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Abstract—In mobile-beacon assisted sensor localization, bea-
con mobility scheduling aims to determine the best beacon
trajectory so that each sensor receives sufficient beacon signals
with minimum delay. We propose a novel DeteRministic bEAcon
Mobility Scheduling (DREAMS) algorithm, without requiring any
prior knowledge of the sensory field. In this algorithm, beacon
trajectory is defined as the track of depth-first traversal (DFT)
of the network graph, thus deterministic. The mobile beacon
performs DFT under the instruction of nearby sensors on the
fly. It moves from sensor to sensor in an intelligent heuristic
manner according to RSS (Received Signal Strength)-based
distance measurements. We prove that DREAMS guarantees full
localization (every sensor is localized) when the measurements
are noise-free. Then we suggest to apply node elimination and
topology control (Local Minimum Spanning Tree) to shorten
beacon tour and reduce delay. Through simulation we show that
DREAMS guarantees full localization even with noisy distance
measurements. We evaluate its performance on localization delay
and communication overhead in comparison with a previously
proposed static path based scheduling method.

Index Terms—Mobility management, Mobile beacon, Sensor
localization, Wireless sensor networks

I. INTRODUCTION

A wireless sensor network (WSN) is a collection of low-
cost sensing devices, i.e., sensors, connected by wireless
communication links in an ad-hoc fashion. Usually, it is
densely deployed in a region of interest for object monitoring
and target tracking. In many high-level WSN applications, a
reported event, e.g., a fire in a woody area, an enemy tank
in a battle field and a survivor in a natural disaster, just to
mention a few, is meaningful and can be responded to only if
the event position is known. Location awareness also plays an
important role in some low-level network functionalities such
as geographic routing and data centric storage. Indeed, sensors
are expected to know their positions for effective and efficient
use of WSNs.

Localization is a fundamental problem dealing with how
a sensor determines its spatial coordinates (i.e., position).
A straightforward solution is to equip each sensor with a
GPS receiver that can provide the sensor with its exact
location. But this is not a cost-effective solution because
WSN normally contains a massive number of sensors (thus
requires a large amount of extra monetary investment). It has
limited applicability because GPS works only in open areas
with no obstruction to satellite signal (for example, they do
not function in underwater or indoor environment), and in
some hostile scenario such as battlefield surveillance, GPS

signals may be jammed by adversaries and become unavailable
to individual sensors unless the sensors are equipped with
expensive GPS anti-jam protection techniques [5].

Existing non-GPS-based sensor localization algorithms can
be classified as range-based or range-free [15]. Range-based
localization relies on signal features such as Angle of Arrival
(AoA), Time of Arrival (ToA), Time Difference of Arrival
(TDoA), or Received Signal Strength (RSS) for ranging
(i.e., finding nodal relative distance or angle). Unlocalized
nodes use reference locations and the range information to
estimate their own position by triangulation, trilateration or
multilateration, depending on the signal feature used. The
reference locations are called beacons. They are implemented
by location-aware nodes emitting location signals. Range-
free localization uses topological information (e.g., hop count)
rather than range information. It may or may not use beacons.

Localization that relies on AoA, ToA, or TDoA requires
additional complex hardware and/or synchronized transmitters
for the signal feature measurement and dramatically increases
deployment cost. On the other hand, measuring RSS is free
of cost because RSS Indicator (RSSI) is available with regular
radio module. In range-free localization without use of beacons
(thus any signal feature), nodes are localized in a virtual
coordinate system that does not necessarily have direct relation
with the ground truth. While virtual coordinates may be an
acceptable replacement of physical coordinates for network-
ing, they are less helpful to real life applications where true
physical position is required for event response and decision
making (e.g., emergency rescue and environment control).

Hence, considerable research attention has been attracted to
beacon-assisted localization (whether range-based or range-
free) using RSS, for accuracy, efficiency and applicability
concerns. Generally speaking, sensors infer their position from
their spatial relations with the beacons in range, which are in
turn estimated using RSS. To limit positioning possibilities in
a minimal region (i.e., to increase localization accuracy), they
should have direct contact with a sufficient number of beacons.
The number of beacons and their distribution thus has direct
impact on the localization performance. A large number of
uniformly distributed beacons will lead to better performance
than a few crawdedly or linearly deployed ones (which may
result in symmetry in localization).

On the other hand, manual beacon placement may not be
possible due to operational factors, and meanwhile the number
of beacons should be significantly smaller than the number of



sensors because, otherwise, beacon deployment cost will offset
the savings on sensor side. Localized sensors can become new
beacons and help other sensors self-localize. This iterative
method reduces the initial number of beacons required but
results in aggregated localization error. Under these circum-
stances, mobile beacons (wireless communicable devices such
as mobile robots and unmanned vehicles) are introduced as
alternative cost-saving technique in delay-tolerant scenarios.
As we will see in this paper, if one or a few mobile beacons
are used properly, full sensor localization guarantee can be
achieved.

