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Utilisation de la dominance pour l’identification
de familles protéiques

Résumé : L’identification des familles protéique est un challenge de la biologie
computationnelle qui nécessite des méthodes efficaces et robustes. Nous introduisons
ici le concept de dominance entre instance de comparaison de structures prot’eiques,
et proposons une nouvelle approche basée sur DAST (Distance Alignment Search
Tool), un algorithme exact auquel nous rajoutons des bornes. Les résultats
obtenus montrent que notre méthode résout correctement le problème de l’identification
des familles protéique sans avoir besoin de résoudre toutes les instances de
comparaison de structures.

Mots-clés : Comparaison de structure protéique, classification, bornes, dominance
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1 Introduction
The 3D structure of macro-molecules underpins all biological functions. Sim-
ilarities between protein structures may come from evolutionary relationships
[18, 12], and similar protein structures relate to similar functions. Thus, the
protein structure comparison is a key tool in structural biology, whose primary
goal is to understand function through structure. During the last decades, many
protein structure comparison approaches have been proposed, each aiming at
quantifying the intuitive notion of structural similarity. Most of the proposed
methods are either based on optimal rigid-body superimposition (like VAST[7]
or STRUCTAL[6]), whose computation is based on the least Root Mean Square
Deviation of residue coordinates (RMSDc) as first defined by Kabsch[10], or
on the comparison of the internal distances between the residues (like DALI[9]),
CMO[8] or DAST[14]). The main challenge in protein structure comparison is
to design efficient algorithms, since the comparison of two protein structures is
often NP-complete, as first shown in [13].

1.1 DAST
DAST (Distance-based Alignment Search Tool) is a protein structure compar-
ison method based on internal distances [14]. In DAST, two proteins p1 and
p2 are represented by their ordered sets of residues N1 and N2. The matching
between residues i ∈ N1 and k ∈ N2, denoted by i↔ k, is allowed only if i and
k come from the same kind of secondary structure (i.e. if either i and k both
come from α-helices, or both come from β-strands, or both come from loops).
By assumption, for any pair of residues i and j from the same protein we know
the euclidean distance between their α-carbons (denoted here by dij).

Definition 1. Pair (i, j) from p1 is compatible with pair (k, l) from p2 if and
only if: (1) i < j and k < l (order preserving) and ; (2) |dij − dkl| ≤ τ , where
τ is a given distance threshold (isometric relationship).

If (i, j) is compatible with (k, l) we are allowed to match (align) i ↔ k and
j ↔ l (i.e. they form a matching pair). An optimal structural alignment is given
by the longest sequence of matching pairs “i1 ↔ k1, i2 ↔ k2, . . . , it ↔ kt” in
which any two matching pairs are compatible. As shown in section 3.2, DAST is
equivalent to solving a maximum clique problem and is thus is an NP-Complete
problem [11]. Set ncr (number of common residues) to denote the length of the
optimal alignment between p1 and p2. Two similarity scores can be used:

SG
DAST (p1, p2) =

2× ncr
|N1|+ |N2|

and SL
DAST (p1, p2) =

ncr

min(|N1|, |N2|)
. (1)

The first score, SG
DAST (p1, p2), is normalized according to the mean of two

proteins and is oriented to detect global similarity between p1 and p2. The
second one, SL

DAST (p1, p2), is normalized according to the smallest between the
two proteins and is more suitable to detect local similarity.

Conceptually, DAST is inspired from the CMO approach which has been
largely studied in the literature [8, 4, 1]. Both approaches aim to maximize the
number of compatible matching pairs. However, the CMO compatibility does
not consider the isometric condition from definition 1. As a consequence, the
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underlying optimization problems, the behavior of the corresponding solvers, as
well as the characteristics of the provided alignments differ in both approaches.
The most interesting feature of DAST is that it always returns an alignment
(matching) of good quality, i.e. having a Root Mean Squared Deviation of in-
ternal distances (RMSDd) which is less or equal than the given threshold τ
(see [14]). This property is not guaranteed in CMO. On the other hand, a very
efficient exact algorithm for finding the longest augmented path (the optimiza-
tion problems in CMO) has been recently proposed in [1]. The associate solver,
A_purva, is significantly faster than the nowadays maximum cardinality clique
solvers. These issues will be discussed and illustrated in the computational
results section.

