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On-line parameter estimation of a magnetic bearing

Romain Delpoux and Thierry Floquet

Abstract— This article presents a parameter estimation al- when identifying parameters. In Section Ill, expressions f
gorithm for a magnetic bearing. Such process are inherently the on-line identification of the desired parameters are de-

unstable systems with strongly nonlinear dynamics. Here, a y|oped. Here is treated the on-line estimation of pararsete
simplified model of the magnetic bearing is developed. This

enables to obtain a linear expression with respect to the depending onlthe_radlal bearing geomgtry and the mgterlals.
unknown parametersl These parameters are measurable with The |aSt SeCt|0n IS deVOted to S|mu|at|0n and eXpeI‘Imenta|
difficulties, and may slightly vary over time. The expressia of  results.
the estimates is written as a function of integrals of the inpts
and outputs of the system. The simulations and the experimés I
show a fast and robust on-line identification.

Index Terms— Parameter estimation, Laplace transform,
Magnetic bearing.

. PROBLEM STATEMENT

In this article is presented an approach to estimate param-
eters of the radial bearing (the axial bearing case will be
considered in future work). The parameters that are to be
estimated here depend on the geometry and the material of

Magnetic bearings can be used for machine tool spindles the bearing. The estimation of these parameters is importan
produce circular and non-circular holes with high precisio because such parameters are difficult to calculate and may
Specially in high speed applications, magnetic bearings walightly vary over time.
importance. Because they have a contact free suspensidhg rotor is levitating using a three-phase electromagneti
they provide advantages compared to conventional bearingglial bearing, arranged like three coupled "horseshoe-mag
such as no lubrification and no frictions. This improves-relinets” around the rotor (Fig. 1). The three generated current
ability and performances. There is a real industrial demangtovide three independent control inputs. The mathenatica
for such process which allow non-circular motion of thenodel of the bearing is based on the assumption of a
order of 50 micro-meters. The required precision is reallyigid body and leads to decoupled equations for forces.
important: Path tracking error must be less than 1 microFhe dynamics equations, under simplifying assumptiores, ar
meter on circular paths and 3 micro-meters on non-circulavritten as follows:
ones with a rotation speed up to 1000 rpm. .

The magnetic shaft used in our laboratory consists of one mY = F, 1)
electromagnetic radial bearing and two axial bearingss It i mZ = F, )
similar to the one present in [4]. It is an inherently unstabl

system where the dynamics are strongly nonlinear. We refeere Y and Z represent the coordinates of the center of
to the work [3], [4], [8], [9], [10] concerning the control of mass of the rotor in a Cartesian frame (with axest z)
magnetic shaft. which is fixed in the space, at a point being considered as
This paper is concerned with the estimation of parametet8e center of the device. The forcés and F; represent the

of the radial bearing using an algebraic approach based tesulting forces applied in directionset z, respectively. The

the work of Fliess and Sira-Ramirez [6], [7]. The estimatiorfotor has a mass:. The resultant forces in the pldp — z)
procedure, given by exact formulas, leads to a non asynsptotire given by the superposition of the forces generated by the
convergence. In this approach, it is possible to express the

desired parameters as a function of integrals of the medsure

output and the inputs of the system. This method has alreac
been applied to parameter estimation [11], [13], to abrup
change detection and delays [1], [2], [5], [16] as well as to
numerical differentiation [12], [15].

This article is divided into three parts. Section Il presahe
radial magnetic bearing and introduces problems encoethter
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magnets: form:

3
( F, ) _ < sinc; sinas  sinag ) 11::; 3) V= Z)‘kuy,k+ p;;r(:) ®)
k=1

F, COSQy COSQiy COS(3
" : (0
7 Pz
The angles that appear in (3) are presented Fig. 1. Individu- Z= Z Atz g + m ©)
ally, the magnetic forces can be modeled ky=({1,2,3}) k=1
2 with u, = sin(on )i :
Fi, = )\ k 5 4) ol o sin ag Y,
B sin oy, r Y, Cos Qg A Zy
S COS (g Zy and Uy = Cos(ak)i,’} ;
’ ol o sin a Ys,
where Y, and Z, are the positions in the bearing plas. COS g Zy

is the nominal air gap andl;, are parameters depending onThese two equatic_ms depend on the measured inputs and
the geometry and the materials of the bearing. They will b€ accelerations in the plan. The parametgfsare the
estimated on-line. parameters to be estimated from measuremgraad Z and
Calculating control currents: The reference currents are despite the perturbations. They may be difficult to compute.

