di erentiable with Lipschitz second derivative,
the kernel K satis es all the required conditions.

We choose a diagonal matrixH with positive diagonal terms hy; hy;:::;hg.
The kernel Ky de ned in (B is given by

z

1 i k (u)
KH = R]_;hl Rz;hz Rd;hd Where Rj;hj (X) = ? elux mdu
The preliminary estimator f}, de ned in (B is then
1 XY 1 Xi Vi
fa(Xe;iiXg) = = = Kin, % : (14)
i=1 j=1:d ! !

and the estimator ~, of is deduced fromf}, as in |§ection.

Note that B(H) = (h#+  + h3), with = u?k(u)du. To ensure the
consistency of the estimator, the bias termB (H) has to tend to zero asn tends
to in nity. Without loss of generality, we assume in the following that H is such
that B(H) 1. Hence, the variance term

z

q__
Vo =4  (2C(H)+ kxk?) Var(f} (x))dx
Rd

RR n° 7678
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in Proposition [I] is such that
Z xd q

VvV, C 1+ xi2 Var(ﬁ(xl;:::;xn))dx1:::dxd
R? i=1

for some positive constantC that only depends on via the quantity M =
sup; ; qjXuwija wherej ji is the essential-supremum norm. Now

v
u
q lPE Yo Xi Yy 2

ho h;

i=1

Applying Cauchy-Schwarz's inequality d-times, we obtain that

¥ z 1
E (L_YH) @@+ Uizhiz)ﬁ(ki;h ; (u))2du;

i=1 !
where D; and D, are positive constants depending ord. Now, Yfi 2(M?2 +
"2.) and using the independence of the coordinates df;, we obtain that

Vv
Zq___ u v Z
et o BEC T M ECLY) e uh) (e ()7 |
i=1 :
(15)
It follows that
Vv
Z q___ u v Z
Var(f00) ax B2 T @e uend) Lk, )P (6)
Rd i

In the same way, we have that

Z q S v
A 1
d xZ Var(f}(x)) dx p% M8+ E("$;) @@+ uEhE)E(Rk;hk(u))Zduk
R
s z
v A

1
(M +E("%) @+ U?h?)ﬁ(ka;h.(u»zdui: 17)
i6k !
Note that E("f;i) and E("f;i) are nished according to @) Starting from these
computations, one can prove the following Propaosition.

Proposition 2. Let r;(x)=1=,(x), and let (hy;:::;hq) 2 [0;1]°. The follow-
ing upper bound holds
0 1
L ¥ xd Y
E(WZ(%n; ) 2 (hi+ +h)+p—@ 1i(h)+  Ji(hi) li(hi) A
i=1 k=1 i=1;i6k

RR n° 7678
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whereL is some positive constant depending od; M and (E("$;);E("$: )1 i d.
and

S Zm
li (h) l:h(ri(u))z +(rX(u))2du;
S 7
Ji(h) 1:h(ri(u))2 +(r{"(u))2du
S 7o > Zm
+h 1_h(rioo(u))zdu+ h? l_h(ri"(u))Zdu:

Remark 3. Note that the upper bound in Propositior{ 2 depends on the unknown
distribution  only through the constantM (which appears in (18) and [17)).
Hence the rate of convergence of obtained from Proposition[Z does not depend
on . Note that in the classical context ofL ,-density deconvolution, the variance
term is exactly 7

Var(fy, (x))dx ;
Rd

which can be bounded independently of. This leads to the idea thatE(W$(*,; ))
depends very poorly of the unknown distribution . If this intuition is correct,

by simulation the best possiblé in the simple case = . This will be done in
Section[3. We shall see that this selected leads to very good results for di erent
choices of , even when has a density (see Secti02).

Proof of Proposition 2. [] By Plancherel's identity,

7 z £
1 171 (k (u)? _ 1 (k(hw)?
R @)= o FEEREY S ™
Z 1
rZ(u)du:
1=h

the last upper bound being true becausek is supported over [ 1;1] and
bounded by 1.

