
HAL Id: inria-00610420
https://hal.inria.fr/inria-00610420

Submitted on 22 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logics and Automata for Totally Ordered Trees
Marco Kuhlmann, Joachim Niehren

To cite this version:
Marco Kuhlmann, Joachim Niehren. Logics and Automata for Totally Ordered Trees. 19th Inter-
national Conference on Rewriting Techniques and Applications, Jun 2008, Linz, Austria. Springer
Verlag, 5117, pp.217-231, 2008, Lecture Notes in Computer Science. <inria-00610420>

https://hal.inria.fr/inria-00610420
https://hal.archives-ouvertes.fr

Logics and Automata for Totally Ordered Trees

Marco Kuhlmann1 and Joachim Niehren2

1 Uppsala University, Sweden
2 INRIA, Lille, France

Abstract A totally ordered tree is a tree equipped with an additional
total order on its nodes. It provides a formal model for data that comes
with both a hierarchical and a sequential structure; one example for
such data are natural language sentences, where a sequential structure is
given by word order, and a hierarchical structure is given by grammatical
relations between words. In this paper, we study monadic second-order
logic (MSO) for totally ordered terms. We show that the MSO satisfiability
problem of unrestricted structures is undecidable, but give a decision
procedure for practically relevant sub-classes, based on tree automata.

1 Introduction

A totally ordered tree is a tree equipped with an additional total order on its
nodes. It provides a formal model for data that comes with both a hierarchical
and a sequential structure. Depending on the application, the two structural
aspects may be more or less dependent on each other: the total order may be
obtained by a traversal of the tree, defined by a logic formula from tree relations,
or completely independent.

The research reported in this paper is motivated by an application of to-
tally ordered trees in computational linguistics, where they are used as formal
models for dependency structures. A dependency structure is a representation
of the syntactic structure of a natural-language sentence in terms of word-
to-word dependencies, such as the dependency between a verb and its direct
object. Such dependencies impose a tree-shaped hierarchical structure onto
the words, while word order imposes a sequential structure. An example for
a dependency structure is given in Fig. 1. Dependency-based representations
have a long history in descriptive linguistics. Recently, they have received a lot
of interest for many computational tasks, such as information extraction [1],

John

saw

a

tree

today

that

was

very

old

1 2 3 4 5 6 7 8 9

Figure 1: A dependency structure

machine translation [2], and, most
prominently, data-driven parsing [3].

In this paper, we study monadic
second-order logic (MSO) as a descrip-
tion language for totally ordered terms
(tots). Dependency structures can be
understood as special cases of tots,
where the sibling order is induced by
the total order. Monadic second-order

logic is generally useful in order to express properties of graphs or trees [4,5,6,7].
Here we are particularly interested in lifting Doner, Thatcher, and Wright’s
theorem on the equivalent expressiveness of MSO and tree automata for finite
trees to tots [4,8]. This theorem has first been proved for ground terms, and got
extended to various kinds of trees and graphs of bounded tree width [9,10,7].

The new problem that we are faced with, is to deal with the addition of a total
order to a finite term structure. The easy cases of this problem are those where
the total order is MSO-definable from the term structure: MSO for ground terms
is decidable, and thus MSO for ground terms with MSO-defined total orders is
decidable as well. In the first part of the paper, we prove that MSO for general
tots is not decidable. We show this by a reduction of the MSO satisfiability
problem for grids; this problem is well-known to be undecidable (while first-order
logic of grids can encoded into Presburger arithmetics). In the second part of
the paper, we restrict the classes of models of MSO formulas to sets of tots
with bounded gap-degree [11]. This means that the descendant sets of nodes are
segmented into a bounded number of intervals in the total order. Our main
contribution is the result that MSO satisfiablity of sets of tots with bounded
gap-degree is decidable. In order to establish this, we introduce an algebraization
for these sets. This leads us to a notion of tree automaton for gap-bounded sets
of tots, which we show to have the same expressiveness as MSO.

Related work. Our algebraic perspective on automata goes back to the work
of Mezei and Wright from the 1960s [16]. It was generalized by Courcelle [17],
and applied to many kinds of trees, including unranked sibling-ordered trees as
they appear in the context of XML [18]. Courcelle has proposed two different
algebraizations for graphs [7] for which MSO can be reduced to finite automata.
Graphs of bounded tree or clique width belong to these algebras, so that MSO
satisfiability is decidable for them.

Dependency structures can be used to quantify the generative capacity of
many grammar formalisms for natural language [12]: they are more informative
than strings, but less formalism-specific than parse trees. The formal properties
of dependency structures and sets of such structures have been studied only
recently [12]. Automata for these structures define a notion of regularity. For
regular sets of dependency structures, there is a direct relation between the
gap-degree measure and string-generative capacity. In particular, regular sets of
dependency structures with gap-degree 0 correspond exactly to the context-free
languages, and regular sets of structures with gap-degree at most 1 and an
additional property called well-nestedness give the string languages generated
by Lexicalized Tree Adjoining Grammars (TAGs). More generally, every string
language obtained from a regular set of dependency structures with bounded
gap-degree is semilinear and can be recognized in polynomial time. Without gap
restrictions, parsing quickly becomes NP-hard [13]. Recent work has shown that
most dependency structures required for the analysis of natural language have a
small gap-degree [15]. However, not all natural languages can be described by
sets of dependency structures with bounded gap-degree; counterexamples have
been given for Czech [14].

