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Abstract: Di�usion magnetic resonance imaging (dMRI) is the reference in
vivo modality to study the connectivity of the brain white matter. Images
obtained through dMRI are indeed related to the probability density function
(pdf) of displacement of water molecules subject to restricted di�usion in the
brain white matter. The knowledge of this di�usion pdf is therefore of pri-
mary importance. Several methods have been devised to provide an estimate
of it from noisy dMRI signal intensities. They include popular di�usion tensor
imaging (DTI) as well as higher-order methods. These approaches su�er from
important drawbacks. Standard DTI cannot directly cope with multiple �ber
orientations. Higher-order approaches can alleviate these limitations but at the
cost of increased acquisition time. In this research report, we propose, in the
same vein as DTI, a new parametric model of the di�usion pdf with a reasonably
low number of parameters, the estimation of which does not require acquisitions
longer than those used in clinics for DTI. This model also accounts for multi-
ple �ber orientations. It is based on the assumption that, in a voxel, di�using
water molecules are divided into compartments. Each compartment is repre-
sentative of a speci�c �ber orientation (which de�nes two opposite directions).
In a given compartment, we further assume that water molecules that di�use
along each direction are in equal proportions. We then focus on modeling the
pdf of the displacements of water molecules that di�use only along one of the
two directions. Under this model, we derive an analytical relation between the
dMRI signal intensities and the parameters of the di�usion pdf. We exploit it
to estimate these parameters from noisy signal intensities. We carry out a cone-
of-uncertainty analysis to evaluate the accuracy of the estimation of the �ber
orientations and we evaluate the angular resolution of our method. Finally, we
show promising results on real data and propose a visualization of the di�usion
parameters which is very informative to the neurologist.

Key-words: di�usion magnetic resonance imaging, imaging biomarkers, von
Mises & Fisher distribution, brain white matter modeling
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Résumé : Di�usion magnetic resonance imaging (dMRI) est la modalite de
reference pour etudier les connectivites dans la matiere blanche du cerveau. Les
images obtenues par dMRI sont en e�et liees a la densite de probabilite du de-
placement des molecules d eau sujettes a une di�usion contrainte dans la matiere
blanche. La connaissance de cette densite, appelee densite de di�usion, est par
consequent d une importance capitale. N etant pas mesurable, de nombreuses
methodes ont ete imaginees pour l estimer a partir d images bruitees produites
par dMRI. Parmi elles, on compte le populaire modele DTI ainsi que des met-
hodes d ordres superieurs. Ces approches sou�rent d importants inconvenients.
Le modele DTI standard ne peut pas directement gerer plusieurs orientations de
�bres. Les methodes d ordres superieurs soulagent cette limitation mais au prix
d une augmentation non negligeable du temps d acquisition. Dans ce rapport
de recherche, nous proposons, dans la meme veine que DTI, un nouveau modele
parametrique pour la densite de di�usion avec un nombre raisonnablement fai-
ble de parametres dont l estimation ne requiert pas d acquisitions plus longue
que celles faites pour DTI. Ce nouveau modele prend aussi en compte di�eren-
tes orientations de �bres possibles. Il est base sur l hypothese que, dans un
voxel, les molecules d eau sujettes a la di�usion sont divisees en plusieurs com-
partiments. Chaque compartiment represente une orientation de �bres donnee
(ce qui de�nit deux directions opposees). Dans un compartiment donne, nous
faisons l hypothese supplementaire que les molecules d eau di�usent dans cha-
cune de ces deux directions en proportions egales. Ceci nous permet de nous
concentrer sur la modelisation de la densite de deplacement des molecules d eau
uniquement le long d une direction. En substance, nous la modelisons par la
convolution d une Gaussienne 3D et d une densite de von Mises & Fisher 2D. La
premiere est parametree de telle sorte a capturer principalement la composante
radiale de la di�usion pendant que la seconde capture la composante angulaire.
Un melange equi-pese de deux densites de ce genre avec des directions opposees
fournit notre modele mono-compartimental. Un melange de ces densites four-
nit le modele multi-compartimental qui permet la prise en compte de multiples
orientations de �bres. Sous ces hypotheses sur la forme de la densite de di�u-
sion, nous derivons ensuite une relation analytique entre l intensite du signal
de di�usion et les parametres de la densite de di�usion. Nous l exploitons pour
estimer ces parametres a partir des intensites des signaux de di�usion bruites.
Nous menons une analyse par cone d incertitude pour evaluer la precision de l
estimation des orientations des �bres et nous evaluons la resolution angulaire
de notre methode pour un nombre d acquisitions et un niveau de bruit donnes.
En�n, nous montrons des resultats prometteurs sur donnees reelles et propo-
sons une visualisation simple des parametres de di�usion tres informative pour
le neurologue.

Mots-clés : di�usion magnetic resonance imaging, biomarqueurs d'imagerie,
distribution de von Mises & Fisher, modélisation de la matière blanche cérébrale
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1 Introduction and Motivations

Di�usion magnetic resonance imaging (dMRI) [1] allows in-vivo and non-invasive
investigation of biological tissue structure. A widespread application of dMRI
is the study and analysis of the brain white matter constituted of intricate �ber
bundles (axons) into which the di�usion of water molecules is restricted: an-
alyzing these restrictions allows one to infer bundles geometry (orientations,
diameter, etc).

Standard dMRI sequences are obtained by applying a series of magnetic �eld
gradients q to a subject's brain. Under the q-space imaging formalism [2], which
we adopt here, the duration δ of the pulse during which each gradient is applied
is very short and negligible with respect to (wrt) the di�usion time ∆ between
two successive applied gradients. Under this assumption, each magnetic �eld
gradient q is constant over its application pulse. It is de�ned by its 3D direction
g1 and its intensity classically encoded by the so-called b value according to [2]
b = (∆− δ/3) ‖q‖2. The q-space is then the set of all possible combination of a
direction and a b value.

1Throughout the manuscript, the term direction refers to a unit 3D vector whereas the
term orientation refers either to a unit 3D vector or to its opposite indi�erently.

RR n° 7683
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Under the q-space imaging formalism, in each voxel, we have, for any vector
q in the q-space [3, 4]:

A?(q)

A?(0)
=

∫
R3

fx(x)eiq
′xdx , (1)

where A?(q) is the theoretical complex magnetization of all contributing spins
[5] after the di�usion time ∆ induced by the application of the magnetic �eld
gradient q, x is the 3-dimensional random variable that represents the displace-
ment of the water molecules, x is one realization of it2 and fx is the di�usion
probability density function (pdf).

In practice, for each magnetic �eld gradient q, we measure a raw di�u-
sion signal S(q) which, in absence of measurement noise, amounts to A(q) :=
|A?(q)| (theoretical di�usion signals). Two issues arise then: (i) the raw
di�usion signals are corrupted by measurement noise, usually assumed to be
Rician [6], and (ii) we cannot collect the raw di�usion signals for each point
in the q-space and we need to sample the latter by combining a �nite set of b
values {bk}k∈J1,nbK and a �nite set of 3D directions {gj}j∈J1,ngK.