Let C be a positive constant, which may vary from line to line. Let g (u) =
ri(u=h)k (u). Sinceg., is dierentiable with compactly supported derivative,
we have that

iUk (U) = (o) ():

Applying Plancherel's identity again,
z

Z
1
hu?(Rip (U)?du = > h(cd, (u))*du
Z 1= Z 1o
C (rd(u))?du + h? ré(uydu ;
1=h 1=h

the last inequality being true becausek and (k )° are compactly supported
over [ 1;1]. Consequently
S

-
Z

(L+ U2h2) = (Rig, (W)2du;  Cli(hy):
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In the same way
Z Z

UKin ()= (9 (1) and  hPUS(Ron (W)?du= - ho(efdu) du;

Now, sincek ;(k )% (k )%and (k )°®are compactly supported over[ 1;1],
z z 1=h z 1=h
h®(g?Rqu)) *du C (r?°Pu))®du + h? (rP{u))?du
1=h 1=h
1=h z 1=h
+h? (r(u))2du+ h® (ri(u))?du :
1=h 1=h

Consequently

-
Z

(1+Uh6) (Rkhk(u))zduk CJk(hg):

The results follows.

2.5 Linear transform of errors with independent coordi-
nates

In this section, we assume that" = A , where the distribution of is such
that = 3 d, and A is some known invertible matrix. Applying
A 1tothe random variables Y; in @ we obtain the new model
A=A X+ g
that is: a convolution model in which thle error has independent coordinates.
To estimate the image measure ~ ~ of by A !, we use the preliminary
estimator of Section[2.4, that is
1 XY 1 xi (A 1Y),
fra 1(X1;:::;Xd):ﬁ = Kin, % ;
i=1 j=1:d !
and the estimator ~,, 1 of A ' is deduced fromfy,, : asin Sectio. This
estimator *,., : has the density§, : with respect to the Lebesgue measure.
To estimate , we dene ", = ’\Q\;A . as the image measure of* . 1
by A. This estimator has the density §, = jAj 0,a : A ! with respect
to the Lebesgue measure. It can be deduced from the preliminary estimator
fn=JAj fpa + A lasin Sectio. Now

WE("ns ) = Jmin - kx yk? (dx; dy)
ns Z
= min KA(X y)k? (dx;dy):
2(/\ ; A 1)

Consequently, if KAk = sup,, -1 KAXxK, we obtain that

1

WE("n; ) kK AKWZ(Mpa 15 A )
which is an equality if A is an unitary matrix. Hence the upper bound given in

Proposition 2 for the quantity E(WZ("pa 15 )) is also valid for E(W2("n; ).
Note that f}, can be written as in (5), with the kernel K = jAj 1k " A 1
and the diagonal matrix H with diagonal terms hy;:::;hg
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2.6 Examples of rates of convergence

In this section we shall always assume that - = 2 4. According
to the comments of Sectior[ 2.p, the rates of convergence are also valid for any
linear invertible transform of such noises.

Case 1: no noise. Inthatcase ;= ,=:::= 4 =1. Taking hy = hy =
= hq = h, Proposition [2 gives the upper bound

1
E(W3("n; ) C h2+pﬁ :

Taking h = n =(d*) we obtain the rate of convergence

C
E(WZ("n; ) n2=(d+4) :
Note that this is the same rate as that obtained by [18] for the empirical measure
n dened in (@. To our knowledge, this rate of convergence has not been
improved without making additional assumptions on . [25] proved some upper
and lower bounds (Theorem 11.1.6) folE(WZ( n; )) under entropy conditions
on . It follows from his estimates that if has a density andd is even, then
the rate E(W$( n; )) Cn 279 is optimal.

Case 2: convolution of Laplace noise. We consider the case where

l .
1+ u2)ki’

i (u) =

ki being nonnegative integers. This corresponds to the case where the density
of "1, is the kj-times convolution of the Laplace density.
Proposition [2 gives the upper bound

w —_
E(sz(’\n; ) C h%+ + h(zj + p:% h, (aki+1) =2 .

i=1

This bound is similar to the L,-risk bound obtained by [6] in the context of
multivariate density deconvolution with an ordinary smooth noise (see Sec-
tion 3.2.1 in their paper). Their computations show that one can take h; =
n 1=(d+4(+ kit +ka)) gnd then obtain the rate of convergence

C

2 . .
E(W2 (An ’ )) n2=(d+4(l+ kit +Kq)) .

In particular:

If ki =0 for all i (no noise), we obtain the same rate as previously.