a

b c

d e

ε 1 11 2 21

(a) preorder

a

b

e

d

c

ε 1 21 2 11

(b) swapping c and e

a

b

d e

c

ε 1 2 21 11

(c) swapping c and d, e

Figure 2: Three total orders for the tree a(b(c), d(e))

2 Totally Ordered Terms

We start by introducing totally ordered terms, and MSO for their description.
We make use of the following auxiliary notions and notations: The set of positive
natural numbers is denoted by N. Given some n ∈ N, we write [n] for the set
{1, . . . , n}. A signature Σ is a non-empty, finite set of function symbols σ, each
equipped with a fixed, non-negative arity, denoted by ar(σ). The set of (ground)
terms over Σ is the smallest set TΣ such that if σ is a symbol of arity m and for
each i ∈ [m], ti ∈ TΣ , then σ(t1, . . . tm) ∈ TΣ . The set of nodes of a term t ∈ TΣ

is a set of addresses in N
∗: the root node of t is addressed by the empty word ε,

and the ith child of the node π is addressed by the extended address πi:

nod(σ(t1, . . . , tm)) = {ε} ∪ { iπ ∈ N
∗ | i ∈ [m], π ∈ nod(ti) } .

A linearization of a finite set A is a word in A∗ in which each element of A occurs
exactly once. We note that the set of linearizations of A is isomorphic to the set
of total orders on A in an obvious way.

Definition 1. A totally ordered term (tot) over Σ is a pair τ = 〈t, w〉 where
t ∈ TΣ is a term, and w is a linearization of nod(t).

The set of all tots over Σ is denoted by TOTΣ . Three examples for tots are
visualized in Fig. 2; each of them provides a different linearization for the same
term a(b(c), d(e)). Solid edges depict the term structure, dotted lines project
nodes to their position in the linearization. In Fig. 2a, the nodes of a(b(c), d(e))
are ordered by the preorder traversal of the underlying term structure. The two
examples in Fig. 2b and 2c are derived by swapping c with e and d, e, respectively.

In the following, we often identify a term t ∈ TΣ with a relational structure
〈nod(t) ; (:σ)σ∈Σ〉: for each m-ary symbol σ ∈ Σ, this structure provides a
labelling relation :σ with arity m + 1. Given a node π ∈ nod(t), labelling
π :σ(π1, . . . , πn) holds if and only if π is labelled by σ in t. A tot τ = (t, w) can
be viewed as a relational structure that extends the structure corresponding to t
by the total order � that is represented by the linearization w.

Monadic second-order logic (MSO) for tots is defined as usual. Let Vars be a
set that contains infinitely many node variables x, y, z ∈ Vars , and infinitely many
set variables X,Y, Z ∈ Vars. The formulas of MSO for tots are the following,
where σ ∈ Σ is a function symbol of arity m:

φ, φ′ ::= x :σ(x1, . . . , xm) | x � y | x ∈ X | φ ∧ φ′ | ¬φ | ∃x. φ | ∃X.φ

These formulas are interpreted in the usual Tarskian style in the relational
structures corresponding to tots. Given a tot τ = (t, w) and a variable assignment
α : Vars → nod(t), we write τ, α |= φ if and only if the formula φ evaluates to true
in τ under the assignment α, and τ |= φ if τ, α |= φ holds for any assignment α.

MSO formulas with n free node variables over the signature Σ define n-ary
relations for all tots over Σ. Most basically, we can define node equality (=),
equality-or-precedence (�), and the child relation ⊳:

x ⊳ y =def

∨
σ∈Σ

∨
1≤i≤m=ar(σ) ∃x1, . . . , xm. y = xi ∧ x :σ(x1, . . . , xm)) .

The dominance relation ⊳∗ of a term is the reflexive, transitive closure of ⊳,
and thus definable in MSO.3 This is in contrast to first-order logic, where the
dominance relation is usually added to the relational structure. Let C ⊆ TOTΣ

be a set of tots over Σ. The MSO-satisfiability problem of C is the problem to
decide whether ∃ τ ∈ C. τ |= φ, where φ is some closed MSO formula.

3 Undecidability of MSO Satisfiability

We now present our first technical result, which is valid for all signatures Σ with
at least one binary function symbol and one constant.

Theorem 1. MSO satisfiability for the class of all tots over Σ is undecidable.

For the proof, we make use of a simple tool to obtain undecidability results for
graph-like structures. Let m,n ∈ N. The grid of dimensions m×n is the structure

Gm,n = 〈[m] × [n] ;nextEast ,nextSouth〉 , where

nextEast = { 〈〈i, j〉, 〈i′, j′〉〉 | i′ = i+ 1, j′ = j } and

nextSouth = { 〈〈i, j〉, 〈i′, j′〉〉 | i′ = i, j′ = j + 1 } .

We can view a grid as an (m×n)-matrix in which we can navigate along columns
(using the relation nextEast) and rows (using nextSouth). The square grid of
size m is the grid of dimensions m×m. The following result is standard:

Fact [7]. The MSO satisfiability problem of every class of graphs that contains
infinitely many square grids is undecidable.

To make use of this result to prove Theorem 1, we show how to encode grids as
tots (Proposition 1), and that every closed MSO formula interpreted on grids
can be translated into a closed MSO formula interpreted on tots that has the
same models modulo encoding (Proposition 2).