Inferring the micro-structure of the tissues consists in reconstructing the
di�usion pdf to some extent. Di�erent methods have been devised to this end [7].
They usually rely on the assumption that the distribution of the displacements
of water molecules is symmetric, in which case the di�usion pdf is termed the
ensemble average propagator (EAP) [8]. They hinge on four major q-space
sampling schemes:

Full Sampling. If the q-space is entirely sampled on a Cartesian lattice
with su�cient density (so that accurate fast Fourier transform (FFT) can be
performed), the model-free Di�usion Spectrum Imaging (DSI) method [9] pro-
poses an accurate reconstruction of the EAP. Assuming the di�usion pdf to be
symmetric indeed implies that the normalized theoretical complex magnetiza-
tion (left part of Eq.(1)) is equal to its modulus, the Fourier transform (FT)
of which directly yields the EAP. An estimation of the EAP is thus obtained
by FFT of the normalized raw di�usion signals. A full sampling of the q-space
however requires a huge number of both encoding b values, including high b
values (up to 8000s/mm2), and encoding directions (up to 500) leading to an
acquisition time of several hours [10].

Multi-Shell Imaging (MSI) Sampling. MSI consists in sampling the q-
space over a large number of encoding directions (up to 60) uniformly spread on
several spheres (usually 2-4 b values, both low and high). Even if it signi�cantly
reduces the acquisition time wrt to a full sampling, it still takes approximately
30 min. This spherical sampling is not suited to DSI. Adjusting the raw di�usion
signal to a Cartesian lattice by means of bilinear interpolation yields Hybrid Dif-
fusion Imaging (HYDI) [11]. Other model-free methods based on MSI sampling
provide estimates of the EAP by expanding the raw di�usion signals by means
of (i) 4-th order tensors [12, 13], (ii) the spherical polar Fourier basis up to a
given order [14, 15], (iii) the solid harmonics basis up to a given order giving
its name to Di�usion Propagator Imaging (DPI) [16] or (iv) the Gram-Charlier
expansion up to a given order [17]. The latter method is the only that provides

2To distinguish a random variable from one realization of it, we adopt a sanserif type to
designate the former and a curvilinear type to designate the latter.

RR n° 7683
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an estimate of the di�usion pdf and not only of the EAP. Unfortunately, it re-
quires the use of both the intensity and phase of the complex magnetization.
Alternatively, model-dependent methods that assume the di�usion pdf to be a
mixture of Gaussian densities (e.g., the �multi-Gaussian" model [18], the �multi-
Watson" model [19], and the Ball & Stick model [20]) make use of MSI [21] and
provide a parametric estimation of the EAP.

High Angular Resolution Di�usion Imaging (HARDI) Sampling.HARDI
consists in sampling the q-space over a large number of encoding directions (up
to 60) uniformly spread on a high-radius single sphere (single high b value, typ-
ically greater than 1500s/mm2) [22] which further reduces the acquisition time
wrt MSI (lower bound of about 15 min). Model-free methods that use HARDI
sampling revolve around q-ball imaging (QBI) [23] and di�usion orientation
transform (DOT) [24]. Both methods focus on the estimation of some speci�c
angular feature of the EAP, namely the di�usion orientation distribution func-
tion (dODF) (to be precise, an approximation thereof) de�ned as the density
of the marginal probability distribution of the molecular displacements on the
2-dimensional unit sphere [25] and the isoradius of the EAP, respectively. QBI
originally estimates the dODF by expanding the raw di�usion signals by means
of a spherical radial basis function with Gaussian kernel [23]. Further works
exhibit a faster and more robust QBI by expanding the raw di�usion signals
by means of the spherical harmonics (SH) basis [26, 27, 28]. As for DOT, the
isoradius of the EAP is estimated by expanding the Fourier-Bessel transform of
the raw di�usion signals by means of the SH basis [24]. The model-dependent
methods using HARDI sampling are (i) the composite hindered and restricted
mixture model, coined CHARMED [29], of which one component is an isotropic
Gaussian density and the others are Neuman-type densities for restricted di�u-
sion within a cylinder [30] which yields a parametric estimation of the EAP and
(ii) spherical deconvolution models [31, 32] which estimate the �ber orientation
distribution function (fODF). The latter methods assume that the theoretical
di�usion signals are the result of the convolution between the fODF, assumed
symmetric, and a kernel re�ecting the di�usion within a given �ber. This kernel
is in turn assumed (i) of Gaussian-type [33, 26, 34], (ii) of Rigaut-type [35] or
(iii) sinusoidal [36] (which is an alternative formulation of persistent angular
structure MRI (PAS-MRI) [37]). Data-dependent kernels are also proposed in
[38, 39, 40].

Low Angular Resolution Di�usion Imaging (LARDI) Sampling. LARDI
consists in sampling the q-space over a low number of encoding directions (typ-
ically less than 30) uniformly spread on a low-radius single sphere (single low
b value, typically lower than 1500s/mm2) so that the acquisition time drops
below 10 min. To the best of our knowledge, the only method to date com-
patible with LARDI sampling is di�usion tensor imaging (DTI) [41]. It is a
model-dependent method that provides a parametric estimation of the EAP by
assuming the latter to be a 3-dimensional centered Gaussian pdf parametrized
by a di�usion tensor. The derivation of Eq.(1) is then straightforward and thus
the theoretical di�usion signal can be analytically expressed as a function of the
di�usion tensor. Unlike all the other methods, DTI does not account for the
intra-voxel white matter �ber heterogeneity brought to light in [18].

Clinical protocols often include, in addition to the dMRI sequence, other
types of sequences (e.g., 3D T1, FLAIR and T2 for vascular pathologies, per-
fusion, resting-state, magnetization transfer, etc). Neurologists thus agree with

RR n° 7683
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an upper bound of 10 min for the acquisition time (AT) of the dMRI sequence
so that the whole protocol does not exceed half an hour. Even if several recent
approaches allow signi�cant reduction of the acquisition time for full sampling
or MSI sampling notably by means of compressed sensing [42, 43], they are still
prohibitively time-consuming (around 20 min). In a clinical setting, only dMRI
data sets acquired with LARDI sampling of the q-space can thus be used to infer
the di�usion pdf. In addition, because of the intra-voxel white matter �ber het-
erogeneity, a method for the reconstruction of the di�usion pdf should account
for multiple �ber orientations. Table 1 shows that there is no state-of-the-art
method that relies on LARDI sampling of the q-space while coping with several
�ber orientations.

Table 1: Summary of the di�erent sampling schemes of the q-space, with estimated lower bound
of the acquisition time and indication on whether associated state-of-the-art methods account for
multiple �ber orientations or not.

Sampling AT Lower bound Multi-�ber
Full 30 min yes
MSI 20 min yes

HARDI 15 min yes
LARDI 10 min no

The contribution of this work is to propose a new method for the reconstruc-
tion of the di�usion pdf, coined di�usion directions imaging (DDI), that ful�lls
the following three objectives:

1. being compatible with dMRI data sets acquired in maximum 10 min,
2. estimating multiple �ber directions, and,
3. allowing for the retrospective analysis of DTI repositories acquired

in the past.
We introduce the new proposed method in Section 2. Then, we validate

the method on simulated dMRI data sets and we show its applicability and
performances on clinical dMRI data sets in Section 3. Finally, we propose a
discussion on both theoretical and practical aspects of the method in Section 4.