1.2 The protein family identification problem
The exponential growth of the number of known protein structures in the Pro-
tein Data Bank [3] over the past decade led to the problem of protein classifica-
tion. We mean here how to automatically insert new protein structures into an
already existing classified database such as CATH[17] or SCOP[2]. The prob-
lem of determining in which classes new structures belong, referred here as the
Protein Family Identification Problem , can be defined as follows.

Definition 2. Given a set of to-be-classified query protein structures Q = {q1,
q2, . . . ,qm}, a set of classified target protein structures P={p1, p2, . . . , pn}, and
a protein structure similarity function S : Q× P → R+, the Protein Family
Identification Problem (FIP) consists in classifying each query structure
qi ∈ Q in the class of it’s nearest neighbor NNi which is defined as NNi =
argmax
pj∈P

S(qi, pj).

There are computational pitfalls in the FIP . The number of similarity scores
S(qi, pj) that need to be computed is |Q| × |P|, where |P| can be very large
(there are currently 152920 classified protein structures in the expert classifica-
tion CATH). Moreover, computing a single similarity score is often equivalent to
solving a NP-hard problem (ex: DALI, DAST, CMO, VAST, etc...). Depending
on how these NP-hard problems are solved, two cases are possible. First, if
the solver is a heuristic (ex: DALI, VAST), then the similarity scores are only
approximated, and thus the resulting classification is not optimal (according to
the similarity function). Second, if the solver is exact (ex CMO, DAST), and
because of the NP-hardness of the problem, some instances cannot be optimally
solved within reasonable time, leading to either sub-optimal or to missing sim-
ilarity scores, both implying that the obtained classification is not optimal, or
cannot be computed if too many similarity scores are missing.

In this paper, we propose a notion of dominance between the protein struc-
ture comparison instances that allows the computation of optimal protein struc-
ture classifications without optimally solving all the comparison instances, and
thus reduces the effect of the NP-Hardness of the similarity score. As presented
in section 2, using dominance supposes to compute both upper and lower bound
on the similarity score. In section 3.3, we propose an efficient bounding strategy
for DAST.

RR n° 7688
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2 Dominance
The idea behind the dominance is that in FIP problem, given a query pro-
tein structure q ∈ Q and a classified set of target protein structures P =
{p1, p2, . . . , pn}, we are interested only in finding the nearest neighbor of q in
P, i.e. NNq = argmax

pj∈P
S(q, pj). If a protein structure pj can be proved not

to be NNq before S(q, pj) is optimally computed, then spending more time on
proceeding S(q, pj) is useless.

Let us suppose that the solving process can be stopped with a time limit
t, and can then return both a lower-bound Smin(q, pi) and an upper-bound
Smax(q, pi) on the similarity score S(q, pi), i.e Smin(q, pi)≤ S(q, pi)≤ Smax(q, pi)
(if the instance is optimally solved, then Smin(q, pi) = S(q, pi) = Smax(q, pi)).

Definition 3. Given a query q ∈ Q and two target protein structures p1 ∈ P
and p2 ∈ P, the instance (q, p2) dominates the instance (q, p1) if Smin(q, p2) ≥
Smax(q, p1).

If the instance (q, p2) dominates the instance (q, p1), then S(q, p2) ≥ S(q, p1).
Thus, p1 is not the nearest neighbor of q and there is no need to continue
computing S(q, p1). Moreover, if one instance (q, pi) dominates all the other
instances (q, pj), pj ∈ P, then NNq = pi, and the entire procedure can be
stopped (including the instance (q, pi)).

From now on, we use the dominances to fasten the FIP as follows.

1. All instances (qi, pj), qi ∈ Q, pj ∈ P are put in a queue, and a time limit
argument t is set to a small value.

2. For each instances (qi, pj) in the queue, the similarity S(qi, pj) is evaluated
(by computing Smin(qi, pj) and Smax(qi, pj)) within the time limit t.