Without loss of generality, we use the signature Σ = {cons, ◦, nil} with
ar(cons) = 2, ar(◦) = 1, and ar(nil) = 0, and employ the following naming scheme
for nodes: for 0 ≤ i and 1 ≤ j,

πi,j = if i = 0 then 1j−1 else 1j−121i−1 .

3 To see this, note that x dominates all elements of the set Y , where Y is the least set
satisfying the equation Y = {x} ∪ { z | ∃ y. y ∈ Y → y ⊳ z }.

cons

cons

cons

nil

◦

◦

◦

◦

◦

◦

◦

◦

◦

nil

nil

nil

π0,1 π0,2 π0,3 π0,4 π1,1 π1,2 π1,3 π2,1 π2,2 π2,3 π3,1 π3,2 π3,3 π4,1 π4,2 π4,3

Figure 3: The encoding of the square grid G3,3. The solid lines represent the term
structure; the dashed lines visualize the relation nextSouth.

The encoding of the general grid Gm,n is the tot JGm,nK = 〈tm,n, wm,n〉, where

tm,n = if n = 1 then cons(nil, ◦m(nil)) else cons(tm,n−1, ◦
m(nil))

wm,n = π0,1 · · ·π0,n · π0,n+1 · π1,1 · · ·π1,n · · ·πm+1,1 · · ·πm+1,n

For illustration, Fig. 3 shows the tot that encodes the square grid G3,3. We will
use the nodes that are labelled with the constructor ◦ (i.e., the nodes of the
form πi,j , i ∈ [m], j ∈ [n]) as representatives for the entries of the grid proper.

The following MSO-defined sets are of general interest for the axiomatization
of grid encodings. We use definitions by formulas with free set variables that may
be parametrized by a free node variable x, so that the corresponding sets are
parametrized by the node value of x.

FirstChild(x) = { y | x : ◦(y) } ∪ { y | ∃ z. x : cons(y, z) }

SecondChild(x) = { y | ∃ z. x : cons(z, y) } , Root = {x | Father(x) = ∅ }

Father(x) = { y | x ∈ FirstChild(y) } ∪ { y | x ∈ SecondChild(y) }

Succ(x) = { y | x ≺ y, ¬∃ z. x � z � y } , Cons = {x | x : cons(_,_) } ,

Grid = {x | x : ◦(_) } , Nil = {x | x : nil } .

We note that, since � is a total order, Succ is an injective partial function. The
cons-labelled nodes provide the backbone of the tot; they ‘glue’ the lines of the
grid together. The north of the grid is its first line; the south is its last line.

Backbone = (Root ∪ FirstChild(Backbone)) − Nil

LastBackbone = {x ∈ Backbone | FirstChild(x) ⊆ Nil }

North = (SecondChild(Root) ∪ FirstChild(North)) ∩ Grid

South = (SecondChild(LastBackbone) ∪ FirstChild(South)) ∩ Grid

Recursive definitions are interpreted with respect to least fixed points, which is
expressible in MSO, as is the reflexive-transitive closure of a relational image
S(x), denoted by S(x)∗. We next define sets of nodes by MSO formulas that
permit us to navigate through the grid:

NextEast(x) = { y ∈ Grid ∩ FirstChild(x) | x ∈ Grid }

NextSouth(x) = { y ∈ Grid ∩ Succ(x) | x ∈ Grid − South }

The anchor of a node x is the (uniquely determined) closest node on the backbone
that dominates x. Via the anchors, we can navigate along the rows in a grid.

Anchor(x) = { y ∈ Backbone | x ∈ FirstChild∗(SecondChild(y)) }

NextRow(x) = { y ∈ Grid | FirstChild(Anchor(x)) = Anchor(y) }

PreviousRow(x) = { y ∈ Grid | FirstChild(Anchor(y)) = Anchor(x) }

We can now axiomatize the class of grid encodings in MSO:

(A1) The backbone consists of the nodes labelled with cons.

Backbone = Cons

(A2) For every node in the grid that does not lie in the south, taking the next
step in the total order takes us to the next row.

∀x ∈ Grid − South.∃ y ∈ NextRow(x).Succ(x) = {y}

(A3) Dually, every node in the grid that does not lie in the north can be reached
from a node in the previous row.

∀x ∈ Grid − North.∃ y ∈ PreviousRow(x).Succ(y) = {x}

(A4) The root node occupies the first position in the total order.

¬∃x.Succ(x) = Root

(A5) Every step to the first child of a cons node is a step in the total order.

∀x ∈ Cons.Succ(x) = FirstChild(x)

(A6) The nil node terminating the backbone immediately precedes the north-
western corner of the grid.

Succ(FirstChild(LastBackbone)) = SecondChild(Root)

(A7) The total order propagates along the rows of the grid.

∀x, y.Succ(Father(x)) = Father(y) =⇒ Succ(x) = {y}

(A8) When being in the south, the next step with the total order leads to the
first element of the next column eastwards.

∀x ∈ North.Succ(NextSouth∗(x) ∩ South) = FirstChild(x)

Proposition 1. Every encoded grid satisfies the axioms A1–A8. Conversely,
every tot that satisfies these axioms is a grid encoding.