If ki =1 for all i (isotropic Laplace noise), we obtain the rate

C
2 . .
E(WZ("n; ) n2=Gd+) -

“Ifk=1andkj =0 fori 6 * (Laplace noise in one direction), we obtain

the rate
C

E(WZ("n; ) 2=(d+8) :
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The index 1 (d) = ky + + kg can be seen as an index of global regularity
of the error distribution, summing all the regularities k; of the marginal dis-
tributions. As usual in deconvolution problems, the worst rates of convergence
are obtained for very regular error distributions: more precisely, the rate of
convergence becomes slower a¢d) increases. Note also that a single marginal
distribution with regularity N gives the same rates adl marginal distributions
with regularity 1.

Case 3: isotropic Gaussian noise.  We consider the case where
(W)= p(u)= = y(u)=exp( u?=2):
Proposition 2 gives the upper bound

2(N - 2 2 1 ¥ 5=2 2 Ay .

E(Wz("n; )) C hi+ + hg+ p—ﬁ h, exp(h; “=2) :

i=1

Following again [€], one can takeh; = P 2=log(n), and we obtain the rate of
convergence

C
2(n - .
E(WZ("ns ) log(n)
Case 4. Gaussian noise in one direction. We consider the case where
1(u) = exp( u2:2), and , = = 4= 1. Taking h, = hz = = hg = h,
Proposition [2 gives the upper bound
2 . 2 2 1 2_. .
E(W2("n; ) C h?2+h?+ p———exp(h, 2=2) :
nhd 1h3

Taking hy = P 2=log(n) and h = n =G4 5 we obtain the rate of convergence

C
E(WZ("n: :
Wi ) oo
Hence, a Gaussian noise in one single direction gives the same rate of convergence
as an isotropic Gaussian noise. This is coherent with the discussion in Section
3.2.2 of [6] about density deconvolution inRY.

3 Experiments

In this section, we taked = 2 and we consider the case where- = 1 5. For
all the following experiments the preliminary estimator f}, is de ned as in )
with the bandwidth parameter h = (' hy;h,) and the kernel

.o 4
n 3  8sin(x=8) :

K=k "; where k(x)= —

16 X (18)

The only di erence with the kernel given in is that K is now supported
over[ 1=2;1=2]%. The estimator A, of is then deduced fromf), as in Section
2.2.
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In practice, the deconvolution estimator *, = ~.;, is only computed on a
nite set of locations. Let P = fpg be a nite regular grid of points in R?, a
discrete version~, = ~,.p of *. is de ned by

X
~nh = "o(h) p
p2P

where

i (p)
()= P
p2p fn (P)
Note that the W, distance between~,, and "n.;, tends to zero as the grid
resolution tends to zero. In the following, it is assumed that the grid resolution
is chosen small enough, namely it is assumed that

sz(“n;/\n) sz(, "n):

3.1 Dirac experiment and bandwidth selection.

One situation for which the Wasserstein distanceW, is computable is the case
where is a Dirac measure. Obviously this framework has no interest in practice
but it allows us to validate the results proved in Section[2. As we shall see, it
is also a way to select a bandwidth which will be a reasonable candidate in a
general context.

Let = o, which corresponds to the case wherd&; = "; in the convolution
model (J). Assume that ;(u) = ,(u) = (1+ u?) !, which means that";;
and "1.» have a standard Laplace distribution with variance 2. For this Laplace
isotropic noise, we choosén = ( h;h).

For the empirical measure ,, de ned in (@, one has

Z

E(W2( n; o)) = E kxk? o(x)dx = Var("1q1)+ Var("12)=4:
RZ

For ~,, one has X
E(WZ(~n; o)) = E kpk?~p(h)
p2pP

Let 1n(h) = W2(~n; o) be the Wasserstein distance betweeny and ~,. For
a given h in a grid H of possible bandwidths, E(I,(h)) can be approximated
with an elementary Monte Carlo method by repeating the simulation Ng times.
Figure @ shows the boxplot of the distribution of 1,(h) on a rough grid of
bandwidth with n = 20000. For such a sample size, the deconvolution estimator
~n performs better than the empirical measure on a large scale of bandwidth
values.