obtained from the desired forces. In order to simplify thd he identification of magnetic bearings is usually slow to be
notations, we assume that the bearing is symmetriayi.e= implemented and is often made off-line. In the next Section,

™, as = —% anday = . In each of the models detailed we will develop expressions for the identification leading t

above, we obtain a couple of independent forces for eadf on-line, fast and robust estimation of these parameters.

bearing plan. Defind; such that:
[1l. ALGEBRAIC APPROACH

Fy — 15 + F, else

. |F,
> 2yl o
F = { Fo i Fz 2 V3 (5) A. Estimation of\, parameters
V3 It will be shown in this Section, that the three parameters

. _ - A1, A2 and \; can be estimated using equation (9). Indeed,
With Fy > 0 arbitrarily chosen, the two remaining forces argysing an algebraic approach for this system, it is possible

obtained from the model (3): to express the parameteks as a function of the measured
outputs and the inputs only. In order to simplify the compu-

= F Fy L F tations, it is assumed that the perturbations are constént.
2= V3 ? will see in the next paragraph how to deal with non constant

F perturbations.
F3=F—--L4+F, Consider the Laplace transform of (9) :

V3

2
Then the currents are calculated from the desired magneficZ(s)
forces using relation (4). .
The above gequations(re)flect the dynamics of the unperturbeatlapd multiply (10) bys:
model. Model simplifications in (1)-(2) and modeling errors $37(s) — s22(0) — sZ(0) = 11
(e.g. due to incorrect r_elatlonsh|p between the input cusre AsUZ1(8) + AosUza(s) + A3sUzs(s) +a (11)
i, and the corresponding forcé$) are assumed to have the
same effect than perturbations. Derive three times with respect to to cancel the initial
The rotor rotation is also a perturbation source with harimonconditions and the perturbations:
components. When the rotor moves along an ellipsoid tra- 4 ) 2 5 o3
jectory, the positions in the directionset = are sinusoidal ~ 04(5) #1857 (2(5)) + 95" 55 (2(5)) + 5" 7= (2(5))
functions. A significant error in the relation between the =X (3¢i—2(Uz,1(8))+8(Z—3(Uz,1(8)))
currents and the forces can also change sinusoidally. +Xo 3%((]272(8)) + sdi;s(Uzz(S))
Therefore, the perturbations must be rejected in Me 2 3
estimation aIgoriF:hm (or must be estimatejd in order to be 1 33z (Uz3(5)) + 533 (Uz5())
compensated in the control).
The perturbed model can be written as: We remind that differentiation with respect toin the
. operational domain results in a multiplication byt in the
mY = Fy+p,(t) (6) time domain. The multiplication by in the operational
mi = F 4 () @ domain leads to the derivation in the time domain. The
z TPz application of the linear estimator (12) is then not coneani

) ) _ Derivation amplify the high frequency and then the noise
wherep. (t) represent the perturbations on each axis. Usingontribution. A simple solution is to" make the estimator
equation (6), (7), (3) and (4), we obtain a relationship @ thproper. We simply divide (12) by* in order to cancel

—sZ(0)—Z(0) = MUz (8)+A2Uz2(s)+ AsUz.3(s) + =
(16)

(12)



the derivation terms and obtain a relationship with integra = e with ¢ > 0 and small.

operators: Thus the parameter vector is estimated as follows :

654 Z(s) + 18s~ 3%(2(3))+9s;2%(2(s))+5*1%(z(8)) A:{ arbitrgry for te[0,¢

=\ (33’4j2(U21(s)) + 5L Uz (s)) D(t)"*N(t) for te€ e, o0]

e (3574 L (Uza(5)) + 52 L5 (Uz2(s)) B. Implementation

+A3 (3571 L5 (Uz3(s)) +s*3%(UZ$3(s)) In the previous paragraph, it was assumed that the per-

(13) turbations were constant. Nevertheless, this is phygiceait
To r?turn toéhe t"IT\eth?Wﬂ'n COfolF)Ute Ithe inverse Laplaaealistic. It has been seen in Section Il that there are two
transtorm and apply the tollowing formula: different perturbation sources.
tortpa t1 1 t B The first perturbation source, due to simplifications and
/ / / drdty...dty_4 /(t—T)k Ye(r)dr : . . .
0 (k—1) modeling error, can be considered as a constant if the signal