3. All dominated instances are removed from the queue. If an instance (qi, pj)
dominates all the other instances (qi, pk), pk ∈ P, then the nearest neigh-
bor of qi is set to pj , and the instance (qi, pj) is also removed from the
queue.

4. If the queue is empty, then the nearest neighbors of all the queries have
been found and the FIP is optimally solved. Otherwise, the time limit t
is increased, and steps 2 to 4 are repeated until the queue is empty.

3 Modifying DAST for using dominance
Using dominances supposes that the solution process can return upper and
lower-bounds on the similarity score. Unfortunately, as presented in [14], DAST
does not possess such features. This section presents how these bounds were
added into DAST. First, in sections 3.2, we briefly recall DAST principle. Then,
in section 3.3, we present our bounding strategy.

3.1 Notation and definitions
Let us first introduce some notations and definitions coming from [1] and [14].
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Definition 4. A m× n alignment graph G = (V,E) is a graph in which the
vertex set V is depicted by a (m-rows) × (n-columns) array T , where each cell
T [i][k] contains at most one vertex i.k from V (note that for both arrays and
vertices, the first index stands for the row number, and the second for the column
number). Two vertices i.k and j.l can be connected by an edge (i.k, j.l) ∈ E only
if i < j and k < l. An example of such alignment graph is given in the figure
1:Right.

Definition 5. Given graph G = (V,E), a clique is a subset S of V such that
for any two vertices u ∈ S and v ∈ S, u 6= v, u and v are connected by an edge
(u, v) in E.

Definition 6. The maximum clique problem consists in finding in a graph
G = V,E a largest (in terms of vertices) clique, denoted by MCC(G). The
maximum clique problem is one of the first shown to be NP-complete [11].

In a n ×m alignment graph G = (V,E), the subset of V restricted to the
vertices in the rows j > i and in the columns l > k is denoted by V i.k. Similarly,
V̂ i.k is the subset of V restricted to the vertices in the rows j, 0 ≤ j ≤ i and
in the columns l, 0 ≤ l ≤ k. The subgraph of G induced by the vertices in V i.k

is denoted by Gi.k, and the subgraph of G induced by the vertices in V̂ i.k is
denoted by Ĝi.k. The vertex j.l is a successor of the vertex i.k if i < j, k < l
and edge (i.k, j.l) is in E, and the set of successors of a vertex i.k is denoted
by Γ+(i.k). The vertex a.b is a predecessor of the vertex i.k if a < i, b < k and
edge (a.b, i.k) is in E, and the set of predecessor of a vertex i.k is denoted by
Γ−(i.k). The maximum clique in a graph G is denoted by MCC(G), and its
cardinality is denoted by |MCC(G)|. An upper-bound on |MCC(G)| is denoted
by |MCC(G)|.

Definition 7. An increasing subset of vertices in an alignment graph G =
{V,E} is an ordered subset {i1.k1, i2.k2, . . ., it.kt } of V , such that ∀j ∈ [1, t−1],
ij < ij+1, kj < kj+1. LIS(G) is the longest, in terms of vertices, increasing
subset of vertices of G.

Definition 8. An increasing path in an alignment G = {V,E} is an in-
creasing subset of vertex {i1.k1, i2.k2, . . ., it.kt} such that ∀j ∈ [1, t − 1],
(ij .kj , ij+1.kj+1) ∈ E. The longest, in terms of vertices, increasing path in
G is denoted by LIP (G)

Lemma 1: |MCC(G)| ≤ |LIP (G)| ≤ |LIS(G)|. Proof: Since any
two vertices in a clique are adjacent, definition 4 implies that a clique in G is
both an increasing subset of vertices and an increasing path, thus |MCC(G)| ≤
|LIP (G)|. Moreover, LIP (G) is by definition an increasing subset of vertices,
which implies that |LIP (G)| ≤ |LIS(G)|.