Proof. To verify that encoded grids satisfy the axioms A1–A8 is straightforward;
here we show the converse. Let τ = (t, w) be a tot such that τ |= A1 ∧ · · · ∧ A8.
We show that there exists a grid Gm,n such that τ = JGm,nK. Axiom A1 asserts
that Backbone = Cons, which implies that t has the following form, where
ti = ◦mi(nil) for some mi ≥ 0: t = cons(t1, cons(t2, . . . cons(tn, nil) . . .)).

We have to show that all terms ti have the same length in order to prove that
t = tm,n. This property is less obvious since it depends on the total order among
the nodes. For n = 0, it follows that t = nil, and there is nothing to show, so we
can assume n ≥ 1. The form of t implies that Backbone = {π0,j | j ∈ [n] },

North = {πi,1 | i ∈ [m1] } , and South = {πi,n | i ∈ [mn] } .

Lemma 1. m1 = · · · = mn

We first show that |t1| ≤ |tj | for all j ∈ [n] by induction on n. The case n = 1 is
trivial. For the case n > 1, it suffices to show that |tn−1| ≤ |tn|. This follows from
Axiom A2, which asserts that for each node π in tn−1, there exists a node π′

in tn such that Succ(π) = {π′}, and from the observation that Succ is total for
all nodes of t1 by Axiom A4, functional and injective. Dually, using Axiom A3,
we can show that |tj | ≤ |t1| for all j ∈ [n]. Consequently, |t1| = · · · = |tn|.

It remains to show that w is indeed the total order that is imposed on the
encoded grid. The following series of Lemmas together with Axiom A4 establishes
that the total order on t is uniquely determined by the axioms. Since the order
in the grid translation satisfies these axioms, it must be equal to this order.

Lemma 2. ∀ j ∈ [n].Succ(π0,j) = {π0,j+1} and Succ(π0,n+1) = {π1,1}

Since for each j ∈ [n], the node π0,j is a cons node, the first half of the claim
is stated in Axiom A5. The successor of π0,n+1 follows from Axiom A6 in
combination with the observation that SecondChild(Root) 6= {π1,1}; this is so
since Root ⊆ Cons by Axiom A6, and n ≥ 1.

Lemma 3. ∀ i ∈ [m].∀ j ∈ [n− 1].Succ(πi,j) = {πi,j+1}

We show that Succ(Father(πi,j)) = Father(πi,j+1), and from this deduce the
claim by Axiom A7. The proof proceeds by induction on i. In the case that i = 1,
using the definition of Father and Lemma 2, we see that

Succ(Father(π1,j)) = Succ(π0,j) = {π0,j+1} = Father(π1,j+1) .

For i > 1, we may assume that Succ(πi−1,j) = {πi−1,j+1}. Thus,

Succ(Father(πi,j)) = Succ(πi−1,j) = {πi−1,j+1} = Father(πi,j+1) .

Lemma 4. ∀ i ∈ [m].Succ(πi,n) = {πi+1,1}

We start by proving the following auxiliary claim by induction on j:

∀ j ∈ [n].∀ i ∈ [m].NextSouth∗(πi,j) ∩ South = {πi,n}

For j = n, this is obvious, given that πi,n ∈ South. For j < n, we may assume
that NextSouth∗(πi,j+1)∩ South = {πi,n}. Moreover, πi,j ∈ Grid − South, which,
by definition of NextSouth, implies that NextSouth(πi,j) = Succ(πi,j). Thus,

NextSouth∗(πi,j) ∩ South = NextSouth∗(NextSouth(πi,j)) ∩ South

= NextSouth∗(Succ(πi,j))∩South
Lemma 3

= NextSouth∗(πi+1,j)∩South = {πi,n} .

JnextEast(x, y)K0 = y ∈ NextEast(x) J∀x. ψK0 = ∀x ∈ Grid . JψK0

JnextSouth(x, y)K0 = y ∈ NextSouth(x) J∀X.ψK0 = ∀X ⊆ Grid . JψK0

Jx ∈ XK0 = x ∈ X ∩ Grid Jψ ∧ ψ′K0 = JψK0 ∧ Jψ′K0

J¬ψK0 = ¬JψK0

Figure 4: Encoding MSO of grids into MSO of tots: the compositional part.

Instantiating Axiom A8 with πi,1 ∈ North, we see that

Succ(NextSouth∗(πi,1) ∩ South) = FirstChild(πi,1) = {πi+1,1} .

Since NextSouth∗(πi,1)∩South = {πi,n} by the auxiliary claim above, this implies
that Succ(πi,n) = {πi+1,1}.

Together with Axiom A4, the preceding Lemmas establish that Succ(π) is uniquely
determined for all π 6= πm,n. This ends the proof of Proposition 1. �.

Proposition 1 states that we can define the encodings of grids using MSO for
tots. We now show how to express MSO formulas for grids using MSO formulas
for tots. The translation of a closed MSO formula ψ for grids is as follows:

JψK =def ∃Grid∃NextSouth∃NextEast∃ (Defs ∧ A1 ∧ · · · ∧ A8 ∧ JψK0)

where JψK0 is given in Fig. 4, and Defs contains the above definitions for all
occuring set variables, all of which are existentially quantified in the outermost
quantifier prefix.

Proposition 2. For every closed formula ψ from the set of all MSO formulas
over grids and every grid G, ψ |= G implies that JψK |= JGK.