A. Objective and motivation

In this paper, we address mobile-beacon assisted sensor
localization: a location-aware beacon travels in the sensory
field, transmitting signals conveying their latest location on a
periodic basis; on individual sensors, a localization algorithm
is engaged during beacon visit. Some experimental work [2]
has already demonstrated the feasibility and applicability of
this approach in practice. In this approach, beacon transmis-
sion locations correspond to traditional fixed beacons. It is
advantageous in terms of deployment cost (only a few beacon
nodes are required) and communication overhead (only local
communication is involved). These advantages however do not
come for free, but in exchange for increased localization delay.
It is because sensors can be localized only when they are in
direct contact with the mobile beacon and receive sufficient
signals from it. Beacon trajectory thus have to be properly
planned so as to be shortest in length and meanwhile well
cover every sensor for quick, full and accurate localization.

Our focus here is not on individual sensor localization but
on beacon mobility scheduling, i.e., finding optimal beacon
trajectory, which is a variant of the NP-complete Traveling
Salesman Problem (TSP). A poor trajectory may result in not
only large localization delay but also low localization ratio
and high localization error. Due to random node dropping,
sensors placement pattern is not known a priori. In a dynamic
environment, even if the initial pattern was known, the final
node distribution may be different (e.g., moved by wind or
animals). Beacon trajectory thus should be planned on the
fly rather than beforehand. In the literature, this problem is
often purposefully overlooked, or oversimplified by unrealistic
assumptions, due to its difficulty stemming from the fact that
the position of unknown nodes is not known a priori [9]. To
advance state of the art, we study dynamic beacon mobility
scheduling in realistic settings. At individual sensor level may
any existing localization procedure be adopted as long as
it utilizes beacon signals for localization. Below is detailed
problem statement.

B. Problem statement

We consider a connected static WSN randomly deployed in
the Euclidean plane. The sensory field boundary is not known
a priori. Sensors are initially unlocalized. A mobile beacons
is stochastically placed in the network to localize sensors. It

knows about its own coordinates in a coordination system (not
necessarily geographic location) as it moves.

Nodes, whether sensors or beacon, are equipped with an
omni-directional antenna. Sensors have the same transmission
range; the beacon node has a transmission range not smaller
than sensors’. Each node is associated with a unique identifier
(ID), e.g., manufacturer serial number, by which it can be
distinguished from others. Each sensor node (and beacon)
periodically transmits ‘hello’ (resp., beacon) message carrying
its ID (resp., current local position coordinates) and other
information necessary for localization. ‘Hello’ frequency and
beacon frequency may be different. Each sensor is equipped
with a localization procedure, which can be any algorithm that
relies on beacon signals.

The goal is to develop a beacon mobility scheduling algo-
rithm, by which the mobile beacon is able to dynamically de-
termine its trajectory and coordinate with one another such that
every sensor receives sufficient beacon signals and becomes
localized. The overall beacon mobility scheduling should yield
minimum localization delay and minimum communication
overhead. Note that here we consider only single-beacon
scenario; multi-beacon scenario is part of our future work.

C. Our contributions

We propose a novel localized solution to the above stated
problem, named DeteRministic bEAcon Mobility Scheduling
(DREAMS). To our knowledge, DREAMS is the first algo-
rithm of its kind. In the following we introduce its working
principle and summarize our simulation study.

In DREAMS, the beacon node first visits a sensor by
random movement, and then performs a depth-first traversal
(DFT) on the network graph under currently visited sensor’s
instruction (a visited sensor, after being localized, recommends
an unvisited neighbor for the beacon to visit next). It stops
moving when it finds that it returns to the first sensor and the
sensor has no unvisited neighbors. During DFT, the beacon
node performs intelligent distance-based heuristic movement
from sensor to sensor following RSS, and sensors run the
built-in localization procedure to self-localize using received
beacon signals. To shorten the beacon trajectory, DFT may
be performed on a local minimum spanning tree (LMST)
subgraph, where edges are weighted by RSS, and in addition,
unvisited, but localized, sensors may be excluded from DFT if
the exclusion does not affect discovery of unlocalized sensors.

We prove that DREAMS guarantees full localization with
noise-free pair-wise distance measurement (which is used by
beacons for heuristic inter-sensor movement). For the practical
scenarios with measurement noise, we conducted extensive
simulation study, in comparison with the fixed S-shape beacon
trajectory proposal (referred to as StaticPath) [19]. Because
both DREAMS and StaticPath are independent of the localiza-
tion procedure on individual sensors, in simulation we chose to
use trilateration for simplicity. We comparatively evaluate their
performances on localization quality and localization delay
with various configuration parameters. Our simulation results
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indicate that DREAMS is alway able to offer 100% localiza-
tion ratio (full localization), while StaticPath has failure rate
at 1.6%. For localized sensors, DREAMS has more than 4
times better localization accuracy than StaticPath. As expected,
DREAMS however has larger localization delay, increasing as
the network size goes up.

The remainder of the paper is organized as follows. We
review previous work on mobile-beacon assisted sensor local-
ization in Sec. II. We present our new algorithm DREAMS in
Sec. III and evaluate its performance in Sec. IV. We concludes
the paper and discuss our future work in Sec. V.

II. RELATED WORK

There exists a rich body of research on sensor localization.
Due to space limit, we only review the previous works on
mobile-beacon assisted approaches. A comprehensive survey
covering other localization methods can be found in [15].