3.2 Maximum clique formulation of DAST
DAST is rephrased as a maximum clique problem in an alignment graph as
follows. Let G be a |N1| × |N2| alignment graph, where each row corresponds
to a residue of N1 and each column corresponds to a residue of N2. A vertex
i.k is in V only if residues i ∈ N1 and k ∈ N2 both come from the same kind of
secondary structure (i.e. if matching i↔ k is possible). An edge (i.k, j.l) is in E
if and only if (i) i < j and k < l, for order preserving, and (ii) if |dij − dkl| ≤ τ .
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Figure 1: Left: An optimal matching (represented by the arrows) between pro-
tein 1 and 2, when using a distance threshold of 1Å. Right: the corresponding
maximum clique in the |N1| × |N2| alignment graph.

As illustrated in figure 1, an optimal matching between two protein struc-
tures p1 and p2 corresponds to a maximum clique in G. For example the max-
imum clique {(1.1), (2.2), (3.3)} in figure 1:Right corresponds to the optimal
matching between residues (1, 2, 3) from p1 and residues (1, 2, 3) from p2.

3.3 Bounding strategy
Both DAST similarity scores 1 use ncr, the number of common residues, which
is equal to |MCC(G)|. Thus, bounding DAST score is equivalent to provide a
lower and upper-bound on the cardinality of the maximum clique in G, when
the time limit t is reached. The case of the lower-bound is trivial, since the best
clique found so far, Best, is by definition a lower-bound of ncr. Computing an
efficient upper-bound on |MCC(G)| is less straightforward.

3.3.1 Intermediate state of execution

As explained in [14], the maximum clique solver of DAST visits the vertices of
V in decreasing order of column (first) and decreasing order of row (second).
For each visited vertex i.k, the clique solver computes (or upper-bounds) the
maximum clique in Gi.k. If a clique larger than the current best one (Best)
is found, then Best is updated. Finally, an array C is used to store, in each
entry C[i][k], the upper-estimated size of the maximum clique in Gi.k. This
array is later used to fasten the maximum clique computation starting from a
vertex having lower row and column indexes, and this implies that computation
of C[i][k] requires that C[i + 1][j], C[i + 1][j + 1] and C[i][j + 1] are already
computed. Since the evaluation of a given cell T [i][k] (i.e. the computation of
C[i][k]) only occurs after C[i + 1][j], C[i + 1][j + 1] and C[i][j + 1] have been
computed, an intermediate state of execution of DAST can be represented as in
figure 2. In such intermediate state, the cells of T can be split in the following
way.

• Cells in which C[i][k] has already been evaluated will be referred to as
evaluated cells. They correspond to the horizontally striped area in Figure
2:Left. The current best clique, Best, has been found in this set.
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Figure 2: Left: An intermediate state of DAST computation; Right: Gi.k
L

• Cells for which C[i][k] have not yet been evaluated will be referred to as
unevaluated cells.

• Unevaluated cells which are adjacent to an evaluated cell (either side-wise
or diagonally) will be referred to as boundary cells, and are shown in black
in Figure 2:Left. The unevaluated cells for which C[i][k] can be computed
(i.e. for which C[i + 1][j], C[i + 1][j + 1] and C[i][j + 1] are already
computed), belong by definition to the subset of the boundary cells, and
are marked with a white square in Figure 2:Left. Finally, unevaluated
cells that are not boundary cells are shown as vertically striped.

3.3.2 Upper bounding strategy

It is important to remember that in an intermediate state of execution, even
if the possible contribution of a given vertex i.k into a maximum clique of G
is completely unknown if i.k lies in the unevaluated region, the contribution of
i.k in a maximum clique in Gi.k is tightly estimated by C[i][k] if the vertex lies
in the evaluated region. Here, we propose an upper-bound on |MCC(G)| that
takes advantages of this property.

We define Gi.k
L , hereafter referred to as local induced subgraph, as the sub-

graph of G induced by the vertex set V i.k
L = V i+1.k+1 ∪ V̂ i.k. Figure 2:Right,

describes Gi.k
L where i.k is the black square.

Lemma 2: For any unevaluated cell T [i][k] and any evaluated cell T [j][l]
such that i < j and k < l, there exists a boundary cell T [p][q] such that i ≤ p < j
and k ≤ q < l.