One gets: (14) are integrating over a small sliding yvindow. So far, the
' integrals have been computed over an intef¥al]. However
fo [S(t—7)°— 8Bt —71)2 7 +9(t —7)72 — 73] Z(r)dr integreting over a short time inter_v{ﬂ,Tf] (T represente
- A fo [%(t 732 = Lt — )27 ug (1)d the window Iength), we can consider that the perturbations
N 50 1 22 are constant. Finally we use a change of variable to reduce
+ e (fy [ =)' = 5t = 1)’ 7| uza(r)d the estimation interval,’ = [0, 7] to [0, 1]. N(t) andD(t)
+ s ([fy [B—1)r? =5t - 273] uz,3(7)d can be rewritten as:
15 1
The previous equation depends on the integrals of Ehe)mea- N(t) = [/ gzy,L-(T)Z(T)dT]
sured outputs and inputs. However, there is three unknown 0 1<i<3

parameters for one equation. Then we have to generate
two more equations in order to have the same number o

equations than unknowns. To obtain a second equation, take D(t) — 1
equation (11) but differentiating it four times with respez (1) = { Jo 9u..(T)Uz;(7)dr L<i<3 1<j<s
s and apply the same manipulations as before. We obtain: i ST
wi
J[-2¢—1)3r+ 38 —1)°r —12( =)+ Z(r)dr ga(r) = [S(1—7)3 - (1 —7)2 T+9(1_T)T2_T T}
0 3! 2 f
=X\ (fo [—a(t—7)*°+ 3 t—7'27'4]uz1 ) 922(1) =[5 (1 =737+ F(1 - 7)?7% — 12(1 — )73 + 74] T}
A\ —it— (t— 2 4 92,3(1) = [%(1—7)3 2 60(1 T) T3+15(1—7’)7’5—7’5}T;’
+2a (fo :’; 7)373 talt—7 QTJ uz.a( Gu. 1 (1) = [2 (1 —7)372 - —(1 —7)?73| T}
s (fo [=a(t =)' + 3 7] uzs(r)dr gu.a(r) = [~ (1= 7378 + 11— )2r] T
[

(16)
The last equation is obtained, from equation (11) bu
differentiating it five times with respect ta One gets:

e
%( 7)374——(1—7) 7'5} TJZ

:—FQ
<
N
w
—
3
—
Il

Using the trapezoidal method, the integrals are obtained

INE (t —r)p3r? -8 (t )2 S415(t—n)rt -0 Z from the output of a classical FIR filter.
_ (fo [t — Lt — 7)) ug, 1(T)d7) To rejeet the harmonic pertur_bations with frequenciese_:los
[2(t— )% — Lt — )2 uga(r)dr to rotanonal_speed, the resulting numerator an_d denowinat
ols3t 2 ' of each estimated parameters are filtered using a low-pass
g [ [&@—1)3rt = 1t —7)%7r°] uz,3(7')d7'; filter. The filter used is similar to the one presented in [14] :
an
Define the parameter vector = [ A Ao A |'. Aif(t) = Fls)n(t) (20)
Equations (15), (16) and (17) allow to obtain the expression F(s)d(t)
of the estimate of the parameteks, A, et \s: where F(s) = Wznwz
DA = N(1) (18) Experimental results are shown in the next Section.
with the matricesD(t) € R3*3 et N(t) € R3*1. IV. RESuLTS
If D(t) is invertible, one gets: Simulation and experimental results are presented in this
section. The numerical simulations are carried out in order
A to show the performances of the algorithm. Finally, we give
o | =D@)'N(®) (19) the estimation results on the real process.
As The parameters are the rotor mass= 6.7(kg) and the

nominal air gaps = 5.107%(m). The control is realized as
Remark 1:Note that at timet = 0, the matrices and a cascade, with a current controller in the inner loop and
vectors used to compute the estimations are null. The pa-position controller in the outer loop. The inner loop can
rameters are then undetermined. Therefore, the formula hlas characterised by a control based on the electrical model
to be calculated, not at the tinte= 0, but at a later time, of the bearing coils. The outer is based on the rigid body
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Fig. 2. Parameter estimation without noise A. Simulation Results