2 Methods

The simplest and most widespread method for the reconstruction of the di�usion
pdf, which is to date the only used by clinicians to analyze dMRI data sets, is the
model-dependent DTI [41]. It assumes that x =

√
2 (∆− δ/3)y, where y follows

a 3-dimensional centered Gaussian probability distribution whose covariance
matrix D is termed the di�usion tensor. Because of the nature of the Gaussian
probability distribution, this method (i) assumes a unique direction of di�usion
per voxel and (ii) mixes up the angular and radial components of the di�usion.

Nevertheless, model-dependent methods seem to be the key to reconstruct-
ing the di�usion pdf from clinically acquired data sets. Therefore, we propose
an alternative parametric probability distribution for the random variable y
to remedy the weaknesses in the DTI method. The random motion of water
molecules in the white matter depends on the surrounding tissue structure. Be-
cause of the intra-voxel white matter �ber heterogeneity, �rst brought to light in

RR n° 7683
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[18], we assume that, in each voxel, water molecules can be divided into several
compartments.

First, we describe how we model the di�usion within a single compartment
and how this model gives access to important characteristics of the di�usion in
this compartment (e.g., �ber orientation, associated measure of anisotropy and
mean radial displacement). Then, we introduce our multi-compartment model
of the di�usion pdf, coined Di�usion Directions Imaging (DDI), of which we pro-
pose a motivated parametrization. Second, we propose a method to estimate the
parameters of the DDI model from the raw di�usion signals. In particular, (i)
we establish the analytical relation between the theoretical di�usion signals and
the parameters of the DDI model, (ii) we go into details regarding some inter-
esting asymptotic behaviors of this analytical relation and (iii) we explain how
we handle both the inherent measurement noise (which the raw di�usion signals
are corrupted with) and the underlying model selection problem to improve the
robustness of the estimation.

2.1 The new proposed di�usion model

In this subsection, we refer to the di�usion pdf as the pdf of the random variable
y instead of the pdf of the random molecular displacement x. This can be done
without loss of generality since x and y di�er only from a multiplicative scalar
factor

√
2 (∆− δ/3), which only depends on times that are constant throughout

the sequence of acquisition.

2.1.1 Single-compartment model

Local di�usion modeling. We aim at better separating the angular and
radial components of the di�usion while coping with multiple �ber orientation
so that we alleviate the limitations of the DTI model.
A compartment regroups water molecules di�using along a speci�c �ber orien-
tation ±µ. It can be further divided into two groups: (i) water molecules that
di�use in the direction +µ and (ii) water molecules that di�use in the direction
−µ.

Di�usion model along a speci�c direction of di�usion Let us �rst focus
on modeling the di�usion of water molecules along direction +µ. The ran-
dom 3-dimensional displacement w of these water molecules results from the
combination of a random 2-dimensional direction and a random 1-dimensional
displacement along that direction.
Ideally, one could think of expressing the random variable w in spherical co-
ordinates as w = rv so that both the radial component (r) and the angular
component (v) are explicitly modeled. However, to the best of our knowledge,
there is no pair of known parametric probability distributions (a univariate one
on R+ and a directional one on the 2-dimensional unit sphere to model r and
v respectively) that leads to an analytical relation between the theoretical dif-
fusion signals and the parameters of the model, as required by the analysis of
dMRI data sets.
To circumvent this issue, we express the random variable w as the sum of two
independent random variables, w = v + z, where:

RR n° 7683
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� v follows a von Mises & Fisher probability distribution (see Appendix
.2) de�ned on the 2-dimensional sphere of radius R > 0 and parametrized by
its mean direction µ, with ‖µ‖ = 1, and its concentration parameter κ ≥ 0.
The higher the concentration parameter, the more likely the water molecules
are to di�use along µ; when it is nil, the direction of molecular displacements is
uniformly distributed over the sphere; µ can thus be interpreted as the direction
of di�usion, whereas κ can be interpreted as a measure of anisotropy of the
di�usion. The von Mises & Fisher probability distribution admits a pdf on the
2-dimensional sphere of radius R. Its expression is given in [44] for R = 1 and
can easily be extended on the sphere of radius R > 0 by a�ne transformation.
For any v ∈ R3 such that ‖v‖ = R, we indeed have:

fv(v;µ, κ,R) =
1

R3

κ

4π shκ
e
κ
Rµ
′v . (2)

� z follows a centered Gaussian probability distribution de�ned on R3 and
parametrized by a cylindrically constrained covariance matrix D, akin to the
di�usion tensor in the constrained DTI model proposed in [45], completely de-
termined by its condition number (i.e., the ratio of its largest non-zero eigenvalue
to its smallest non-zero eigenvalue) set to κ+ 1 and its largest eigenvalue set to

R2 with associated eigenvector set to µ so that D =
R2

κ+ 1
(I3 + κµµ′), where

I3 is the 3× 3 identity matrix. If κ→ +∞, then D = R2µµ′ and thus R repre-
sents the mean radial displacement along the direction of di�usion µ; if κ→ 0,
then D = R2I3 and thus R represents the mean radial displacement along any
direction. The centered "cylindrical" Gaussian pdf can be conveniently rewrit-
ten using the Sherman-Morrison-Woodbury identity [46] to invert D. For any
z ∈ R3, we indeed have:

fz(z;µ, κ,R) =
κ+ 1(
R
√

2π
)3 e− (κ+1)‖z‖2−κ(µ′z)2

2R2 . (3)

� v and z are statistically independent.
The di�usion pdf amounts to a convolution of the von Mises & Fisher pdf
de�ned on the 2-dimensional sphere of radius R according to Eq.(2) and the
Gaussian pdf de�ned on R3 according to Eq.(3), and is parametrized by µ (unit
vector), κ ≥ 0 and R > 0 (i.e., four parameters). For any w ∈ R3, we have (see
Appendix .3):

fw(w;µ, κ,R) = c(κ,R)e−
1
2 ((κ+1)w2

⊥+w2
�)

×
∫ 1

−1

e
κ
2 t

2+(κ+w�)tI0

(
(κ+ 1)w⊥

√
1− t2

)
dt ,

(4)

where (w�, w⊥) := R−1
(
µ′w,

√
‖w‖2 − (µ′w)2

)
, c(κ,R) :=

κ(κ+ 1)
√

2

8π3/2R3 sh (κ)
e−

κ+1
2

and I0 is the zero-th order modi�ed Bessel function [47], with the convention
that µ′w = ‖w‖ for any w ∈ R3 when κ = 0.

Di�usion model along a speci�c �ber orientation Let a be the propor-
tion of water molecules in the compartment that di�use along the direction +µ.