In [13], a mobile beacon periodically transmits a beacon
message containing its latest location. Any sensor receiving
the message concludes that it must be somewhere around the
beacon node with certain probability. For each received beacon
message, the sensor obtains the RSSI and uses it together with
the beacon location (embedded in the message) to construct
a constraint on its own position estimate. Then it applies
Bayesian inference to compute its new position estimate from
its old position estimate and the new constraint. Its initial
position estimate is set to an arbitrary point in the sensory field.
Having received all beacon messages, the sensor is localized
to a weighted average of these position estimates. In [9],
the sensor localization problem is modeled as a non-linear
optimization problem, where node locations are to be opti-
mized. The nonlinear objective functions are the differences
between pair-wise distances computed from sensor location
estimates and range measurements (ToA based). This function-
fitting problem is solved using the least square method, which
requires an initial guess for the sensor positions. The quality
of the initial guess has direct impact on the (convergence)
performance of the algorithm. To mitigate this dependence,
an iterative incremental approach is suggested. Node location
estimates are improved in each iteration. Mobile beacons are
used to transform relative positions to absolute locations.

Filtering is a signal processing technique that removes from
a signal unwanted component (noise). It has been widely
applied in different domains such as image processing and
robotics, and is recently adopted for mobile-beacon assisted
sensor localization. The idea is to model localization as an
online estimation in a non-linear dynamic system and estimate
the system state (i.e., sensor location) using range information
obtained from filtered wireless signal features. In [11], [18],
robust Extended Kalman Filter and unscented Kalman filter
are respectively used with RSS as system measurements. In
[11], the filter is installed on the beacon node that receives
periodical signal from sensors, and localization results are
passed to sensors by local communication. In [18], the mobile
beacon periodically transmits signal to sensors, and the latter
run the filter to localize themselves. In [6], Monte Carlo

sampling-based Bayesian filtering is employed with various
types of observations such as ranging, AoA, connectivity and
their combinations. The filter is run on the beacon node. In
[2], [14], a particle filter solution is presented. In [14], the
authors proposed to increase filtering efficiency and accuracy
by varying the size of sample sets and the parameter of the
dynamic model in the estimation process.

In all above mentioned algorithms, beacon mobility schedul-
ing was not studied. Few existing works [8], [17] addressed
this problem under strong assumptions. In [8], accurate (noise-
free) pair-wise distance measurements are assumed, and lo-
calization is by trilateration (requiring three non-collinear
reference locations). The idea of mobility scheduling is to
provide sensors with reference locations in preferred regions
upon their request. It is not clear how the beacon will move
when no request is received, while some remote area remains
unlocalized. Localization is thus not guaranteed. In [17],
the sensory field is known a priori, and unrealistic binary
communication model is implicitly used. Two algorithms were
presented, respectively using beacon departure/arrival and vari-
ance of RSS. Pre-defined ‘S’ shape trajectory spanning the
entire sensory field is suggested to support the two algorithms.
In [19], [20], other types of fixed trajectories are suggested
under the assumption of known sensory field boundary. In [7],
[12], the beacon node first collects the topology information of
the network, then with this global view, it identifies the areas
where additional distance measures are needed so that in the
end the whole network becomes a globally rigid region and
is thus localizable by a range-free algorithm. The authors did
not address how to physically identify a target area and move
the beacon node to that area without position information.

Summarizing, mobile-beacon assisted sensor localization is
not well studied. In particular, there is no real solution to
the integral beacon mobility scheduling problem, which is our
focus here. We propose a novel localized mobility scheduling
algorithm, called DREAMS, advancing the literature one step
forward. DREAMS dynamically determines beacon trajectory
and guarantees full localization, without any prior knowledge
of the sensory field boundary. It is a generic framework that
can be incorporated with any existing localization algorithm
that relies on beacon signals to solve the mobile-beacon
assisted sensor localization problem in a complete sense.

III. BEACON MOBILITY SCHEDULING

In this section, we propose a novel DeteRministic bEAcon
Mobility Scheduling (DREAMS) algorithm, by which a mobile
beacon R is able to visit every sensor and provide it with
sufficient beacon signals and as a result a fully localized
network is guaranteed. This algorithm is deterministic in the
sense that sensors’ visiting order is fixed provided R starts
from the same sensor.

A. The framework (depth-first traversal)

The framework of DREAMS is a process of depth-first
traversal (DFT) of the network graph, where R follows instruc-
tions (embedded in ‘hello’ message) from neighboring sensors
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(a) cos(ĉba) > 1
4

(b) cos(ĉba) < − 1
4

(c) − 1
4
≤cos(ĉba)≤ 1

4

Fig. 1. Theorem 1

and corresponding RSS. Throughout the DFT, R periodically
transmits beacon message, while sensors self-localize using
received beacon signals.

At initiation, R moves randomly and tries to find an
adjacent sensor by listening to ‘hello’ message. The first sensor
discovered is called root. It is the sensor that R starts the DFT
from, and will be the root of the resultant traversal tree. When
multiple sensors are discovered together, sensor ID or RSS can
be used as tie breaker. A target sensor is a sensor that R is
currently moving to. A sensor is visited if it has been taken by
R as target, and unvisited otherwise. The first target of R is
the root sensor. R notifies its current target sensor by beacon
message so that the latter is able to identify its own status
(whether serving as target or not).