For eachn, an approximation of h = argminE(W?2(". ; o)) can be com-
puted as follows

f (n)= argming,y In(h) where 1,(h) = Ni S s (h):

S s=1

and I,.s (h) is the computation of I ,(h) corresponding to the s-th simulation.
Table E] gives the value offi (n) computed for di erent sample sizes and the
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Figure 1: Boxplots of I , (h) for di erent bandwidth h. These results correspond
to Ng = 100 computations of the deconvolution estimator based on samples of
sizen = 20000.

n 30 100 500 1000
fi 0.172 0.159 0.143 0.137
In(A) | 47 02 38 02 314 005 278 005
n 5000 7500 10000 20000
f 0.123 0.119 0.117 0.111
I,(A) | 212 002 198 002 187 002 167 001

Table 1: Estimations of i and estimated risks for several values of the sample
sizen. These results have been computed thanks ttNg = 100 computations of
the deconvolution estimator.

corresponding estimationln(ﬁ ) of E(I,(h )). For n = 7500, In(ﬁ ) is about
one half of E(W?( n; 0)).

Figure@ shows a linear relation betweeriogﬁ and logn. A linear regression
leads to an estimation of the slope of 0:067 = 1=14:9, which is close (a little
larger) to the theoretical slope: 1=14(see Sectio, Case 2: isotropic Laplace
noise with d = 2).

As pointed out in Remark [3 of Section[2.4, it seems thah does not strongly
depend on the geometric shap&. Hence, the bandwidth i computed for the
Dirac measure should be a reasonable bandwidth for estimating other distribu-
tions when the error distribution is an isotropic Laplace noise. This intuition
is con rmed via the simulations presented in the next section.
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Figure 2: Estimation of the bandwidths fi (n) (left) against the sample size in
logarithm scales. The estimated slope for the regression dbgfi (n) by logn is
0:067 1=14:9.

3.2 Geometric inference

This section illustrates with some simulations how to take advantage from the
estimator ~, and its consistency properties for geometric inference purposes.
As already explained in the introduction, the geometry of the unknown object
G can be inferred thanks to the levels of the distance function to a measure
d.n , de ned by ([} if is close enough to for the Wasserstein metric. The
following simulations compare the geometry recovered from the distancd |, .m,
to the empirical measure as in[[4], and the distanced ., to the deconvolu-
tion estimator ”,. The scale parametermg is xed to mgy = 0:01 for all the
computations of the section. Hence we shall notel for d., , in the sequel.

Three disks and Laplace noise

For this rst example, we consider the geometric shape inR?> composed of three
disks of radius one whose centers are at a distanc% of each other. A total
set of 20000 points is sampled uniformly on these disks and observed with an
isotropic Laplace noise, as in Sectiofi 3]1. Figurg]3 allows us to compare the
distance function to the empirical measure ,, and the distance function to the
estimator ~, deduced from the deconvolution estimator. For the bandwidth, we
take h = i =0:11, wherefi has been computed in Sectiol for the Dirac
measure (see Tabl¢|1).

The deconvolution allows us to enlarge the numbers of levels which recovers
the three disks : only the levels ofd , between 0.29 and 0.5 have the correct
topology whereas the levels between 0.16 and 0.57 are valid far., . Further-
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Figure 3. Distanced , to the empirical measure and distanced- .11y to the
estimator for the three disks experiment with Laplace noise. The three circles
delimiting the disks are drawn in red and the levels of the distance function
which have the correct topology are drawn in blue. The other levels are the
Black-dashed lines. The same grid of levels is used on the two pictures.
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more, by drawing and comparing the levels ofd- () for di erent bandwidth h,
it can be checked thath = 0:11 is around the optimal topological bandwidth,
namely it corresponds to the larger scale of levels of correct topology.

Two circles and Laplace noise

The geometric shape of this second experiment is composed of two circles of
radius 4 and 7. A total set of 20000 points is sampled uniformly on these two
circles and the sample is observed with an isotropic Laplace noise, as in Section
[3.3. The benet of using a deconvolution estimator is obvious in this context,
since no levels ofd | can reach the correct topology, whereas the levels af_,
between 0.56 and 0.63 give the correct topology, see Figufé 4. The bandwidth
used here is agairh = i =0:11, as calibrated in Section

One Gaussian example

As explained in Section[2.6 a Gaussian noise will give a logarithmic rate of
convergence of the deconvolution estimator®,: this makes the application more
di cult in this framework. Anyway, a Gaussian example is proposed here, but
we use a large sample to be able to observe the topological e ects.