RR n° 7683
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We de�ne the di�usion pdf (i.e., the pdf of the 3-dimensional random variable
y) within this compartment as:

fy(y;µ, κ,R, a) = a · fw(y;µ, κ,R) + (1− a) · fw(y;−µ, κ,R) ,

where fw is given by Eq.(4).
The parameter a ∈ [0, 1] controls the degree of asymmetry of the di�usion pdf.
In this work, we adopt a symmetric di�fusion pdf obtained assuming equal
proportions of water molecules that di�use along each direction of di�usion. In
essence, for a single compartment, we propose the following parametric modeling
of the di�usion pdf:

fy(y;µ, κ,R, a) =
1

2
· fw(y;µ, κ,R) +

1

2
· fw(y;−µ, κ,R) , (5)

where fw is given by Eq.(4).
Di�usion features. The random variable v models exclusively the angular

component of the di�usion while the random variable z mainly models the radial
component of the di�usion. Indeed, the shape of the covariance matrix D of the
Gaussian probability distribution, with its two smallest eigenvalues being equal,
is analogous to a cylinder whose axis lies along the mean direction µ of the von
Mises & Fisher probability distribution. This prevents water molecules from
strongly deviating from the direction µ, which makes the largest eigenvalue R2

of D being a fair approximation of the squared radial displacement.
Within each compartment of each voxel, the putative �ber orientation and
the mean radial displacement of water molecules are naturally identi-
�ed to ±µ and R respectively in our model. The κ parameter completes the
description of the di�usion in a compartment by assessing the degree of local
anisotropy.
The covariance matrix D involved in our single-compartment model is akin to a
di�usion tensor. Its largest and smallest eigenvalues, R2 and R2/(κ+ 1) respec-
tively, can thus be interpreted as the principal and transverse di�usivities,
respectively.
For ease of interpretation by clinicians, we can additionally relate κ and R to the
fractional anisotropy (FA) and themean di�usivity (MD) [48]. Elementary
derivations yield:

FA =
κ√

(κ+ 1)
2

+ 2
, for any κ ≥ 0 , (6)

MD =
(

1 +
κ

3

) R2

κ+ 1
, for any κ ≥ 0 , R > 0 .

2.1.2 Multi-compartment Model

Mixture model Due to the low number of parameters of our single-compartment
model (4), we can embody it within a multi-compartment model, which can ac-
count for more than one �ber orientation within each voxel while keeping the
number of parameters reasonably low. This approach was pioneered in [18, 20],
using DTI as single-compartment model, and was quite promising. Unfortu-
nately, this model, a.k.a. �multi-tensor" model, requires dMRI data sets ac-
quired on multiple spherical shells [21], which is not compatible with clinical
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settings. We thereby propose the same approach using our single-compartment
model instead.

Assuming m di�erent �ber orientations within a given voxel, we model the
di�usion pdf as a mixture of m pdfs (�ber compartments) having the com-
mon parametric form given in Eq.(5) with parameters {µi, κi, Ri}i∈J1,mK. We
also include an additional pdf in the mixture to account for isotropic di�usion
(isotropic compartment). This pdf follows the general form given in Eq.(5)
with κ = 0: in that case, for any w ∈ R3, de�ning wR = ‖w‖/R, one can show
that:

fiso(w;R) = 2c(0, R)e−
w2
R
2

shwR
wR

. (7)

Mixture weights We have to associate a weight to each of them+1 pdfs that
compose the mixture. We choose to let the weight w0 ∈ [0, 1] of the isotropic
compartment be a free parameter. As the isotropic compartment is explicitly
included in the mixture, any �ber compartment with a null κ should vanish from
the mixture. Accordingly, the lower a κ, the more down-weighted the associated
�ber compartment should be. The weights of the �ber compartments are thus
set proportional to their κ value, according to

wi =
(1− w0)κi∑m

`=1 κ`
, for any i ∈ J1,mK .

Mixture di�usivities Based on the argument that nerve �bers share similar
dimensions, the principal and transverse di�usivities are often assumed identi-
cal in each compartment [49, 39]. We follow the same lines for the transverse
di�usivity but we choose to let each compartment have its own principal dif-
fusivity to robustify the estimation of the associated �ber orientation. For any
i ∈ J1,mK, we thus have R2

i = (κi+1)λ, where λ > 0 is the common transverse
di�usivity.

The DDI model Our assumptions on the form of the di�usion pdf (Section
2.1.2) along with the assumptions relative to its parametrization (Sections 2.1.2
and 2.1.2) allows us to state our DDI model.

Assumingm putative �ber orientations in the voxel, DDI de�nes the di�usion
pdf as follows:

fw
(
w; {±µi, κi}i∈J1,mK, λ, w0

)
= w0fiso

(
w;
√
λ
)

+
1− w0∑m
`=1 κ`

m∑
i=1

κifi

(
w;±µi, κi,

√
(κi + 1)λ

)
,

(8)

where fiso is given by Eq.(7) and fi is given by Eq.(5), for any i ∈ J1,mK.
It is thus parametrized by 3m + 2 parameters (e.g., 5 parameters for the

1-�ber DDI model, 8 parameters for the 2-�ber DDI model), namely:
� the spherical coordinates (θi, φi) ∈ [0, π] × [0, 2π[ of the putative �ber

orientation ±µi, for any i ∈ J1,mK;
� the concentration of water molecules κi ≥ 0 around the putative �ber

orientation ±µi, for any i ∈ J1,mK;
� the transverse di�usivity λ > 0, common to all compartments;

RR n° 7683



Di�usion Directions Imaging (DDI) 11

� the proportion w0 ∈ [0, 1] of water molecules that are subject to isotropic
di�usion.

2.2 Estimation of the DDI Parameters

2.2.1 Analytical expression of the theoretical di�usion signal

An analytical relation between the theoretical di�usion signal A(b, g), which
depends on the b-value and direction (g) of the applied magnetic �eld gradient,
and the parameters of the DDI model can be derived by computing analytically
the integral in Eq.(1).

This integral is, by de�nition, the characteristic function (cf) of the real 3-
dimensional random variable x =

√
2 (∆− δ/3)w (see Section .1 for the de�ni-

tions), denoted by ϕx, meaning that Eq.(1) can be written (taking the modulus
of each part of the equation):

A(b, g)

A(0)
=

∣∣∣∣∣ϕx

(√
b

∆− δ/3
g

)∣∣∣∣∣
=

∣∣∣∣∣ϕ√2(∆−δ/3)w

(√
b

∆− δ/3
g

)∣∣∣∣∣ =
∣∣∣ϕw

(√
2bg
)∣∣∣ . (9)

Assuming that w follows the DDI model, i.e., that its pdf is given by Eq.(8),

ϕw

(√
2bg
)
reads:

ϕw

(√
2bg; {±µi, κi}i∈J1,mK, λ, w0

)
= w0ϕiso

(√
2bg;
√
λ
)

+
1− w0∑m
`=1 κ`

m∑
i=1

κiϕi

(√
2bg;±µi, κi,

√
(κi + 1)λ

)
.

(10)

As explained in Appendix .2, we have:

ϕiso

(√
2bg;
√
λ
)

= e−bλ
sin
√

2bλ√
2bλ

, and

ϕi

(√
2bg;±µi, κi,

√
(κi + 1)λ

)
= e−bλ(1+κi(µ

′
ig)2)

× κi
shκi


sin
√

2(κi + 1)bλ− κ2
i√

2(κi + 1)bλ− κ2
i

,
√

2bg ∈ Ωi ,

αi shαi cosβi + βi chαi sinβi
α2
i + β2

i

,
√

2bg /∈ Ωi ,

where Ωi is given by Eq.(15) with κ = κi and Ri =
√

(κi + 1)λ, for any i ∈
J1,mK, and αi and βi are given by Eq.(14), with t =

√
2bg, κ = κi and Ri =√

(κi + 1)λ, for any i ∈ J1,mK.
Inserting Eq.(10) into Eq.(9) yields the analytical relationship between the

theoretical di�usion signal A(b, g) and the parameters
{
{µi, κi}i∈J1,mK, λ

}
of

the DDI model.
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2.2.2 Asymptotic behaviors

Two limiting cases of Eq.(9) and Eq.(10) are quite interesting as they reveal the
existing link between our DDI model and other well-known models.