Proving this proposition from Proposition 1 is routine, since it is largely indepen-
dent of the particularities of the encoding. Note however that the proposition
does not hold for formulas with free variables. For these, quantification would
need to be restricted to nodes in Grid , and exclude nodes in Cons ∪ Nil .

4 Bounded Gap-Degree

Given the undecidability of the MSO satisfiability problem for the class of
unrestricted tots, we are interested in restricted classes for which decidability
can be obtained. A family of such classes that is relevant for applications in
computational linguistics is obtained from the gap-degree measure [11,12].

Let τ be a tot, and let π, π1, π2 be nodes of τ . The set of descendants of π,
denoted by desc(π), is the set of all nodes π′ ∈ nod(t) such that π ⊳∗ π′. The
interval with endpoints π1 and π2, denoted by [π1, π2], is the set of all nodes
π′ ∈ nod(τ) such that π1 � π′ � π2. Note that for terms ordered by a pre-order

traversal, each descendant set forms an interval. In the general case, though, a
descendant set desc(π) may be partitioned into a sequence of (maximal) intervals,
which we call the segments of π. We define MSO formulas y1 ≡x y2 stating
that y1 and y2 belong to the same segment of x:

y1 ≡x y2 =def ∀ z. (y1 � z � y2 ∨ y2 � z � y1) → x ⊳∗ z

This formula defines an equivalence relation ≡π on the descendant set desc(π)
with the property that each equivalence class forms a (maximal) interval. We
call such a relation a segmentation.

Definition 2. Let τ be a tot, and let π be a node of τ . The gap-degree of π,
deg(π), is defined as the index of the relation ≡π, minus one. The gap-degree
of τ , deg(τ), is the maximum among the gap-degrees of its nodes. A set L of tots
is gap-bounded, if there is a constant gL such that deg(τ) ≤ gL, for every τ ∈ L.

The tot in Fig. 2a has gap-degree 0, while those in Figs. 2b and 2c have gap-
degree 1. In Figs. 2b and Figs. 2c, the node b has two segments ({b} and {c}); in
Fig. 2a, it has only one ({b, c}).

Lemma 5. The gap-degree of the tot JGn,nK is n+ 1.

This Lemma shows that our undecidability proof fails when we restrict the models
of our MSO formulas to classes of tots that are gap-bounded. Even better, this
restriction implies decidability:

Theorem 2. The MSO satisfiability problem of every gap-bounded class of tots
is decidable.

The remainder of this paper is concerned with the proof of this result. To do
so, we establish a link between MSO for gap-bounded classes of tots on the one
hand, and an algebraic notion of automata on the other.

5 Segmented Tots and Subtots

We develop a notion of ‘substructure’ for tots that will serve as intermediate
results when constructing tots algebraically. They may be little more general than
tots, in that their linearisations may be segmented, so we call them segmented
tots.

For illustration, let us reconsider the tot in Fig. 2c. Its first subterm is b(c).
The linearization of the nodes of this subterm is segmented into two parts, while
leaving a gap between the b-node and the c node, into which external nodes may
be plugged, such as the nodes of d(e) when reconstructing the original tot.

A k-segmented linearization over a finite set A is a k-tuple 〈w1, . . . , wk〉 of non-
empty words over A such that w1 · · ·wk forms a linearization. Every k-segmented
linearization w defines a total ordering � on A, which satisfies a1 � a2 if a1

occurs left of a2 in w. In addition, it defines an equivalence relation ≡ on A, such

that a1 ≡ a2 if they occur in the same segment of w. The segments of w are the
equivalence classes of ≡, so that the index of ≡ is k. The equivalence classes form
intervals with respect to the total ordering, i.e.:

a1 ≡ a2 ⇒ ∀ a. (a1 � a � a2 ∨ a2 � a � a1) → a1 ≡ a ≡ a2

Conversely, every pair of total ordering � on A and an equivalence relation ≡ on
A of index k that satisfy the above condition define an k-segmented linearization
on A.

Definition 3. A k-segmented tot over a signature Σ is a pair 〈t, w〉 where t is
a term over Σ and w a k-segmented linearization of nod(t).

The relational structure corresponding to a segmented tot (t, w) is the structure
〈nod(t) ;�,≡, (:σ)σ∈Σ〉; it provides the total ordering � and the equivalence
relation ≡ defined by w and the labeling predicates. The MSO of segmented
tots is the MSO with symbols for all these relations and interpreted over these
relational structures.

Substructures of segmented tots can now be defined by extending the notion
of subterms. Let τ = 〈t, w〉 be a segmented tot and node π ∈ nod(t). The set
desc(π) is segmented by the relation ≡π, which is defined by an MSO formula
with three free variables:

y1 ≡x y2 =def y1 ≡ y2 ∧ ∀ z. (y1 � z � y2 ∨ y2 � z � y1) → x ⊳∗ z .

This means that segments of desc(π) are either separated by nodes of τ external
to desc(π) or by the segmentation of τ .

Let t|π the subterm of t at node π, i.e., t|ε = t and σ(t1, . . . , tm)|iπ = ti|π,
where i ∈ [m] = ar(σ). Recall that nod(t|π) = {π′ | ππ′ ∈ nod(t) }. The subtot
of τ at π is given by the subterm t|π and the segmented linearization of its nodes
induced by ≡π and �. The of gap-degree of a segmented tot τ is one less then
the maximal number of segments of its subtots τ|π.

