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ABSTRACT
The publication of transaction data, such as market basket data,
medical records, and query logs, serves the public benefit. Mining
such data allows for the derivation of association rules that connect
certain items to others with measurable confidence. Still, this type
of data analysis poses a privacy threat; an adversary having partial
information on a person’s behavior may confidently associate that
person to an item deemed to be sensitive. Ideally, an anonymization
of such data should lead to an inference-proof version that prevents
the association of individuals to sensitive items, while otherwise al-
lowing for truthful associations to be derived. Original approaches
to this problem were based on value perturbation, damaging data
integrity. Recently, value generalization has been proposed as an
alternative; still, approaches based on it have assumed either that
all items are equally sensitive, or that some are sensitive and can
be known to an adversary only by association, while others are
non-sensitive and can be known directly. Yet in reality there is a
distinction between sensitive and non-sensitive items, but an ad-
versary may possess information on any of them. Most critically,
no antecedent method aims at a clear inference-proof privacy guar-
antee. In this paper, we propose �-uncertainty, the first, to our
knowledge, privacy concept that inherently safeguards against sen-
sitive associations without constraining the nature of an adversary’s
knowledge and without falsifying data. The problem of achieving
�-uncertainty with low information loss is challenging because it is
natural. A trivial solution is to suppress all sensitive items. We de-
velop more sophisticated schemes. In a broad experimental study,
we show that the problem is solved non-trivially by a technique that
combines generalization and suppression, which also achieves fa-
vorable results compared to a baseline perturbation-based scheme.

1. INTRODUCTION
We consider a data set D of set-valued or transaction data. Each

entry inD is a set of items (itemset) {i1, . . . , in} - purchased goods,
query terms, or individual preferences, chosen from a universe ℐ.
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Such data are instrumental in data mining applications, e.g., as-
sociation rule mining [2, 3], query expansion [7], and predicting
user behavior [1]; still, their publication poses privacy threats. A
particular threat is posed by an adversary who has partial knowl-
edge � about a certain person’s transaction t, and may use it, along
with the published data, to derive additional knowledge about the
contents of t, thus identifying previously unknown sensitive items
in t. For example, a publicly released record of a bookstore’s trans-
actions reveals that people who bought a book titled “Romeo and
Juliet” in the last month also bought a book titled “Free Alaska”.
Alice meets Bob reading “Romeo and Juliet”, and learns that he
bought it during the last month. Thus, she makes an inference that
compromises Bob’s privacy concerning his political persuasions.

Past research has examined the problem of transforming transac-
tion data in a way that renders them proof against privacy threats.
However, it never formulated the problem in a natural way that cor-
responds to a real-world setting. Realistically, we have to prevent
against the determination of a sensitive item in a person’s transac-
tion, while preserving the utility of the data for mining other asso-
ciations. Still, works providing the state of the art in the area [12,
30, 23, 14] fail to formulate the problem in this natural manner.

In particular, [12, 30] assume an a priori distinction between sen-
sitive (private) and non-sensitive (public) items, postulating that all
private items are always unknown to adversaries. Thus, sensitive
items are disengaged from the transaction item set. However, in
practice an attacker may possess partial knowledge of some of the
sensitive items in a transaction. The methods of [12, 30] do not
prevent such attackers from gaining extra sensitive knowledge.

On the other hand, [23, 14] move in the opposite direction, over-
correcting the drawback of [12, 30]. They consider all items in
the universe of discourse to be equally sensitive. Thus, the distinc-
tion between sensitive and non-sensitive information is lost, even
though it forms the main motivation for studying the problem in
the first place. Besides, the distinction between what is sensitive
and what is not also depends on individual preferences [29], which
are not considered by [23, 14] either. After all, [23, 14] are inspired
from the k-anonymity model for microdata anonymization [19], so
they share its conceptual shortcomings: they do not effectively pro-
tect against the disclosure of a sensitive item. For example, as-
sume that k shoppers have bought a dairy product, a detergent,
some chocolate, and a pregnancy test-kit. A valid anonymization of
shopping transaction data by the methods of [23, 14] could create
an “anonymized” group out of these k transactions; this grouping
still allows an adversary to infer that a neighbor who bought milk,
dishwasher, and Belgian chocolate is considering being pregnant.