Case κi → 0 and κj/κi → 1, ∀i, j ∈ J1,mK It is the isotropic model; the m
�ber compartments are equally weighted and equal to the isotropic compart-
ment. The model thus simpli�es to a unique isotropic compartment with unit
weight and one can easily show that the theoretical di�usion signal does not
depend on the gradient direction but only on the b value and reads:

ADDI

iso (b;λ) = A(0)e−bλ

∣∣∣sin√2bλ
∣∣∣

√
2bλ

, (11)

which is equal, up to a multiplicative factor, to the expression obtained using
the isotropic DTI model [50]: ADTI

iso (b;λ) = A(0)e−bλ. In particular, Eq.(11)

reduces to the isotropic DTI model for low b values as sin(x)/x
x→0−−−→ 1. On the

other hand, we suggest a slight departure from the isotropic DTI model for high
b values as it has been shown that the Gaussian model is inadequate [51].

Case κi → +∞, 0 < R2
i = (κi + 1)λ < +∞ and κj/κi → 1, ∀i, j ∈ J1,mK

In this case, the transverse di�usivity goes to zero, the m �ber compartments
are equally weighted and the principal di�usivities R2

i all converge to the same
�nite value R2; one can then easily show that the theoretical di�usion signal
reads:

ADDI

∞
(
b, g; {±µi}i∈J1,mK, R

)
= A(0)

(
w0 +

1− w0

m

m∑
i=1

e−bR
2(µ′ig)2

)

This limiting case of our model is very similar to the model proposed in [19] us-
ing Watson distributions, which is a constrained multi-tensor model where the
tensors have a unique non-zero eigenvalue and the compartments are equally
weighted. The only di�erence relies on a possible non-zero proportion w0 of
water molecules that are subject to isotropic di�usion (and thus do not con-
tribute in the attenuation of the theoretical di�usion signal since the transverse
di�usivity is nil) which our asymptotic model include.

2.2.3 Estimation from noisy di�usion signals

Description of a dMRI data set. In its most general form, a dMRI data
set is composed of ng × nb raw di�usion signals Sjk, j ∈ J1, ngK, k ∈ J1, nbK,
acquired for ng di�erent encoding directions {gj}j∈J1,ngK and nb di�erent encod-
ing b-values {bk}k∈J1,nbK. Each raw di�usion signal is corrupted by Rician noise
[6], as Sjk ∼ Rice (Ajk, σk), where σk ≥ 0 is the standard deviation of the noise
which depends on the b-value, and Ajk is the corresponding theoretical di�usion
signal which is analytically related to the parameters of the DDI model.

Handling the Rician noise. Because of the Rician noise, in general, the
mean of a raw di�usion signal Sjk does not match the corresponding theoretical
di�usion signal Ajk. For moderate (typically greater than 3) signal-to-noise
ratio (SNR), de�ned as SNRjk = Ajk/σk, the following Gaussian approximation
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of the Rician noise holds [6]: Sjk ∼ N
(√

A2
jk + σ2

k, σ
2
k

)
. This approximation

however requires σk to be known which is not the case in practice. We instead
use an estimate of it computed according to [52]. For low SNRs, we �rst �lter
the images with the Rician-adapted Non-Local Means �lter [52], which has
been shown to e�ciently denoise such images while preserving �ne anatomical
structures. In particular, this �lter has also been shown to preserve the angular
resolution of QBI [53].

Minimization problem. Assuming that the Gaussian approximation of
the Rician noise holds for all b-values and has known variance, a least squares
(LS) �tting is adequate and the estimation of the DDI parameters can be per-
formed by minimizing the following criterion:

J
(
{±µi, κi}i∈J1,mK, λ; {Sjk}

)
=

ng∑
j=1

nb∑
k=1

Sjk −
√
A2
jk

(
{±µi, κi}i∈J1,mK, λ

)
+ σ2

k

σk

2

.

The optimization of the cost function J is performed using the derivative-free
new unconstrained optimization algorithm (NEWUOA) [54]. Each parameter
of the DDI model is thus transformed into an unconstrained parameter using
the general transformation p = pmin + pmax (sin(p?) + 1) /2, where p is any
parameter of the DDI model and p? the associated unconstrained parameter.
The value of pmin was set to 0 for all the parameters. The value of pmax was set
to π for the parameters {θi}i∈J1,mK and {φi}i∈J1,mK (we limit the search to the
hemisphere since we are dealing with orientations), 50 for {κi}i∈J1,mK and 0.003
for λ.

2.2.4 Model Selection

The DDI model also requires a model selection step since the number m of �ber
orientations in a voxel is not a priori known. In practice:

� We choose a maximum M of putative �ber orientations within a voxel.
� We perform the estimation of the DDI parameters form ∈ {0, 1, 2, . . . ,M}.
� We select the model with minimum corrected Akaike's Information Crite-

rion (AICc) [55]:

AICc(m) = χ2 + 6m+ 4 +
6(3m+ 2)(m+ 1)

nbng − 3m− 3
,

where χ2 is the minimum value of the cost function J . In essence, this criterion
is a modi�ed version of the original AIC [56] which accounts for the over-�tting
problem that occurs when the AIC is computed from data sets with a too small
sample size nbng.

RR n° 7683



Di�usion Directions Imaging (DDI) 14

3 Results

3.1 Simulation study

3.1.1 Goals

Results on simulated data are performed at the voxel level and have di�erent
scopes:

� Analyzing the angular error committed on the estimates of the �ber ori-
entation(s) via a cone-of-uncertainty analysis [57];

� Determining the angular resolution of the 2-�ber DDI model.

No evalution is made in this study on the κ and λ values that are provided
by the DDI model. We will tackle this issue in a future work. Instead, we focus
here on assessing the capability of the DDI model to accurately estimate �ber
orientations.

3.1.2 Generation of the simulated data sets

The simulation study is performed in a unique voxel and with a unique b value
of 1500s/mm2 which is an upper bound of the typical b values used in clinics.

To generate the simulated data sets, we use a spherical deconvolution method
proposed in [40] referred to as BV in our study. To simulate multiple �ber
orientations, they assume that the fODF is a sum of equally-weighted delta
functions. They perform its convolution with the kernel proposed in [58], which
models restricted di�usion within a cylindrical �ber of radius ρ = 5µm and
length L= 5mm. There are three reasons to such a choice: (i) they implemented
this generator of di�usion signals on-line, as part of the fanDTasia toolbox3, (ii)
this generator has been used in more than 20 papers and (iii) the spherical
deconvolution in its discrete version is close to multi-compartment models.

We simulated both the single-�ber and two-�ber cases with, for each of
them, Na = 5 sets of respectively 15, 30, 41, 64 and 200 encoding gradient
directions uniformly distributed on the hemisphere. For a given case (single or
two-�ber) and a given set of encoding gradient directions, we generated several
con�gurations of the �ber orientations and we corrupted each data set with
Ns = 12 increasing noise levels (SNR = +∞, 30, 25, 20, 16, 13, 10, 7, 5, 3, 2, 1).