When a sensor S is serving as the target of R, it selects
as child an unvisited neighboring node S′ with strongest RSS.
A random selection can be alternatively made, or preference
can be given to a neighbor with high priority, which can
be evaluated, for example, by the importance/intensity of its
detected event (embedded in ‘hello’ message). By ‘hello’
message, S recommends S′ to R as next target; by the same
message, it informs S′ about their parent-child relationship.
If S has no unvisited neighbors, it will recommend its parent
(which has already been localized) to R. In the case that S has
no parent either (i.e., it is the root node), it informs R about
this situation. R finishes the DFT, in other words, DREAMS
terminates, when it realizes that its target sensor is localized
and neighboring no unlocalized sensors and has no parent.

During the DFT, R proceeds toward each target sensor
S by heuristic movement (see Sec. III-B for detail) if S is
not yet localized. While R is performing this movement, S
estimates its own location by the sensor localization procedure
and informs R of the result. Once R is informed that S
becomes localized, it stops the heuristic movement, moves
straight toward S and becomes ready to change target. It
changes target to the recommended S′ immediately if S′ is
localized already (in this case, S′ is the parent of S), and
otherwise as soon as it receives ‘hello’ message from S′. Then
it notifies S about the change via beacon message.

In the case that R has not received signal from S′ after
arriving at the estimated location of S, it knows that the

location estimate of S is not accurate enough and informs
S about the inaccuracy. After that, it resumes the heuristic
movement toward S, which will lead it either infinitely closer
to the true location of S or moving around S (as discussed
in Sec. III-B), and eventually discover S′. In this recovery
heuristic movement process, R notifies S to update location
estimate directly with the reported beacon location if it reaches
a position closer to S.

B. Distance-based heuristic movement

Central to the above DFT framework is the heuristic move-
ment of R toward its target sensor S. The heuristic movement
relies on the measurement of relative distance of R and S. It is
implemented by a sequence of effective movement procedures
(EMP), each in turn consists of a few movement steps and
moves R to a position closer to S, without resorting to the
position information (whether exact or approximate) of S. In
the following, we present EMP first with noise-free distance
measurement and then with noisy measurement.

1) Noise-free distance measurement: Before we elaborate
on EMP, we introduce the following theorem that serves as
the foundation of EMP.

THEOREM 1: Given six different points a, b, c, d, e, f in
the Euclidean plane such that b ∈ cd, a, e, f are located on
the same side of cd, |bc| = |bd| = 1

2 |ab|, ce⊥cd, |ce| = 1
2 |ac|,

df⊥cd and |df | = 1
2 |ad|, as illustrated in Fig. 1.

1) If cos(∠cba) > 1
4 , then |ac| < |ab|.

2) If cos(∠cba) < − 1
4 , then |ad| < |ab|.

3) If − 1
4 ≤ cos(∠cba) ≤ 1

4 , then |ae|, |af | < |ab|.
Proof: For ease of presentation, let x = |ab|, α1 = ∠cba,

β1 = ∠acb, ϑ1 = ∠eca (∠ace in Fig. 1(a)), y1 = |ac|, z1 =
|ae|, α2 = ∠abd, β2 = ∠bda, ϑ2 = ∠adf (∠fda in Fig. 1(b)),
y2 = |ad|, z2 = |af |. Then α1 + α2 = π, β1 + ϑ1 = 1

2π and
β2 + ϑ2 = 1

2π. Further, define

t1 =
5

4
− cosα1 and t2 =

5

4
− cosα2.

In ∆abc and ∆abd, by the law of cosines we respectively have

y21 = x2 + (
x

2
)2 − 2x(

x

2
) cosα1 = x2t1 (1)
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y22 = x2 + (
x

2
)2 − 2x(

x

2
) cosα2 = x2t2 (2)

Apparently, if cosα1 >
1
4 , then 0 ≤ t1 < 1 and y1 < x; if

cosα1 < − 1
4 , then cosα2 > 1

4 and 0 ≤ t2 < 1 and thus
y2 < x. We remain to show y1 < x and y2 < x for − 1

4 ≤
cosα1 ≤ 1

4 . Notice that under this condition we have

1 ≤ t1, t2 ≤
3

2
.

In ∆abc we have x2 = y21 + (x2 )2 − 2y1(x2 ) cosβ1 = y21 +
x2

4 − xy1 cosβ1 by the law of cosines. Then through simple
transformation, cosβ1 is expressed as

cosβ1 =
y1
x
− 3x

4y1
. (3)

Take square root at both sides of Eqn. (1) and plug it in Eqn.
(3). We obtain

cosβ1 =
√
t1 −

3

4
√
t1
. (4)

We know cosϑ1 =
√

1− (sinϑ1)2 and sinϑ1 = sin(π2 −
β1) = cosβ1. Using Eqn. (4), we have

cosϑ1 =

√
1− (

√
t1 −

3

4
√
t1

)2 (5)

In ∆abe, according to the law of cosines and by Eqn. (1)
and (5) we have

z21 = x2t1(
5

4
−

√
1− (

√
t1 −

3

4
√
t1

)2). (6)