The geometric shape to be recovered is composed of two embedded closed
laments. One set of n = 100000 points are uniformly sampled on these two
laments and this sample is observed with a standard isotropic Gaussian noise,
which means that "1.; and "1., have a standard normal distribution. The two
laments are drawn on the two pictures of Figure [§. No one of the drawn levels
of d , recovers the correct topology. In fact it can be checked by drawing the
contour plot with a thiner resolution that only the levels between 1.04 and 1.06
have the correct topology. We use a bandwidthh = 0:12 for our deconvolution
estimator. A larger scale of levels ofd-, between 0.72 and 0.91 allows us to
recover the correct topology.

One directional measurement error

For this example, we take 1 = o and ,(u) = (1+ u?®) 1, which means that
"1.1 =0 and that "1.» has a standard Laplace distribution.

A set of 10000points is sampled uniformly along an incomplete circle, and
then observed with this one directional Laplace noise. The top picture of Fig-
ure[d shows the sample and the incomplete circle in red, and the bottom picture
shows a sample drawn according to-,., : the hole is impossible to see on these
contaminated data whereas it is whith the deconvolved measure. However, due
to the oscillations of the deconvolution estimator (which is a well known draw-
back of these kind of estimators) a small amount of the mass appears at a large
distance of the circle. Using the distance functiond-,.n, is then particularly
appropriate there, because this distance will ignore these outliers providedng
is not too small. Figure[7 compares the distance to the empirical measure with
the distance to the estimator: the hole can be recovered only by the levels of
d-,. The correct levels ofd-_ are between 0.31 and 0.57. The estimator, has
been computed here with the bandwidthsh; = 0:07 and h, = 0:25, this choice
leading to a correct inference of the geometric shape.
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Figure 4. Distanced | and distance d- .11y for the two circles experiment
with Laplace noise. See Figurg |3 for more details about the legend.
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Figure 5: Distanced | and distanced- (.12 for the two laments experiment
with Gaussian noise. See Figurg¢]3 for more details about the legend.
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Figure 6: Circle with hole in red and 10000 points sampled on it with an uni-
directional Laplace measurement error (top) and simulation of 10000 points
according to ~y., with h; = 0:07 and h2 = 0:25 (bottom).
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Figure 7: Distanced , and distanced-, for the circle with hole with unidirec-
tionnal noise. See Figurg B for more details about the legend.
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ki (x) := sin( x)=x Ki(t) =1 1.4
ka(x) :=48(cosx)(1  15x ?)(x ) T | ky()=(1 t2)31 1.4
ka(x) == k(x), see [1B) ks = k , see [1])
ka(x) :=(2 ) exp( x*=2) ky(t) = exp( x°=2)

Table 2: Four kernels and their Fourier transform.

A Kernel performances

The section shortly discusses the kernel choice by comparing the performances of
the deconvolution estimator for the most used kernels. In the density estimation
framework with L, risk in dimension one, [11] compare the performances of four
kernels given in Table[2.

Only k3 ful lls all the required conditions (see Section) to prove the con-
sistency result. Nevertheless, note thatk,, k, have a compact support[ 1;1].
k, is alsoC? and its second derivate is Lipschitz, so this second kernel nearly
fullls the required assumptions. On the other hand k; is the less regular, and
concerning the Gaussian kernelk, has the required regularity but it has not a
compact support.

The four kernels are compared in the simple situation inR for which the
Wasserstein distance can be computed, namely a Dirac mass at 0. For each
simulation, we consider a set ofn = 500 independent Laplace variables of vari-
ance 2. An accurate gridP of points p over R is xed, and for each simulation
and a given bandwig,th h, let 1,(h) be the Wasserstein distance betweeng
and ~,(h): I,(h) = p2P x27i(h). The Wasserstein risk is then estimated by
computing I, (h) over 100 simulations of this experience.

It appears that the two kernels k; and k4 have very bad performances. Even
for their estimated minimal bandwidth fi , the mean risk of their estimator is
over 6. This rst observation tends to con rm that the kernel assumptions of
Section[2.2 are not too restrictive. On the other hand, Figure[8 shows thatk,
and k3 lead to estimators whose performance are quite similar in this context.
This is not surprising since these two kernels have similar regularity properties.
In spite of this observation, note that the consistency result is not proved fork,
since it is not positive, and thus the control of the bias proposed in this paper
is not valid for this kernel.
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