6 Segmented Words

We introduce segmented words and define operators for them that will be useful
for the algebraization of tots. Let A be a set and k a natural numbers.

A k-segmented word over A is a k-tuple of non-empty words over A. The
positions of a k-segmented word ψ = 〈a1

1 · · · a
n1

1 , . . . , a1
k · · · a

nk

k 〉 are pairs of
natural numbers: pos(ψ) = { 〈i, j〉 | i ∈ [k], j ∈ [ni] }. The set of positions
is totally ordered by the lexicographic order, i.e. 〈i′, j′〉 < 〈i, j〉 iff i′ < i or
i′ = i ∧ j′ < j. It is partitioned into k classes by the equivalence 〈i′, j′〉 ≡ 〈i, j〉
iff i′ = i. For every a ∈ A, the relation Qa ⊆ pos(ψ) contains all positions 〈i, j〉
where a occurs, i.e., aj

i = a.
We now define operators for k-segmented words, where we assume k ∈ [l]

for a fixed natural number l. Let W (k) be the set of k-segmented words over A.
We define a multi-sorted algebra S with domains W (1), . . . ,W (l); the functions

of this algebra are defined by segmented words. Each function first shuffles the
segments of its arguments into a new segmented word, and then fuses adjacent
segments to arrive at a segmented word with at most l segments. To make this
formal, we need three auxiliary notions: The multiplicity of a letter a ∈ A in a
segmented word ψ over A is the number of positions 〈i, j〉 ∈ pos(ψ) such that
〈i, j〉 ∈ Qa. A multiset over a finite set B is a function µ : B → N. A k-segmented
linearization of of a multiset µ is a k-segmented word ψ over B such that for all
b ∈ B, the multiplicity of b in ψ is µ(b).

Let k ∈ [l] and m ∈ N, and k1, . . . , km ∈ [l]. Every k-segmented linearization
ψ ∈ ([m]+)k of the multiset { i 7→ ki | i ∈ [m] } defines an operator ψS of type:

ψS : W (k1) × · · · ×W (km) →W (k) .

To give a definition of this function, let the occurrence number occ(i, j) ∈ N of a po-
sition 〈i, j〉 ∈ pos(ψ) with 〈i, j〉 ∈ Qa be the number of positions 〈i′, j′〉 ∈ pos(ψ)
such that 〈i′, j′〉 ≤ 〈i, j〉 and 〈i′, j′〉 ∈ Qa. If ψ = 〈a1

1 · · · a
n1

1 , . . . , a1
k · · · a

nk

k 〉, then
the application of the function ψS to segmented words Si ∈W (ki), i ∈ [m], is
defined as

ψS (〈S1
1 , . . . , S

k1

1 〉, . . . , 〈S1
m, . . . , S

kn
m 〉) = 〈T 1

1 · · ·Tn1

1 , . . . , T 1
k · · ·Tnk

k 〉 ,

where T j
i = S

occ(i,j)

a
j

i

. Note that, for each i ∈ [k], T 1
1 · · ·Tni

1 ∈ A+ is a concate-

nation of ni words, while 〈S1
1 , . . . , S

ki

1 〉 ∈ W (ki) is a ki-tuple. The number of
functions of S is infinite as long as we do not bound the maximal arity m ∈ N.
Furthermore, S does not contain any constant, so it is useless standalone.

7 Algebra of Segmented Tots

For the algebraization of tots, we fix a signature Σ of function symbols and a gap
bound l ∈ N. For all k ∈ N let T (k) ⊆ TOTΣ be the set of tots over Σ with k

segments. We define a multi-sorted algebra T with domains T (1), . . . , T (l).

For every tot τ = 〈t, w〉 in T (k), let term(τ) = t and seg(τ) = w. The algebra
T provides operations of type 〈σ, ψ〉T : T (k1) × · · · × T (km) → T (k) for all
σ ∈ Σ of arity m, k-segmentation ψ of the multiset {0 7→ 1}∪{ i 7→ ki | i ∈ [m] },
and k, k1, . . . , km ∈ [l]. Specifically, we define the value 〈σ, ψ〉T (τ1, . . . , τn) = τ

as follows:

term(τ) = σ(term(τ1), . . . term(τn))

seg(τ) = ψS ((ε), pfx1(seg(τ1)), . . . , pfxn(seg(τn))) ,

where pfxi is the function that takes a sequence of nodes and prefixes every node
in this sequence by the address i. This algebra has a finite number of functions,
whose maximal arity is bounded by the maximal arity in Σ. The constants of
this algebra are of the form 〈σ, 〈1〉〉, where σ is a constant in Σ.

Proposition 3. Let k ∈ [l]. For every tot τ ∈ Tk, there exist a symbol σ ∈ Σ

ar(σ) = m, natural numbers k1, . . . , km ∈ [l], a k-segmentation ψ of the multiset
{0 7→ 1} ∪ { i 7→ ki | i ∈ [m] }, and tots τ1 ∈ Tk1

, . . . , τm ∈ Tkm
such that

τ = 〈σ, ψ〉T (τ1, . . . , τm).

This means that every k-segmented tot can be constructed from the operators of
the algebra T if k ∈ [l]. For instance, the tot in Fig. 2b is equal to:

〈a, 〈0121〉〉T (〈b, 〈0, 1〉〉T (〈c, 〈0〉〉T), 〈d, 〈10〉〉T (〈e, 〈0〉〉T)) .