Our goal is to prove z1 < x. It is equivalent to prove z21 −
x2 = x2( 5

4 t1− 1− t1
√

1− (
√
t1 − 3

4
√
t1

)2) < 0, which holds
if and only if

5

4
t1 − 1 < t1

√
1− (

√
t1 −

3

4
√
t1

)2. (7)

Because 5
4 t1 − 1 > 0, the above inequality can be safely

converted to the following inequality by taking square at both
sides and then through trivial manipulation.

t31 −
15

16
t21 −

31

16
t1 + 1 < 0. (8)

Let λ be the left side of this inequality. We have λ′ =
λ − 1 + t1 = t1(t21 − 15

16 t1 −
15
16 ) > λ. Because the parabola

f(x) = x2 − 15
16x−

15
16 opens up and intersects the X axis at

15±
√
960

32 which contains the closed range [1, 32 ], we conclude
t21 − 15

16 t1 −
15
16 < 0, and consequently, λ′ < 0 and λ < 0.

This finally proves that y1 < x for − 1
4 ≤ cosα1 ≤ 1

4 . By the
same technique, we can easily prove that y2 < x for − 1

4 ≤
cosα1 ≤ 1

4 . This completes the proof.
Now we are ready to present the effective movement proce-

dure (EMP). Suppose that S is located at a and R is initially
located at b in Fig. 1. The idea of EMP is to move R to
position c in a random direction, and if c is not closer to a
than b, further move R to either e or f (depending on ∠abc).

From Eqn. (1), |ac| is a monotonically decreasing function
of cos(∠abc). Plug the threshold values ± 1

4 of cos(∠abc) in
the equation, we obtain the corresponding threshold values (in
terms of |ab|) of |ac|, i.e., |ab| and

√
6
2 |ab|, which is used in

EMP by R to make movement decision as it is not able to
measure angle. The pseudo codes of EMP are given below.

Procedure: Effective_Movement_Procedure
Input : S, target sensor; dir, direction of 1st step
Output : direction of the last movement step

/*****all distances used are error-free measurement*****/

p = current position of R;
move a distance of 1

2 |pS| to q1 in dir;
if |q1S| < |pS| then

return dir;
else if |q1S| >

√
6

2 |pS| then
opp_dir = the opposite of dir;
move a distance of |pS| to q2 in opp_dir;
return opp_dir;

else
per_dir = a direction perpendicular to dir;
move a distance of 1

2 |q1S| to q2 in per_dir;
if |q2S| < |qS| then

return per_dir;
else
opp_per_dir = the opposite of per_dir;
move a distance of |q2S| in opp_per_dir;
return opp_per_dir;

endif
endif

As we see, EMP takes target sensor S and an arbitrary
direction as input. It involves at most three movement steps.
The first step is performed toward the inputed direction. It
returns the direction of the last step. EMP guarantees progress
(toward S) according to Theorem 1. In the course of heuristic
movement to S, R runs EMP iteratively, each time with S
and an arbitrary direction (or the output direction of previous
EMP iteration or a direction perpendicular to it) as input. As
the procedure iterates, R moves infinitely closer to S. It can
be considered having reach S if its distance to S is sufficiently
small (e.g., with respect to a given threshold).

THEOREM 2: With accurate pair-wise distance measure-
ment, DREAMS guarantee full localization.

Proof: The heuristic movement enables the mobile beacon
to reach a target sensor by Theorem 1, which is localized in
the worst case when the beacon arrives at its position. The
DFT ensures every sensor to be taken as localization target
and therefore localized by the mobile beacon.

2) Noisy distance measurement: The above introduced
EMP relies on accurate distance measurement. It can not
be applied directly in reality, as the measurement is always
inaccurate/nosily. Measurement noise may lead R to a wrong
direction, away from S, or contradictionary situations that are
impossible in theory. In the following, we are going to modify
EMP to accommodate measurement noise. We begin with how
to measure pair-wise distance.
R estimates its distance to S simply using the RSS of ‘hello’

message from S and the log-distance signal propagation
model [16] reversely. According to this propagation model,
the average power at distance d from a wireless transmitter is

µ(d) = β − 10α log d, (9)

where α is a slope describing signal strength change rate,
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(a) Heuristic movement with distance noise (b) Dead end

Fig. 2. Noisy distance measurments

and β is a constant determined by the transmitted power,
wavelength, and antenna gain of the transmitter. RSS is a
combination of transmission power and noise due to various
factors such as shadow fading and interference. Because of
the noisy nature of RSS, multiple RSS samples are necessary
for smoothing the readings and reducing estimation error. The
average or mean RSS is finally used for distance estimation.

We shall now modify EMP to mitigate its dependence on
the accuracy of distance measurement and reduce the impact
of measurement noise on the performance. The modification
includes removal of precise distance thresholds and addition of
exception handling (by moving R back to its initial position).
The new EMP takes the same input parameters and returns the
same output as the old one. But unlike the old EMP, it may
return NULL, implying that no progress is made and R stays
at the original position. As the old EMP, this new procedure is
run in iterations by R to approach S. If one iteration returns
NULL, the next iteration will take a random direction as input.
In each EMP, some sojourn time is needed between steps for
distance estimation. Below are the revised pseudo codes.