The con�gurations of �ber orientations were de�ned as follows. For each
case (single or two-�ber), the �rst �ber was set to Nd1 = 5 di�erent values
(θ, φ), with θ = 90 and φ = 0, 30, 45, 60, 90 (in degree). For the two-�ber case,
the second �ber was set to Nd2 = 25 di�erent values (θ, φ+ ∆φ) for each value
of the �rst �ber, with ∆φ going from 90 to 60 degrees with a step of 10 degrees,
from 60 to 30 degrees with a step of 5 degrees and from 30 to 0 degree with a
step of 2 degrees.

We obtained NaNs(Nd2 + 1)Nd1 = 7800 data sets in a given voxel, each one
of them characterized by (i) a number of �ber orientations, (ii) a number of
encoding directions, (iii) an SNR value, (iv) an orientation of the �rst �ber and,
for two-�ber cases, (v) the angle between the two �bers. Finally, we resampled
each data sets 100 times to allow for statistical assessment on the estimated
parameters.

3http://www.cise.u�.edu/ abarmpou/lab/DWMRI.simulator.php
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3.1.3 Analysis

Cone-of-uncertainty analysis The cone-of-uncertainty analysis [57] con-
sists in displaying the 95% con�dence intervals of the estimated �ber orien-
tations using a cone shape with axis that lies on the mean �ber orientation and
angle equal to the 95% con�dence angle between an estimated orientation and
its corresponding ground truth.

The computation of this con�dence angle is performed via the percentile
method: for each data set, we compute the 100 angles between each estimated
�ber orientation and its corresponding ground truth; we then sort these angles
and take the 95th as the 95% con�dence angle.

Figure 1 shows the cones of uncertainty of some data sets. In details, all
the data sets represented are two-�ber cases with a �rst �ber orientation at
±(
√

2/2,
√

2/2, 0) simulated from 30 encoding gradient directions and a single
b value of 1500s/mm2 (typical clinical situation). From the top to the bottom,
the second �ber orientation is moved aside the �rst one with increasing angle
from 0 degrees to 90 degrees as described in Section 3.1.2. From the left to the
right, SNR is increased from 1 to +∞ as described in Section 3.1.2.

The idea behind the cone-of-uncertainty analysis is that two estimated �ber
orientations become indistinguishable when the con�dence cones strongly over-
lap. In Fig.1, we see that the closer the �ber orientations, the harder it is to
distinguish them using DDI which makes sense. We also note that the more im-
portant the noise, the larger the cones become, which indicates a non accurate
estimation of the �ber orientations.

A way to read a cone-of-uncertainty analysis is to select a noise level and
step the angle between the two �ber orientations down, starting from its largest
(i.e., 90 degrees in our case), until the two cones strongly overlap. This gives a
qualitative measure of the angular resolution of the method for this particular
noise level and for this number of encoding gradient directions: for example,
with 30 encoding gradient directions and an SNR of 10, Fig.1 shows that the
angular resolution of DDI is about 30 degrees. It is however possible to quantify
it and this is the object of the next paragraph.

Angular resolution of the two-�ber DDI method The angular resolution
is the minimum detectable angle between two di�erent �ber orientations. To
estimate it, we do not perform any model selection and we use the data sets
simulated by BV.

The simulated data sets with ground truth angle of zero degrees between the
two �ber orientations are single �ber cases. Their 95% con�dence angle is thus
a fair approximation of the angular resolution since any voxel in which crossing
�bers are estimated with an angle that drops below this value has a signi�cant
probability to contain only one single �ber.

For each data set, we thus compute the con�dence angle between the two
estimated directions using the percentile method. In order to minimize the
e�ect of the sensitivity of the initialization of the NEWUAO algorithm on the
estimation of the angular resolution, we take the minimum 95% con�dence angle
over the di�erent �ber con�gurations that we simulated.

Following these main steps, we were able to compute an estimated angular
resolution of DDI for each number of encoding gradient directions and for each
noise level. The results are reported in Table 2.
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Figure 1: Cones of uncertainty of the estimated �ber orientations from di�usion
signals simulated with 30 encoding gradient directions, a �xed �rst �ber at
±(
√

2/2,
√

2/2, 0) and various SNRs and second �ber orientation.

Table 2 shows that the angular resolution of DDI improves as SNR increases
and as the number of encoding gradient directions increases. It is interesting to
observe that, even in absence of noise, the model cannot distinguish two �ber
orientations that are separated by an angle smaller than 1.7 degrees. Another
interesting fact is that, for low SNRs, increasing drastically the number of en-
coding gradient directions does not seem to improve signi�cantly the angular
resolution obtained with few encoding directions. Last, we can conclude from
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Table 2: Angular resolution (in degrees) of the DDI method for various SNRs
and number of encoding gradient directions. The estimation is performed via
LS �tting without any correction of the mean to account for the Rician noise.

Number of encoding gradient directions
SNR 15 30 41 64 200
1 81.6935 82.3828 75.6493 82.1945 75.8231
2 75.4626 77.5608 79.8586 72.5307 72.5959
3 70.6784 67.9172 64.5632 50.9299 51.2468
5 61.8446 55.2778 47.3007 42.9176 26.7046
7 50.1703 42.9719 34.1863 27.6380 21.9324
10 43.9055 29.1703 25.8254 23.0921 17.1725
13 31.2371 24.3971 22.7992 19.8612 14.5524
16 29.3666 22.7685 21.1694 18.2829 13.0752
20 25.8926 20.5858 18.2044 15.6704 11.5458
25 21.9832 17.9714 15.9505 13.7777 10.0341
30 20.5242 16.4157 13.4003 12.9833 8.9419
inf 1.6646 1.3938 0.5617 0.2857 0.1161

Table 2 that, for standard clinical dMRI data sets (SNR between 7 and 10, 30
encoding gradient directions), the angular resolution of DDI is about 35 degrees.

3.2 Real data experiments

Acquisitions. We perform a dMRI sequence on a healthy subject using a
3T Siemens MRI scanner. The sequence consisted of a single encoding b value
of 800s/mm2 and 15 encoding gradient directions. The aim of this acquisition
is to show an example of visualization of the DDI parameters, estimated from
a poor quality clinical acquisition.

Preprocessing. With such clinical conditions, the resulting di�usion-weighted
images were very noisy. We thus apply the Rician-adapted Non-Local Means
�lter [52] to them before proceeding with the estimation of the DDI parameters.
This denoising step allows us to consider that the mean of the denoised raw dif-
fusion signal matches its theoretical value and, thus, we perform the estimation
with a classical LS �tting of the model on the denoised raw di�usion signals.

Visualization of the DDI parameters. We propose the cone glyph to
visualize the DDI parameters. In each voxel of the image, we display as many
cones as estimated �ber orientations. The axis of each cone lies on its corre-
sponding estimated �ber orientation ±µ. The radius is inversely proportional
to the concentration κ of water molecules around the �ber orientation and the
height of the cone is proportional to the mean squared radial displacement
(κ + 1)λ, where λ is akin to the transverse di�usivity. A line thus represent a
trustworthy estimated �ber orientation while a disk indicates the contrary. As
an example, Fig.2 shows an axial slice of the brain of our healthy subject...
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(a) (b)

(c)

Figure 2: Visualization of the DDI parameters using cone glyphs on an axial
slice of a subject's brain. The parameters are estimated from poor quality di�u-
sion signals (b = 800s/mm2, 15 encoding gradient directions). Figure (a) shows
slice 42 where crossing �bers are detected at the extremities of the corpus cal-
losum while Figure (b) and (c) show slice 48 where crossing �bers are detected,
notably on the cortico-spinal tract.