Proof: Consider the rectangle R ⊂ T induced by cells T [i][k] and T [j][l]
(R = {T [a][b] such that i ≤ a ≤ j and k ≤ b ≤ l}). By definition, R contains
both unevaluated (at least T [i][k]) and evaluated cells (at least T [j][l]), so there
exists an unevaluated cell T [p][q] ∈ R, which is adjacent to an evaluated cell,
and since T [p][q] ∈ R, then i ≤ p < j and k ≤ q < l.

Lemma 3: MCC(G) = max
i.k|T [i][k] is boundary

MCC(Gi.k
L ), and thus

MCC(G) = max
i.k|T [i][k] is boundary

MCC(Gi.k
L )

Proof: Proving Lemma 3 is equivalent to proving that the maximum clique
lies in one of the local induced subgraphs of G that is induced by a boundary
cell. Toward this goal, we will assume that we are in an intermediate state of
execution, which implies that T [1][1] is an unevaluated cell and that T [m][n]

RR n° 7688
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has been evaluated (where m = number of rows in G, n = number of columns
in G).

Any clique K in an alignment graph G is an increasing subset of vertices,
namely, K = {i1.k1, i2.k2, . . . , i|K|.k|K|}, where il < il+1 and kl < kl+1 for
all 1 ≤ l < |K|. To prove that K lies completely inside one locally induced
subgraph, we instead prove that K ′ = {i0.k0, i1.k1, . . . , i|K|.k|K|, i|K|+1.k|K|+1}
lies completely inside one locally induced subgraph, where i0.k0 = 1.1 and
i|K|+1.k|K|+1 = m.n. Since K ′ intersects with both the evaluated and the
unevaluated region, there exists l, such that vertices i0.k0, i1.k1, . . . , il.kl lie in
the unevaluated region and vertices il+1.kl+1, . . . , i|K|.k|K|, i|K|+1.k|K|+1 lie in
the evaluated region. By invoking Lemma 2 with i = il, k = kl, j = il+1, l =
kl+1, we obtain that there exists a boundary cell T [p][q] such that il ≤ p < il+1

and kl ≤ q < kl+1. Thus, K ′ and hence the clique K lies entirely in the local
induced subgraph induced by the boundary cell T [p][q].

Since any clique in Gi.k
L implicitly defines a clique over V̂ i.k (that is in the

unevaluated region) and another clique over V i+1.k+1 (that is in the evaluated
region), MCC(Gi.k

L ) ≤ MCC(Ĝi.k) + MCC(Gi+1.k+1). Then, |MCC(G)| is
upper-bounded by:

MCC(G) = max
i.k|T [i][k] is boundary

MCC(Ĝi.k) +MCC(Gi+1.k+1), (2)

whereMCC(Gi+1.k+1) is tightly estimated by C[i+1][k+1], and whereMCC(Ĝi.k)
is estimated in a preprocessing step by using the longest increasing path in Ĝi.k

(i.e. MCC(Ĝi.k) = |LIP (Ĝi.k)|).
Computing all |LIP (Ĝi.k)|) can be done in O(n2×m2) time using the algo-

rithm presented in [14]. Moreover, there are no more than n+m boundary cells
in T . The global upper-boundMCC(G) can be either computed once when the
time limit is attained, or also can be maintained at each execution step for the
need of branch and bounds strategy.

4 Computational Results
All presented results were obtained on a cluster under Linux RedHat Enterprise
5 architecture 64 Bits, 64 GB RAM, 2.8GHZ Intel Xeon. The efficiency of the
dominance strategy for solving FIP was evaluated through two benchmarks. We
tackled the FIP problem using the following protocol: any of the proteins has
been considered as a query, then removed from the dataset and compared with
the remaining proteins in order to find its family based on its nearest neighbor.

First, we used Skolnick set, described in [4]. It is a popular benchmark
that contains 40 protein domains having from 97 to 256 residues and classi-
fied in SCOP (v1.73) into five families. The second benchmark comes from 3D
SHape Recognition Contest 2010 (SHREC’10) [16] and consists of 50 query pro-
tein structures and 1000 target protein structures, all classified into 100 super-
families in the CATH classification. The goal of this contest was to identify the
family of each query. Identifying the 50 queries implies solving 50000 compari-
son instances. The best results have been obtained by the structure comparison
tool A_purva [1]. We will us it to compare with the results of DAST.

