A. , T. , and ?. ·?v, V d vector spaces of dimension n 1 +1, . . . , n d +1 respectively. Output: Either T, or the rank of T

T. Write, Flattening of V 1 ? · · · ? V d . (2) Compute all the 2 × 2 minors of V J1 ? V J2 for any (J 1 , J 2 )-Flattening of V 1 ? · · · ? V d . If all of them are equal to 0, otherwise go to Step

A. L. De-almeida, G. Favier, and J. C. Mota, PARAFAC-based unified tensor modeling for wireless communication systems with application to blind multiuser equalization, Signal Processing, vol.87, issue.2, pp.337-351, 2007.
DOI : 10.1016/j.sigpro.2005.12.014

URL : https://hal.archives-ouvertes.fr/hal-00417636

E. Ballico and A. Bernardi, Decomposition of homogeneous polynomials with low rank, Mathematische Zeitschrift, vol.525, issue.1, 2011.
DOI : 10.1007/s00209-011-0907-6

URL : https://hal.archives-ouvertes.fr/hal-00645978

P. Bartho, C. Curto, A. Luczak, S. Marguet, and K. D. Harris, Population coding of tone stimuli in auditory cortex: dynamic rate vector analysis, European Journal of Neuroscience, vol.12, issue.9, pp.30-1767, 2009.
DOI : 10.1111/j.1460-9568.2009.06954.x

A. Bernardi, J. Brachat, P. Comon, and B. Mourrain, Multihomogeneous polynomial decomposition using moment matrices, Proceedings of the 36th international symposium on Symbolic and algebraic computation, ISSAC '11, pp.35-42, 2011.
DOI : 10.1145/1993886.1993898

URL : https://hal.archives-ouvertes.fr/inria-00638837

A. Bernardi, A. Gimigliano, and M. Idà, Computing symmetric rank for symmetric tensors, Journal of Symbolic Computation, vol.46, issue.1, pp.34-55, 2011.
DOI : 10.1016/j.jsc.2010.08.001

URL : https://hal.archives-ouvertes.fr/hal-00645973

J. Brachat, P. Comon, B. Mourrain, and E. P. Tsigaridas, Symmetric tensor decomposition, Linear Algebra and its Applications, vol.433, issue.11-12, pp.851-1872, 2010.
DOI : 10.1016/j.laa.2010.06.046

URL : https://hal.archives-ouvertes.fr/inria-00355713

W. Bruno, G. Rota, and D. Torney, Probability set functions, Annals of Combinatorics, vol.11, issue.1, pp.13-25, 1999.
DOI : 10.1007/BF01609871

J. Buczy´nskibuczy´nski, A. Ginensky, and J. M. Landsberg, Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture

J. Buczy´nskibuczy´nski and J. M. Landsberg, Ranks of tensors and a generalization of secant varieties

E. Carlini, Reducing the number of variables of a polynomial, Algebraic Geometry and Geometric Modeling, pp.237-247, 2005.
DOI : 10.1007/978-3-540-33275-6_15

G. Comas and M. Seiguer, On the Rank of a Binary Form, Foundations of Computational Mathematics, vol.117, issue.2, pp.65-78, 2011.
DOI : 10.1007/s10208-010-9077-x

P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric Tensors and Symmetric Tensor Rank, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.3, pp.1254-1279, 2008.
DOI : 10.1137/060661569

URL : https://hal.archives-ouvertes.fr/hal-00327599

P. Comon, M. Sorensen, and E. Tsigaridas, Decomposing tensors with structured matrix factors reduces to rank-1 approximations, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.14-19, 2010.
DOI : 10.1109/ICASSP.2010.5495816

URL : https://hal.archives-ouvertes.fr/hal-00490248

B. Georgi and A. Schliep, Context-specific independence mixture modeling for positional weight matrices, Bioinformatics, vol.22, issue.14, pp.166-173, 2006.
DOI : 10.1093/bioinformatics/btl249

J. M. Landsberg, Tensors: Geometry and Applications. book in preparation, 2010.
DOI : 10.1090/gsm/128

J. M. Landsberg and L. , On the Ideals of Secant Varieties of Segre Varieties, Foundations of Computational Mathematics, vol.4, issue.4, pp.397-422, 2004.
DOI : 10.1007/s10208-003-0115-9

J. M. Landsberg and J. Weyman, On the ideals and singularities of secant varieties of Segre varieties, Bulletin of the London Mathematical Society, vol.39, issue.4, pp.685-697, 2007.
DOI : 10.1112/blms/bdm049

P. Mccullagh, Tensor Methods in Statistics, Monographs on Statistics and Applied Probability, 1987.

D. Nion and L. De-lathauwer, A Block Component Model-Based Blind DS-CDMA Receiver, IEEE Transactions on Signal Processing, vol.56, issue.11, pp.5567-5579, 2008.
DOI : 10.1109/TSP.2008.926982

L. Oeding, Report on Geometry and representation theory of tensors for computer science, statistics and other areas

L. Oeding, Set-theoretic defining equations of the tangential variety of the Segre variety, Journal of Pure and Applied Algebra, vol.215, issue.6, pp.1516-1527, 2011.
DOI : 10.1016/j.jpaa.2010.09.009

B. Sturmfels and P. Zwiernik, Binary Cumulant Varieties, Annals of Combinatorics, vol.25, issue.1
DOI : 10.1007/s00026-012-0174-1

URL : http://arxiv.org/abs/1103.0153

J. J. Sylvester, Sur une extension d'un théorème de Clebsh relatif aux courbes duquatrì eme degré, Comptes Rendus, Math. Acad. Sci. Paris, vol.102, pp.1532-1534, 1886.

D. C. Torney, Binary Cumulants, Advances in Applied Mathematics, vol.25, issue.1, pp.34-40, 2000.
DOI : 10.1006/aama.2000.0692