Procedure: New_Effective_Movement_Procedure
Input : S, target sensor; dir, direction of 1st step
Output : direction of the last movement step

/*****all distances used are error-prone estimate*****/

p = current position of R;
move a distance of 1

2 |pS| to q1 in dir;
if |q1S| < |pS| then

return dir;
else
opp_dir = the opposite of dir;
move a distance of |pS| to q2 in opp_dir;
if |q2S| < |pS| then

return opp_dir;
else if |q2S| =∞ then

return Exception_Handling(p);
else
per_dir = a direction perpendicular to dir;
move a distance of 1

2 |q2S| to q3 in per_dir;
if |q3S| < |pS| then

return per_dir;
else
opp_per_dir = the opposite of per_dir;
move a distance of |q2S| to q4 in opp_per_dir;
if |q4S| < |pS| then

return opp_per_dir;
else

return Exception_Handling(p);
endif

endif

endif
endif

Subroutine: Exception_Handling
Input : dest, movement destination
Return : direction of the movement

move to dest;
return NULL;

In Fig. 2(a), the RSS gradient lines of S are shown by
dashed curves. R starts heuristic movement toward S from
position p. In the first iteration of EMP, it visits q1, · · · , q4 in
order, as indicated by the arrowed lines, and finally returns to
p (no progress is made). In the second iteration, it visits q5
and then q6, which finally appears closer to S than p. From
q6, taking a direction perpendicular to the output direction
of the second EMP iteration, R advances to q7 through
an third iteration of EMP. From there R continues EMP
iteratively, which are now shown in the figure. Due to distance
measurement noise it is possible that R is stuck at a dead end
and never able to reach S, as discussed below.

Figure 2(b) illustrates a dead-end situation. The dashed
curve enclosing S closely stands for the RSS gradient line
through R’s current position p. The dashed circle centered at
S is the corresponding RSS gradient line in the deal case. R
estimate its distance to S to be d, while the true distance is less
than 1

2d. In any EMP iteration started at p, R always moves
to a position on the solid circle of radius 1

2d and centered at
p at the first step, and at the last step it always return to p.
Notice the fact that R is actually attempting to move from p to
an area of high-RSS, which is however enclosed in the solid
circle. Because its step destinations are never inside the circle,
EMP fails always. But nevertheless, R may pass through the
high-RSS area in the course of EMP, depending on the input
direction. Thus we modify the exception-handling subroutine
as follows to recover from dead end.

Subroutine: Exception_Handling
Input : rss, reference RSS;

S, target sensor; dest, destination
Output : direction of the movement

move to dest;
step_dir = direction of the movement;
while moving to dest
cur_rss = RSS of the ‘hello’ message from S;
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if cur_rss > rss then
stop;
return step_dir;

endif
endwhile
return NULL;

The new exception handling subroutine has three input
parameters, i.e., target sensor S, beacon initial position p and
RSS of S at p. With this subroutine, after a number of trial
EMP, if not at the first EMP, R will pass through the high-
RSS (relative to rss) area and get out of the dead end. Because
of the opportunistic nature of this dead end recovery method,
large delay may occur. However, recall that in DREAMS the
ultimate goal of the heuristic movement (iterative EMP) is not
to move R to the position of S but provide S with sufficient
beacon signals or discover the recommended next target sensor
around S. Once the goal is achieved, R will move away from
S for a new target even if it has not yet recovered from the
dead end. Later, in Sec. IV we show through simulation that
DREAMS guarantees full localization despite the presence of
measurement noise and evaluate its delay performance.

C. Optimization techniques

In the rest of this section, we will present two optimization
techniques, node elimination and topology control for truncat-
ing beacon trajectory and reducing localization delay. They
can be used in combination for the best performance.

1) Node elimination: While the beacon node R is local-
izing its target sensor (by iterative EMP), nearby sensors
may overhear its signals and become localized as a side
effect. This is very likely to happen since sensors are usually
densely deployed. Those by-accident localized sensors remain
unvisited. Intuitively, unvisited, but localized, sensors should
not be included in the beacon trajectory. Thus we propose
to improve the algorithm performance by node elimination.
Eliminated nodes are not recommended to R as target and
thus not visited. Notice that the network graph (or subgraph)
that R is traversing is a navigation graph, and its connectivity
is critical to full localization. Node elimination needs to be
done with caution; otherwise, it may disconnect the navigation
graph and causes localization failure.

A localized, but unvisited, sensor eliminates itself from the
navigation graph if it has degree 1 (eliminated neighbors do
not count) or all its neighbors are either visited or eliminated.
The rationality is that, visiting such a node does not contribute
to localization, and removing it does not affect the connectivity
of the unvisited part of the graph. To perform self-elimination,
a sensor changes its status to eliminated. Node elimination
can cause chain effect: a sensor that does not satisfy the
elimination conditions becomes qualified after (some of) its
neighbors are eliminated and then performs self-elimination.
As such, the size of the navigation graph is dynamically
reduced, and beacon trajectory is consequently shortened.