RR n° 7688
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DASTa DASTb

Step T(s) #in #sol_in #uns_ins #ins #dom_ins #ins_left #ass_q
1 2 1560 506 1054 1560 1383 137 29/40
2 300 1054 767 287 137 122 15 37/40
3 3600 287 266 21 15 15 0 40/40

Table 1: Three steps of the FIP computation over the Skolnick set. We use
the following abbreviations: # ins –number of instances proceeded for the given
lapse of time T (in seconds); # sol_ins –number of solved instances; # uns_ins
–number of unsolved (unclassified) instances; # dom_ins –number of dominated
instances when using DASTb and dominance; # ins_left –number of instances
to reload; # ass_q –number of assigned (classified) queries.

4.1 DAST on Skolnick set
4.1.1 Running time comparison

Computing the upper-bound at each intermediate state slowdowns the solving
process. DASTa (without bounds computation) solves more instances than
DASTb (with upper-bounds computation) when both methods are given the
same distance threshold and the same time limit. For example, for a threshold
of 3 Å and when the running time was bounded by 2 seconds per instance
DASTa solved 506 instances, versus 338 for DASTb (i.e. DASTa is about 1.5
times faster than DASTb). However, as we will see below, the advantages of
DASTb for solving FIP using the dominances recompense notably this slowdown.

4.1.2 Solving FIP without dominance

Classifying all proteins from the Skolnick set without dominances (i.e. using
DASTa) requires solving 1560 instances. As shown in Table 1 when the running
time was bounded by 2 seconds per instance, 1054 instances remained unsolved
and none of the query could be assigned. Table 1 presents the evolution of the
number of solved instances by DASTa with different time limits. Even with the
larger time limit that we used (one hour per instance), 21 instances remained
unsolved. The whole computation time was about 15 days, and all of the 29
queries that could be classified were correctly classified.

4.1.3 Solving FIP with dominance

As mentioned above, when the execution time was bounded by two seconds per
instance, DASTb solved only 338 over 1560 instances. However, by applying
the dominance relation, 29 queries where correctly assigned into their family by
the nearest neighbor measure. Only 137 instances required further processing in
order to complete the analysis. These instances were then reloaded with a larger
time limit and this process was repeated until the family identification was fully
completed. Table 1 details the 3 steps that were needed for Skolnick set. The
entire computation time was about 5 hours and 45 minutes. So we observe that
DASTb is significantly faster than DASTa when solving FIP. Moreover, using
the dominance relations guarantees that the exact nearest neighbor is found
without solving all instances, which is not true for DASTa, neither for any
algorithm that does not provide bounds.
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4.2 DASTb versus A_purva on SHREC’10 set
A_purva is an exact solver based on Contact Map Overlap maximization (CMO)
similarity measure [1, 15]1. It has been shown to be both efficient (notably faster
than the previous exact algorithms), and reliable (providing accurate upper and
lower bounds of the solution). A_purva is based on an integer programming
formulation of CMO, and it converges to the optimal solution using a branch
and bound strategy. At each node, A_purva provides two numbers derived
from a Lagrangian relaxation: a lowerbound LB and an upperbound UB of the
maximum number of common contacts (ncc). When an instance is optimally
solved, the relation LB = UB holds. Otherwise, UB > LB and the so called
relative gap value RG = (UB−LB)/UB gives the precision of the results. This
property is very useful in the context of large-scale database comparisons where
the execution time is usually bounded. The above properties make A_purva
applicable for large-scale protein comparison and classification. Since it is an ex-
act solver, it is often used to evaluate the quality of various heuristic approaches
[5, 19].