4 Discussion and Conclusion

4.1 Theoretical aspects

In this paper, we proposed Di�usion Directions Imaging, a new method for the
analysis of dMRI data sets. At the heart of this method lies a careful modeling
of the random displacements of the water molecules di�using along one of the
two directions of a given �ber. We indeed conveniently separate the angular
and radial components of the di�usion. Assuming that water molecules along
a given �ber di�use in equal proportions in both directions yields our single-
compartment model of the di�usion pdf. Finally, we account for multiple �ber
orientations by encompassing the single-compartment model within a multi-
compartment model.

On the same line as DTI, we thus propose a parametric modeling of the
di�usion pdf and we also derive the analytical relation between its parameters
and the theoretical di�usion signals. For m putative �ber orientations in a given
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voxel, only 3m+ 2 parameters need to be estimated to get an estimation of the
di�usion pdf (e.g., only 8 parameters to estimate a �ber crossing).

In the single-compartment model, we choose to symmetrize the di�usion pdf
by assuming equal proportions of water molecules di�using in the two directions
of the �ber (a = 1/2) which is an assumption that almost any state-of-the-
art method claims. However, it has been shown in [17] that, at low b values
(typically less than 1500s/mm2), the theoretical di�usion signals resulting from
crossing �bers and Y-shaped mixed �bers are indistinguishable but that they
become more and more di�erent as the b value increases. The model of the
di�usion pdf in DDI is easily asymmetrizable (taking a 6= 1/2 is su�cient) and
thus, as a perspective, we try to evaluate the bene�ts of this property when the
b value is higher.

The model selection is also very simple and we did not study its perfor-
mances. This will be the object of a future work.

4.2 Practical aspects

We focused on evaluate the ability of DDI to accurately estimate �ber orienta-
tions. To that end, we performed a cone-of-uncertainty analysis which allowed
for a qualitative measure of the angular resolution of the method. Next, we
computed a quantitative measure of it which con�rmed the qualitative results.
With standard clinical acquisitions, we showed that the angular resolution of
the two-�ber DDI is about 35 degrees. This result seems to be very encouraging
although a deep comparison with some state-of-the art methods needs to be
carried out.

As another perspective, we would like to perform similar studies to assess
the accuracy of the other parameters that DDI provides, namely κ (concentra-
tion of water molecules around a given orientation), λ (akin to the transverse
di�usivity) and w0 (proportion of water molecules subject to isotropic di�usion).

Moreover, the simulation study revealed that the minimization of the crite-
rion for the estimation of the DDI parameters is very sensitive to the initializa-
tion. Whether it is a limitation of the model or a limitation of the NEWUOA
optimization algorithm or a combination of these two is still an open issue that
we need to address.

.1 De�nitions from probability theory

Let us recall some probability theory basics that are required in Appendix .2.
� Given two measurable spaces (E1,F1) and (E2,F2), a measurable func-

tion h : E1 → E2 and a measure ρ : F1 → [0,+∞], the pushforward measure
h ? ρ : F2 → [0,+∞] of ρ induced by h is de�ned as (h ? ρ)(B) = ρ

(
h−1(B)

)
,

for any B ∈ F2;
� a real p-dimensional random variable x is a measurable function from

the probability space (Λ,F , P ) to the measurable space (Rp,Bp), where Bp is
the Borel σ-algebra of Rp;

� the probability distribution of the real p-dimensional random variable
x is the pushforward measure of P induced by x;
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� the characteristic function ϕx : Rp → C of the real p-dimensional
random variable x reads

ϕx(t) =

∫
Rp
eit
′xd(x ? P )(x) =

∫
Rp
eit
′xdP (x−1(x))

=

∫
Λ

eit
′x(ω)dP (ω) , for any t ∈ Rp .

� the probability density function fx : Rp → [0,+∞] of the real p-
dimensional random variable x is the Radon-Nikodym derivative of its proba-
bility distribution.

Note that the cf of the real p-dimensional random variable x always exists
whereas its pdf exists if and only if the probability distribution of x is absolutely
continuous wrt the Lebesgue measure. In the latter case, the cf and the pdf are

related by ϕx(t) =

∫
Rp

eit
′xfx(x)dx , for any t ∈ Rp.

.2 The von Mises & Fisher probability distribution

It is a 4-parameter probability distribution. Here is the list of the notations
used throughout this section:

� A2 = [0, π] × [0, 2π[ is the 2-dimensional space of spherical coordinates;
equipped with its corresponding Borel σ-algebra BA2

, it is a measurable space;
� (θ0, φ0, κ,R) ∈ A2× [0,+∞]×]0,+∞] are the parameters of the von Mises

& Fisher probability distribution Fθ0,φ0,κ,R;
� Denoting µ = (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)′, the von Mises & Fisher

distribution can also be denoted by Fµ,κ,R;
� νµ,κ : BA2

→ [0,+∞] is the von Mises & Fisher measure on the 2-
dimensional unit sphere whose density wrt the Lebesgue measure reads:

dνµ,κ(θ, φ) =
κ sin θ

4π shκ
exp {κ (µ1 sin θ cosφ

+µ2 sin θ sinφ+ µ3 cos θ)} dθdφ ,
(12)

for any (θ, φ) ∈ A2 so that (A2,BA2
, νµ,κ) is a probability space;

� TR is the real 3-dimensional random variable from (A2,BA2
, νµ,κ) to(

R3,B3

)
such that

TR(θ, φ) = (R sin θ cosφ,R sin θ sinφ,R cos θ)′ , (13)

for any (θ, φ) ∈ A2.
De�nition: The von Mises & Fisher probability distribution in R3 is the

pushforward measure Fµ,κ,R of νµ,κ induced by TR; µ (unit vector) is the mean
direction, κ ≥ 0 is the concentration parameter which controls the dispersion
of the probability distribution around the mean direction µ and R > 0 is the
radius of the sphere on which the probability distribution has positive value.

Characteristic function: Let v be a real 3-dimensional random variable
following the von Mises & Fisher probability distribution Fµ,κ,R. Then, for any
t ∈ R3, its characteristic function is

ϕv(t;µ, κ,R) =

∫
A2

eit
′TR(θ,φ)dνµ,κ(θ, φ) ,
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which, combined with Eq.(12), becomes

ϕv(t;µ, κ,R) =
κ

4π shκ

∫
A2

e(iRt+κµ)′T1(θ,φ) sin θdθdφ .

The derivation of this integral is carried out in [59] for the case R = 1. It is
straightforward to generalize the expression for any R > 0:

ϕv(t;µ, κ,R) =
κ

shκ

+∞∑
n=0

zn

(2n+ 1)!
,∀t ∈ R3 ,

with z = z(t;µ, κ,R) = κ2 −R2‖t‖2 + 2iκRµ′t.
This expression can be simpli�ed by introducing:

α = α(t;µ, κ,R) =

√
Re z + |z|

2
,

β = β(t;µ, κ,R) =
Im z√

2 (Re z + |z|)
,

Ω =
{
t ∈ R3 s.t. ‖t‖ ≥ κ/R and t ⊥ µ

}
.