It is often beneficial to have a spanning tree structure (e.g.,
for efficient communication) over the network. Eliminated
nodes will apparently not be included in the DFT tree. But
they can be easily linked to the tree through local operations

Fig. 3. Node elimination

as follows. When a node performs self-elimination, it attaches
itself to one of its neighbors that are not yet eliminated by
taking that neighbor as parent. It informs the selected parent
node about their parent-child relation by ‘hello’ message. This
parent node is later either eliminated (and attached to another
node) or visited (thus attached to the DFT tree). Cascaded
attachment ensures all eliminated nodes to be linked to the
traversal tree without loop.

Figure 3 illustrates node elimination in a network of 4
nodes, with trilatertion as individual sensor localization pro-
cedure for simplify and beacon transmission only at step
destinations. Their communication ranges are indicated by
dashed circles. The beacon node R starts from p and visits
p1, · · · , p8 in order in 8 steps. After R reaches p4, a becomes
localized because there exist 3 non-collinear reference points
p, p2, and p4 in its communication range. R keeps moving
toward the position estimate of a (shown as a small hollow dot
beside a) by the algorithm. At p5, it receives ‘hello’ message
from b, which is the node suggested by a to visit next.

Then R changes its target to b and decides to move to p6 (a
random decision). At the same time, a becomes localized due
to the three non-collinear reference locations p2, p3 andp5 and
then performs self-elimination since it has only one neighbor c.
When R arrives at p8, both b and c become localized because
of p5, p6, and p8. c has three neighbors, a, b and c. Because c
is eliminated and a and b are both visited, b eliminates itself.
After c is eliminated, b has no unvisited neighbor and thus
recommends to R its parent a, which is the root node, as
next target. Because a now has no unvisited neighbors either,
R stops moving and stays at p8. The final tree structure is
a − b − c − d with a being the root. The edge ab is defined
by DFT, while the rest are defined by node elimination.

2) Topology control: To minimize localization delay, R
should travel a shortest tour that covers all the sensors in the
network. This is in general the Euclidean Traveling Salesman
Problem (TSP), which is known to be NP-complete. An infor-
mal definition of the TSP problem is the following: given a
number of cities (i.e., sensors), find the shortest tour that visits
each city exactly once and returns to the starting city. It is well
known that DFT on Euclidean minimum spanning tree (MST)
(with repeated visit being removed from the sequence) defines
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Fig. 4. Beacon trajectory

a 2-approximate solution to Euclidean TSP [4]. Motivated
by this result, we naturally consider to run DREAMS on
Euclidean MST instead of the original network graph. In our
context, the repeated visits skipped for TSP approximation
have to be allowed because they may be necessary for R to
receive signal from unvisited sensors and continue DFT.

An MST is a subgraph connecting all the network nodes
with weighted edges that lead to minimum total weight. In
Euclidean MST, each edge is weighted by Euclidean distance
between the two end nodes. Sensors may distributedly (e.g., by
[1], [3]) construct an MST according to the mutual agreement
on RSS with each of its neighbors (which reflects their relative
distance, here no RSS-to-distance conversion is needed). The

resultant MST is thus called RSS MST. It is an approximation
of the Euclidean MST. MST construction is an expensive
global computation process. To preserve the localized nature of
DREAMS, we consider using a localized graph that is similar
to MST. A natural option is local MST (LMST) [10], which
contains MST as subgraph. To compute LMST, each node
computes the MST of its own neighborhood. An edge between
two nodes belongs to the LMST if and only if the two nodes
are in each other’s local MST.

In Figure 4, a network of 15 nodes (numbered 0-14) are
randomly deployed in a 100 × 100 area. Their transmission
radii are 25. The two sub-figures show the complete beacon
trajectory respectively over the original network graph and
LMST subgraph. The mobile beacon starts from the lower-
left corner and performs heuristic movement (all movement
steps are shown). The mobile beacon starts from the lower-
left corner; the first sensor discovered by it is shown as a dark
node. The destination of beacon movement steps is shown
indicated by a small dot. The number beside it is the ID
of the corresponding target sensor. If we count the number
of the small dots, we will find that LMST-based trajectory
involves 55 beacon steps while the non-LMST-based has 63
steps. From the figure, it is no clear what is the saving in the
length of beacon trajectory. A detailed performance evaluation
will presented in Sec. IV.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DREAMS
through simulation. Beacon mobility scheduling is not well
studied in the literature. DREAMS is the first localized dy-
namic deterministic solution designed for realistic settings
(without prior knowledge of sensory field and with RSS
measurement noise). It is independent of individual sensor
localization procedure; the static path method is the only
existing work that has this property. Hence we decide to
use fixed beacon trajectory for comparison. In particular, we
chose S-shape StaticPath as it is reported to have most stable
performance [19].

‘Hello’ message is regarded as built-in technique. Beacon
message is a common tool of all beacon-assisted localization
algorithm. Both are constant in size and propagate only
one hop. Given fixed transmission frequency, their resultant
communication cost is countable and thus out of our interest.
Our simulation study focuses on the following two aspects.

Localization performance: It is measured by failure rate
and localization error. The former is the average ratio of
the number of unlocalized sensors (due to insufficient beacon
signals) to the total number of sensors after the scheme
terminates; the latter is the average distance between the
estimated and the real positions of sensors.