In this section, we compare DASTb with A_purva when solving FIP on
SHREC’10 set. Both tools provide the best local matching (alignment) between
proteins p1 and p2 in their corresponding feasible sets (compatible matching
pairs), and according to their specific objective functions–maximum number of
isometric pairs of amino-acids for DAST and, respectively, maximum number of
common contacts for A_purva. On SHREC’10 dataset DASTb was more precise
than A_purva. This can be explained by the isometric constraint in definition
1. Table 2 presents the different steps of this process. A_purva assigned all the
50 queries, 46 of them were correctly predicted according to the CATH classifi-
cation. However, A_purva failed for the queries 1tteA02, 1wwjA00, 1jftA01 and
3bioA02. DASTb also assigned 50 queries and correctly predicted 49 of them
(DAST failed for 3bioA02). Furthermore, A_purva was significantly faster than
DASTb (the corresponding total running time on SHREC’10 benchmark dataset
was 28 hours versus 60 days).

Neither of the methods correctly classified the query 3bioA02. A_purva
and DAST found two nearest neighbors from different families with similarity
scores of 0.6059 and 0.2 respectively. These low values of DAST similarity score
indicate that there is no true nearest neighbor for it in SHREC’10 data set. We
contacted an expert from the domain2 who confirmed the CATH classification
of 3bioA02 and suggested us to study its similarity with protein 1f06. As a
consequence, we observed that adding the domain 1f06A02 to SHREC’10 dataset
allows to assign the query 3bioA02 correctly (i.e. SHREC’10 data set is not
enough representative).

Figure 3 visualizes the alignments provided by A_purva and DAST for the
query 1tteA02 which was wrongly predicted by A_purva but was correctly
identified by DAST with 1ixrB03 as its nearest neighbor. Aiming to maximize
the number of common contacts, A_purva matched non-isometric residues in
the middle loop and at both ends. On the contrary, DAST matched closed sub-
structures only (here the three helices of 1tteA02) and ignored the middle loop
and extremities. For comparison purpose we also present here the alignment

1 A_purva is available at http://apurva.genouest.org
2Alexey Murzin from the Laboratory of Molecular Biology, Cambridge
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Method Step Time limit (s) #Instances #Dominated #Left #Assigned
queries

DASTb 1 2 50000 41399 8551 12/50
2 300 8551 7894 619 19/50
3 3600 619 548 40 45/50
4 7200 40 12 28 46/50
5 60000 28 28 0 50/50

A_purva 1 2 50000 49721 229 43/50
2 10 229 227 2 48/50
3 50 2 2 0 50/50

Table 2: Number of dominated instances, of instances to reload and of assigned
queries at each of the three steps of the FIP computation over the SHREC’10
set when using dominance, for both DASTb and A_purva

A_purva DAST TM-align

len_align 53 43 45
cRMSD 5.35 2.37 2.71
TM-score 0.43 0.51 0.53

Figure 3: The instance 1ixrB03-1tteA02 aligned by A_purva (left), DAST (cen-
ter) and TM-align (right). The parameters for DAST were τ = 5.0Å and sse1
(filter 1). The length of the associated alignment, (len_align), as well as the
corresponding RMSDc and TM-score are given. We observe that A_purva
matches as much as possible residues, while DAST and TM-align focuse on the
local similar structures only.

given by TM-align–well know protein structure comparator [20]. The TM-align
alignment is very similar the DAST alignment.

Towards a combined tool These results led us to propose a combined strat-
egy for protein family identification. It uses the normalized RMSDc, defined as
NRMSDc = RMSDc

length(Query) . First we ran A_purva on SHREC’10 set and com-

puted the corresponding NRMSDc values. We observed that they were higher
than 0.1 only for four instances (query,NN)–an indication for a strong deviation
between the corresponding structures. For all other instances the NRMSDc
value was obviously smaller, less than 0.05. We also realized that these four
instances correspond to the four wrongly predicted by A_purva couples (query-
NN). Then DASTb was executed for these four queries only (it required com-
puting new 4000 instances). This combined strategy achieved an accuracy of
50/50 correctly assigned queries (better than any of DAST or A_purva results)
but for much less computational time than DAST running time.
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5 Conclusion and future work
In this paper we enrich the local structure comparator tool DAST with bounds.
This permits to use it in the context of a new dominance relation. The last one is
very useful for the protein family identification problem since avoids solving all
instances. Moreover, this relation is applicable to any NP-complete comparison
methods and can be used for solving the FIP or for clustering large sets of
protein structures.
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