(14)

Note the α and β are well-de�ned only when Re (z) + |z| > 0.
This leads to:

ϕv(t;µ, κ,R) =
κ

shκ
sin
√
R2‖t‖2 − κ2√

R2‖t‖2 − κ2
, t ∈ Ω ,

κ

shκ
sh (α+ iβ)

α+ iβ
, t /∈ Ω .

(15)

Remarks. When κ = 0, the von Mises & Fisher probability distribution
coincides with the uniform probability distribution on the 2-dimensional sphere
of radius R.
Besides, the von Mises & Fisher probability distribution is not absolutely con-
tinuous wrt the Lebesgue measure in R3 as, for example, A2 has null Lebesgue
measure while Fµ,κ,R(A2) = 1. Therefore, it does not admit a pdf on R3.

.3 Independent sum of a von Mises & Fisher variable and

a Gaussian variable

Let w be the independent sum of a von Mises & Fisher random variable v
de�ned on the 2-dimensional sphere of radius R > 0 with pdf given by Eq.(2)
and a Gaussian random variable z de�ned on R3 with pdf given by Eq.(3). The
random variable w admits both a cf and a pdf. For any t ∈ R3, the former is
given by:

ϕw(t;µ, κ,R) = ϕv(t;µ, κ,R)ϕz(t;µ, κ,R) ,

where ϕv(t;µ, κ,R) is given by Eq.(15) and ϕz(t;µ, κ,R) = e−
R2

2(κ+1) (‖t‖
2+κ(µ′t)2),

and, for any w ∈ R3, the latter is given by:

fw(w;µ, κ,R) = c(κ,R)e−
1
2 ((κ+1)w2

⊥+w2
�)

×
∫ 1

−1

e
κ
2 t

2+(κ+w�)tI0

(
(κ+ 1)w⊥

√
1− t2

)
dt ,
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where (w�, w⊥) := R−1
(
µ′w,

√
‖w‖2 − (µ′w)2

)
, c(κ,R) :=

κ(κ+ 1)
√

2

8π3/2R3 sh (κ)
e−

κ+1
2

and I0 is the zero-th order modi�ed Bessel function [47], with the convention
that µ′w = ‖w‖ for any w ∈ R3 when κ = 0.

Proof:
Let Fµ,κ,R, Gµ,κ,R and Hµ,κ,R be the probability distributions of the real

3-dimensional random variables v, z and w respectively. The statistical inde-
pendence of the random variables v and z implies that:

� the characteristic function of w reads ϕw = ϕv+z = ϕvϕz; using the
expression of the cf of the Gaussian random variable [60] ends the proof for ϕw;

� the density of Hµ,κ,R wrt Gµ,κ,R reads

dHµ,κ,R(w) =

∫
R3

dGµ,κ,R(w − v)dFµ,κ,R(v) ,

for anyw ∈ R3; now, Gµ,κ,R is absolutely continuous wrt the Lebesgue measure,
so does Hµ,κ,R. The pdf of w thereby exists and is given, for any w ∈ R3, by

fw(w;µ, κ,R) =

∫
R3

fz(w − v;µ, κ,R)dFµ,κ,R(v) .

Since Fµ,κ,R is a von Mises & Fisher probability distribution, it is the push-
forward measure of νµ,κ de�ned in Eq.(12) induced by the random variable TR
de�ned in Eq.(13). We thus have:

dFµ,κ,R(v) = dνµ,κ
(
T−1
R (v)

)
,∀v ∈ R3 . (16)

Combining Eq.(3), Eq.(12) and Eq.(16), we obtain after some simpli�cations:

fw(w;µ, κ,R) =
c(κ,R)

2π
e−

1
2 ((κ+1)w2

⊥+w2
�)

×Q(w;µ, κ,R) ,
(17)

where Q : R3 → R is de�ned as follows:

Q(w;µ, κ,R) :=

∫
A2

e
κ
2 (µ′T1(θ,φ))

2

e
κ
(

1−µ
′w
R

)
µ′T1(θ,φ)

× e
κ+1
R w′T1(θ,φ) sin θdθdφ .

Let P be the unitary matrix that rotates µ to e3 = (0, 0, 1)′, i.e., Pµ = e3.
De�ning w? = Pw, we have

Q(w;µ, κ,R) =

∫
A2

e
κ
2 cos2 θ+κ(1−µ

′w
R ) cos θ

× e
κ+1
R (w?1 sin θ cosφ+w?2 sin θ sinφ+w?3 cos θ) sin θdθdφ ,

=

∫ π

0

e
κ
2 cos2 θ+κ(1−µ

′w
R ) cos θh(w?, θ) sin θdθ ,

(18)

where h(w?, θ) :=

∫ 2π+φ0

φ0

e
κ+1
R sin θ

√
(w?1)

2
+(w?2)

2
sinφdφ and φ0 = arctan

w?1
w?2

+

π(w?2 ≤ 0).
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Because sin is a 2π-periodic function and thanks to the relation
∫ 2π

0

ez sin xdx =

2πI0(z), for any z ∈ R, which can be deduced from [47, p. 376], we can simplify
h(w?, θ) to:

h(w?, θ) = 2πI0

(
κ+ 1

R
sin θ

√
(w?1)

2
+ (w?2)

2

)
. (19)

Substituting Eq.(19) into Eq.(18) and observing that w?3 = e′3w
? = e′3Pw =

µ′w and (w?1)
2

+ (w?2)
2

= ‖w?‖2 − (w?3)
2

= ‖w‖2 − (µ′w)
2 yields the following

single-integral representation of Q:

Q(w;µ, κ,R) = 2π

∫ 1

−1

e
κ
2 t

2+(κ+w�)t

× I0
(

(κ+ 1)w⊥
√

1− t2
)
dt .

(20)

Inserting Eq.(20) into Eq.(17) ends the proof for fx.
Let y be a 3-dimensional random variable whose pdf is a mixture of two

equally weighted pdfs with associated probability distributionsHµ,κ,R andH−µ,κ,R
respectively. Its cf is given by:

ϕy(t;±µ, κ,R) = e−
R2

2(κ+1) (‖t‖
2+κ(µ′t)2)

× κ

shκ


sin
√
R2‖t‖2 − κ2√

R2‖t‖2 − κ2
, t ∈ Ω ,

α shα cosβ + β chα sinβ

α2 + β2
, t /∈ Ω ,

(21)

where α, β and Ω are given by Eq.(14).

Proof: By de�nition of y, ϕy(t;±µ, κ,R) =
1

2
ϕw(t;µ, κ,R)+

1

2
ϕw(t;−µ, κ,R).

Moreover, it follows from Eq.(14) that α(t;−µ, κ,R) = α(t;µ, κ,R) = α and
β(t;−µ, κ,R) = −β(t;µ, κ,R) = −β. We can therefore deduce that:

ϕy(t;±µ, κ,R) = e−
R2

2(κ+1) (‖t‖
2+κ(µ′t)2)

× κ

shκ


sin
√
R2‖t‖2 − κ2√

R2‖t‖2 − κ2
, t ∈ Ω ,

1

2

(
sh (α+ iβ)

α+ iβ
+

sh (α− iβ)

α− iβ

)
, t /∈ Ω ,

Finally, simple derivations yield:

sh (α+ iβ)

α+ iβ
+

sh (α− iβ)

α− iβ
= 2Re

(
sh (α+ iβ)

α+ iβ

)
=
α shα cosβ + β chα sinβ

α2 + β2
.
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