The substructure at b, i.e., the first child of the root, has gap-degree 1. This is
reflected by the segmented word 〈0, 1〉 whose comma matches the gap.

Proof. Let τ = (t, w), where t = σ(t1, . . . , tn) for some σ ∈ Σ, and t1, . . . , tn ∈ TΣ .
For all i ∈ [k], let ki be the number of segments of τ |i, so that

pfxi(seg(τ |i)) = 〈S1
i , . . . , S

ki

i 〉

for some ki ∈ [l] and S1
i , . . . , S

ki

i ∈ nod(t)+. Furthermore, let k0 = 1 and S1
0 = ε.

The set nod(t) is partitioned into segments Sj
i , where 0 ≤ i ≤ n and j ∈ [ki]. The

segmented linearization w of τ must be of the following form, where T j
i = S

occ(i,j)

a
j

i

:

seg(τ) = 〈T 1
1 · · ·Tn1

1 , . . . , T 1
k · · ·Tnk

k 〉 .

This holds, since each segment of seg(τ) must be a concatenation of words of Sj
i s

due to convexity, and since the segments of the same substructure must appear
in their original order. Let

ψ = 〈a1
1 · · · a

n1

1 , . . . , a1
k · · · a

nk

k 〉 .

It then follows that τ = 〈σ, ψ〉T (τ |1, . . . , τ |n). �

The decomposition of segmented tots does not need to be unique; for example,

〈a, 〈011〉〉T (〈a, 〈0, 1〉〉T (〈b, 〈0〉〉T)) = 〈a, 〈01〉〉T (〈a, 〈01〉〉T (〈b, 〈0〉〉T)) .

Both expressions describe the same tot with term a(a(b)) and the node order
ε � 1 � 11. In the first expression, the subtot of the first child is artificially
split into two subsequent segments, which are then fused without insertion of
nodes into the gap. On the right, this artificial split is avoided. It is not difficult
to see that every segmented tot can be constructed in a unique manner, when
disallowing immediate repetitions in constructors ψ, i.e. segments in N

∗iiN∗, for
every i ∈ N. Let T ′ be the restriction of T to operators (σ, ψ) without immediate
repetitions in ψ.

Theorem 3. The algebra of k-segmented tots T ′ is isomorphic to a [k]-sorted
term algebra T∆.

Proof (Sketch). The multi-sorted signature ∆ contains all symbols (σ, ψ) of type
k1 × · · · × km → k, where σ ∈ Σ has arity m, and ψ is a k-segmentation of
the multiset {0 7→ 1} ∪ { i 7→ ki | i ∈ [m] } without immediate repetitions. The
interpretation function J·KT

′

: T∆ → T ′ is a homomorphism, which is onto by
Proposition 3, and one-to-one since immediate repetitions are forbidden.

8 Automata for Segmented Tots

We define automata for the algebra of segmented tots T ′ as automata for the
multi-sorted term algebra T∆. Since well-sorted terms over ∆ are recognizable, we
can use standard tree automata that recognized languages of well-sorted terms.

We call a set of segmented tots L ⊆ T ′ with bounded gap-degree recognizable,
if and only if the corresponding set of term encodings { t ∈ T∆ | tT

′

∈ L }
is recognizable by a tree automaton. Standard results on tree automata [8]
show that recognizable set of segmented tots are closed under union, intersection,
complementation and projection. Note also, that the set of all tots (i.e., segmented
tots without gaps) is recognizable

Theorem 4. A gap-bounded set of segmented tots is MSO-definable if and only
if it is recognizable. The transformations from formulas to automata and back
are effective.

Proof. The transformation of automata for T∆ into MSO for segmented tots
needs to express the rules of the automata. This works as usual, except that
one has to express the operators 〈σ, ψ〉T

′

in the MSO of segmented tots. This is
straightforward.

The transformation of MSO formulas to automata works as for Thatcher and
Wright’s theorem [4]: Boolean connectives and monadic second-order quantifiers
are mapped to the closure operators for union, complementation and projection.
What remains to show is that we can construct automata that check the atomic
predicates x � y and x ≡ y. The fundamental insight in this construction is
that it suffices to remember, by means of the state information that the tree
automaton provides, for each node π, in which segments of the subtot τ |π the
nodes α(x), α(y) occur (if any). Based on this information, the question whether
α(x) ≺ α(y) can be decided by looking at the label 〈σ, ψ〉 at π: if α(x) occurs
in the jxth segment of the ixth substructure of τ |π, and α(y) occurs in the jyth
segment of the iyth substructure, then α(x) ≺ α(y) iff the jxth occurrence of the
symbol ix precedes the jyth occurrence of the symbol iy; if α(x) or α(y) does
not occur in some substructure, but equals π, then the relevant occurrence is the
(single) occurrence of the symbol 0 in ψ. A similar argument holds for the case
α(x) ≡ α(y). As long as the number of gaps (and hence, the number of segments)
in a tot is bounded, the required state set is of bounded size.