Delay performance: It is measured by moving distance
and number of movement steps. The former is the total distance
that the beacon travels during the course of localization.
Movement steps are the steps in EMP. It is a metric only for
DREAMS, where there is waiting time between two successive
steps and thus additional delay.
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Fig. 5. Simulation results.

A. Simulation setup

We implemented StaticPath [19] and DREAMS in a custom
C simulator. We implemented the following four DREAMS
variants, which differ in the way that a visited sensor chooses
a neighbor to recommend to the beacon node as next target:

• DREAMS-Random:
choose a unvisited neighbor randomly;

• DREAMS-Closest:
choose a RSS-strongest unvisited neighbor;

• DREAMS-LMST-Random:
choose a unvisited LMST neighbor randomly;

• DREAMS-LMST-Closet:
choose a RSS-strongest unvisited LMST neighbor.

In heuristic movement, an EMP iteration takes a perpendicular
direction of the output direction of previous iteration as input
if the out direction is not NULL, and an random direction
otherwise. Because StaticPath and DREAMS are independent
of the individual sensor localization algorithm, we choose to
use trilateration (which requires three non-collinear beacon lo-
cations and pair-wise distance) for simplify in both algorithms.

Study with other localization algorithms is for future work.
For both StaticPath and DREAMS, a sliding-window tech-

nique is used in trilateration-based sensor localization for error
removal. Each sensor applies a sliding window of size 3 on
the received sequence of beacon signals. Using the signals
in the window, it computes its own location (if computable),
and compare the result with the average of previous results.
If the difference is less than a threshold, set to 0.5 in our
simulation, it localizes itself to the new average position. A
sensor is localized until its position estimate is satisfactorily
(with respect to the above threshold). In StaticPath, it is
localized to the latest average regardless.

In our simulation, we deployed a connected WSN of size
n randomly in a 1000 × 1000 square region. We varied n in
such a way that the average node degree ranges from 7 to 35.
A mobile beacon is randomly placed in the network. It has
constant speed 0.08 per simulated time unit. The beacon and
sensors have same communication range 100. RSS reading is
the summation of the true value and a zero-mean Gaussian
noise of variance equal to 20% of the true value. We use the
same ‘hello’ frequency and beacon frequency: one message
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per 1 + δ simulated time units, where δ is a random value
in range [−0.2,+0.2]. For each setting, we conducted 1000
simulation runs, each with a randomly generated sensor and
beacon distribution.

B. Simulation results

Fig. 5(a) plots the proportion of nodes that can not be
localized, i.e., that know less than 3 non-collinear beacon
locations, or that could not compute a reasonable result due
to RSS noise. As expected, all DREAMS variants present a
0% failure rate (i.e., full localization) since the beacon visits
every node. This is not the case for StaticPath for which
1.6% of nodes do not receive enough beacons and remain
unlocalized. Fig. 5(b) plots the mean localization error noticed.
One could observe that for every DREAMS variant, the error is
independent of the network density (node degree) and remains
very low (bellow 1, close to 0.5). This is due to the fact that
a beacon will move around a target node as long as it is
necessary to achieve this accuracy. This is not the case for
the StaticPath scheme for which the error is much higher and
increases with the number of nodes. This can be explained
by the fact that in this latter scheme, the beacon trajectory
depends neither of the node status (localized or not) nor of the
number of nodes, and thus nodes are more likely to receive
insufficient beacon messages for localization.

Fig. 5(c) shows the average moving distance. By StaticPath,
the beacon always travels the same distance whatever the
network size is. In DREAMS, the more sensors, the longer
the distance to travel. For DREAMS-Random, the distance
is the longest. This can be explained by the fact that a
sensor may recommend for the beacon to visit a neighbor far
from the current target. Since in LMST, edges are generally
shorter than in the original graph, the mean travel distance of
DREAMS-LMST-Random is smaller than DREAMS-Random.
In DREAMS-Closest and DREAMS-LMST-Closest, it is yet
smaller since a node always recommends its closest neighbor.
All DREAMS curves tend to be flat as node degree increases
because the higher the node density the more probably nodes
are localized without being targeted by the beacon. Fig. 5(d)
plots the total number of movement steps by the beacon, which
has the same trend as moving distance for the same reasons.

This is worth noting that delay performance greatly depends
on the localization accuracy required. The more accurate the
computed position, the more movement steps and the larger
moving distance involved. We chose to present only results
for a accuracy below 1 due to space limit.

V. CONCLUSIONS

While beacon mobility scheduling is long considered a great
difficulty in mobile-beacon assisted sensor localization, we
have shown in this paper that it can be surprisingly accom-
plished by using the sensor network as a navigation graph. We
proved that our solution, named DREAMS, guarantees full
localization when each beacon is able to measure pair-wise
distance accurately and showed through simulation that this
property preserves even when measurement noise is present.

DREAMS was presented without considering sensor fail-
ures, which may disconnect the navigation graph and lead
to localization failure. A simple fault-tolerant technique is
random walk. That is, when the beacon node fails to receive
instructions from sensors for its next movement step, it starts
to move randomly to find a unlocalized sensor. Once it finds
one, it will re-run DREAMS from there again. DREAMS is
currently designed for scenarios that there is a single mobile
beacon. In the future, we will extend it to multi-beacon scenar-
ios, where the main challenge is localized beacon coordination.
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