In the simulations, the real values of the paramekgrare
chosen as\; = 1.8.107%, A\ = 2.0.1075, \; = 2.2.1076,

mechanical model (6)-(7). The chosen control design is Bhe initial value of the estimation i, o = 4.0.107%. To
flatness based trajectory tracking control, as described éstimate the parameters, we choose sinusoidal pertunlsatio
[10]. The reference trajectory is an elliptic one whée=  with non zero mean value to be close to the real perturba-
ry cos(wt) and Z* = ryzsin(wt) with ry = 30.107%(m) tions.
andrz = 70.107%(m). The shaft is rotating with an angular Fig. 2 presents the parameters estimation. In this figure,
velocity of about 3000 rpm, i.ev = 50 - 27 (rad/s). it can be seen that the three parameters converge to the
The estimator is implemented in a discretized way withlesired value in less than 0.1 second with= 1.786.109,
a sampling frequency ofi.10-*(s). The choice of the )\, = 2.072.107¢ and A\; = 2.199.1075. It represents an
window length is not straightforward. The window has toerror less thaB.5%. Fig. 3 depicts the trajectory tracking
be sufficiently long to cancel the noise but not too long t@volution of the z-axis only (the y-axis is similar). The
keep the assumption on the constant perturbation true. Thstimated parameters are updated after 0.2 seconds. Before
experience shows that a windoW; = 0.02s gives good identification, the position errors are already small. Hosve
results. The initial value ok o is set arbitrarily. The filter the perturbations estimation is far from the real pertidoat
F(s) is chosen with; = 0.707 andw,, = 15rad/s. It reflects the modeling errors. After parameters updaie, th
At the beginning of the experiment, the controller uses thposition error is slightly decreased while the perturbatio
initial and arbitrary\; o from¢ =0 to ¢ = ¢, t. being the error is considerably decrease. The model is more correct,
convergence time of the algorithm. The estimator, conmectand the observed perturbation is close to the real one.
in parallel to the system, estimates the parametgrdn
real time on the intervale, t.]. As soon as the estimations B. Experimental Results
have converged to constant values, the initial valugs are

- In this Section, the experimental results are presenteel. Th
replaced by the estimated ones.

test-bench is shown Fig. 4. The computer hardware on the
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Fig. 3. Trajectory tracking evolution of z axe Fig. 5. Control Currents
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Fig. 6. Experimental estimation of the parameters . . e
9 P P at least three times smaller after identification than keéord

leads to a significant reduction of the modeling uncertamti

. . Concerning the trajectories tracking and their errors, the
test-bench is a dSpace 1103. The control law is implements provement is less sensitive. Looking at the errors, it can

in C and linked to the mechanical unit through Control Des'ﬁe seen that the positions errors are slightly lower when the
software. All currents are generated by 3 Dc brush amplifief arameters are well estimated and more regular. The behavio
that serve as three independent control inputs (Fig. 5). is not really different, but this is not surprising. Indeed,

When the experiment starts, one does not have Precizfe designed control law compensate for the perturbations
knowledge 0f). As in the S|mulat|;)ns2 the parameters a%hich are themselves estimated by an observer. Estimating
set arbitrarily equal tet.0.10~%(N'm?/A?). The estimation e perturbation, the observer takes in consideration the
algorithm starts at the beginning of the experiment. Fig. odelling error. Finally the last plots (Fig. 11 and 12)
shows that afte®.2 seconds, the parameters have converge ives an idea of the shape of the hole before and after
Indeed, one obtains three constant values for the parasnet
(A = 2.53.1076, Ay = 2.04.1076 and A, = 2.42.107F).

In order to check estimation accuracy of the parameters,
we observe the trajectories and the perturbations befate an V. CONCLUSIONS AND FUTURE WORKS
after estimation. Fig. 7 and 8 show the evolution of he  |n this article, it has been presented an estimator able to
and z axes before identification while Fig. 9 and 10 showeyaluate in a fast way and simultaneously several unknown
the evolution after identification. S|m||ar|y to the simtitan parameters of a radial magnetic bearing' This System is
results, the most obvious result is on the perturbations. Agtrongly nonlinear and unstable. The performances of this
estimate of the latter is obtained using the perturbatiogigorithm show good experimental results. Indeed, the esti
observer given in [10]. The amplitude of the perturbatians imation is robust, the estimation error is low in spite of Bois

entification.
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Fig. 7. Trajectory tracking evaluation on thyeaxe before identification Fig. 9. Trajectory tracking evaluation on thyeaxe after identification
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2(t) (.m))

-80 L L L L L I I

and perturbations, and also fast with convergence time2f 0.

seconds. Using the estimated parameters, the trajectoges

well tracked. Experiments show that the maximum tracking(®!

error is aroundsum for a non-circular hole. As improve-
ment, it will by interesting to simultaneously identify the

(7]

perturbations amplitude. Using better sensors than the one

used could also leads to better tracking performance.
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