One perhaps surprising consequence of this Theorem is that total orders of
MSO-defined sets of tots with bounded gap-degree are always definable by
MSO over terms without the order. Given a term t ∈ TΣ , variables x1, x2 and
nodes π, π′ ∈ nod(t), let t ∗ [x 7→ π, y 7→ π′] ∈ TΣ×2{x,y} be the tree obtained
from t by annotating all its nodes by the set of variables that are mapped
to it. Similarly, we define τ ∗ [x 7→ π, y 7→ π′] ∈ TOTΣ×2{x,y} to be the tot
〈term(τ) ∗ [x 7→ π, y 7→ π′], seg(τ)〉 in which the variable assignment is annotated.

Corollary 1. Let φ be a closed MSO formula for tots in TOTΣ with bounded
gap degree. Then the following term language { term(τ) ∈ TΣ | τ |= φ } is regular
as well as { term(τ) ∗ [x 7→ α(x), y 7→ α(y)] ∈ TΣ×2{x,y} | τ |= φ }.

Proof. The set L1 = { τ ∈ TOTΣ | τ |= φ } is an MSO defined set of tots over
Σ. Let A1 be an tree automaton over ∆ that recognizes { s ∈ T∆ | sT ∈ L1 }
according to Theorem 4. The projection A1 to Σ recognizes { term(τ) ∈ TΣ | τ ∈
L1 } as required, where the rules of the projected automaton B1 are as follows:

〈σ, ψ〉(p1, . . . , pm) → p ∈ Rules(A1)

σ(〈p1, ψ1〉, . . . , 〈pm, ψm〉) → 〈p, ψ〉 ∈ Rules(B1)

For the second statement, let L2 = { τ ∗ [x 7→ α(x), y 7→ α(y)] ∈ TOTΣ×2{x,y} |
τ, α |= φ ∧ x � y } and automaton A2 recognize { s ∈ T∆×2{x,y} | sT ∈ L2 }

according to Theorem 4. The projection A2 to Σ × 2{x,y} recognizes the second
term language of the corollary { term(τ) ∗ [x 7→ α(x), y 7→ α(y)] ∈ TΣ×2{x,y} |
τ, α |= φ ∧ x � y) }, where the projection automaton B2 has the following rules:

〈〈σ, ψ〉, V 〉(p1, . . . , pm) → p ∈ Rules(A2)

〈σ, V 〉(〈p1, ψ1〉, . . . , 〈pn, ψm〉) → 〈p, ψ〉 ∈ Rules(B2)

Final remark. We have shown that the MSO satisfiability problem for tots with
bounded gap-degree is decidable, while the general case is undecidable. A question
that we need to leave unanswered for now is whether the first-order satisfiability
problem of general tots is decidable in contrast to the case of MSO.

References

1. Culotta, A., Sorensen, J.: Dependency tree kernels for relation extraction. In 42nd
Annual Meeting of the ACL (2004) 423–429

2. Quirk, C., Menezes, A., Cherry, C.: Dependency treelet translation: Syntactically
informed phrasal SMT. In 43rd Annual Meeting of the ACL (2005) 271–279

3. Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., Yuret, D.: The
CoNLL 2007 shared task on dependency parsing. In Joint Conference on Empirical
Methods in NLP and Computational Natural Language Learning (2007) 915–932

4. Thatcher, J.W., Wright, J.B.: Generalized finite automata with an application to a
decision problem of second-order logic. Math. System Theory 2 (1968) 57–82

5. Courcelle, B.: Handbook of graph grammars and computing by graph transforma-
tions, volume 1: Foundations. Handbook of Graph Grammars. (1997)

6. Gottlob, G., Koch, C.: Monadic queries over tree-structured data. In 17th Annual
IEEE Symposium on Logic in Computer Science (2002) 189–202

7. Courcelle, B.: Graph Grammars and Logic. Book in preparation (2008)
8. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,

Tison, S., Tommasi, M.: Tree automata techniques and applications. (1997/2007).
9. Rabin, M.: Decidability of Second-Order Theories and Automata on Infinite Trees.

Transactions of the American Mathematical Society 141 (1969) 1–35
10. Gottlob, G., Koch, C.: Monadic datalog and the expressive power of languages for

web information extraction. In: 21rd ACM PODS (2002) 17–28
11. Plátek, M., Holan, T., Kuboň, V.: On relaxability of word order by D-Grammars.

In 3rd Int. Conf. on Combinatorics, Computability and Logic. DMTCS (2001)
159–174

12. Kuhlmann, M.: Dependency Structures and Lexicalized Grammars. Doctoral
dissertation, Saarland University, Saarbrücken, Germany (2007)

13. Koller, A., Striegnitz, K.: Generation as dependency parsing. In 40th Annual
Meeting of the ACL (2002) 17–24

14. Holan, T., Kuboň, V., Oliva, K., Plátek, M.: Two useful measures of word order
complexity. Work. on Processing of Dependency-Based Grammars (1998) 21–29

15. Kuhlmann, M., Nivre, J.: Mildly non-projective dependency structures. In 21st
COLING-ACL, Main Conference Poster Sessions (2006) 507–514

16. Mezei, J., Wright, J.B.: Algebraic automata and context-free sets. Information and
Control 11 (1967) 3–29

17. Courcelle, B.: Recognizable sets of unrooted trees. In Nivat, M., Podelski, A., eds.:
Tree Automata and Languages. Elsevier Science (1992)

18. Carme, J., Niehren, J., Tommasi, M.: Querying unranked trees with stepwise tree
automata. In 19th RTA, Vol 3091 of LNCS (2004) 105 – 118