In this paper, we propose �-uncertainty, a novel, intuitive, and
realistic model for transaction anonymization. To our knowledge,
this is the first model that is tailored against the inference of sen-
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sitive information by an adversary, does not impose artificial con-
straints on the nature of that adversary’s knowledge, and neither
falsifies the data nor separates sensitive items from the transactions
they belong to. A �-uncertain transaction set D does not allow
an attacker knowing any subset � of a transaction t ∈ D to infer
a sensitive item � ∈ t with confidence higher than �. Thus, �-
uncertainty ensures that the confidence of any sensitive association
rule (SAR) is at most �. Despite its semantic simplicity, the prob-
lem posed by �-uncertainty is particularly challenging compared to
those posed by other anonymization models. We have to disassoci-
ate all sensitive items from any piece of information that they may
be associated with, including both non-sensitive and other sensitive
items. A trivial solution is to suppress all sensitive items. We look
for alternatives that sacrifice less information.

Our contributions in relation to prior work [12, 23, 30, 14] are
summarized as follows. We introduce �-uncertainty, a comprehen-
sible, natural model that inherently protects against sensitive item
inference. Contrary to [23, 14], we distinguish between public
(non-sensitive) and private (sensitive) items; still, in a departure
from [12, 30], we treat them as belonging to the same universe,
and allow that an adversary may know some of the private items
in a transaction. A private item already known to an adversary can
function as a (quasi-)identifier for the association with another, un-
known sensitive item. We define the problem in natural terms like
no previous work does. We avoid reasoning that emanates from
k-anonymity, wherein transactions are grouped together without
offering protection against sensitive item disclosure per se. Last,
while the most recent previous methods are based either on gen-
eralization [23, 14] or suppression [30], we employ both. We first
develop a scheme that attempts to suppress a minimal amount of
items; we use this as a building-block of a mixed scheme that selec-
tively suppresses and generalizes items. We do not consider pertur-
bation, so that no fake or distorted items are involved and no false
associations are derived; we do not disengage sensitive items from
the transactions they belong to, as in [12]. Our experiments show
that the problem is solved non-trivially by our mixed approach.

2. RELATED WORK
A series of works has addressed the question of mining asso-

ciation rules [2] in a manner that preserves privacy. However,
such works employ anonymization techniques based on perturba-
tion [8, 21, 10, 18, 24, 4], thus damaging data integrity (i.e., use dis-
torted and fake values) and generating false inferences [27], while
they do not inherently disallow sensitive inferences. On the other
hand, anonymization based on global generalization and suppres-
sion preserves the correctness of data and only compromises their
minuteness; anonymized data are less specific, but not false.

To the best of our knowledge, no prior work applies generaliza-
tion to prevent the mining of sensitive associations from transaction
itemsets. Some recent works [30, 12, 23, 25, 14] address related
problems, but do not arrive at a proper application of generaliza-
tion for the explicit protection of sensitive information.

To our knowledge, [12] is the first work to anonymize transaction
data without perturbation. Still, [12] assumes that adversaries can
only know of non-sensitive items. For each group of transactions,
[12] publishes the exact public items together with a summary of
the frequencies of sensitive items in the group, so that it is not clear
to which transaction therein a sensitive item belongs, as in [28].
Unfortunately, this method also impedes non-privacy-threatening
mining involving sensitive items. Besides, its transparency renders
it more vulnerable. For example, assume Timothy knows that (i)
corn flakes were only bought together with Noam Chomsky’s “In-
terventions”, and that (ii) Theresa bought face lotion and chocolate.

A transaction set published as in [12] may indicate that face lotion
and chocolate were bought together in a single transaction, which
also includes corn flakes. Therefore, there exists an association of
face lotion and chocolate to “Interventions”. Timothy did not know
about this association in advance, but he can now confidently infer
that Theresa bought that classified1 book. A method that effec-
tively hides all sensitive associations would protect the privacy of
Theresa’s transaction by publishing it less transparently.

The model of (ℎ,k,p)-coherence [30] requires that any combi-
nation of p non-sensitive items is contained in (none or) at least
k transactions, with at most ℎ% thereof sharing the same sensi-
tive item. Still, [30] applies only suppression; it assumes an a pri-
ori distinction between sensitive and non-sensitive items, like [12];
and postulates that an adversary can know at most p (non-sensitive)
items in a transaction. Yet an adversary may know of more than p
items in a transaction, including some sensitive item(s).

Two recent works [23, 14] employ generalization as a data trans-
formation tool; [23] imposes constraints on an adversary’s knowl-
edge, but [14] does not. Still, these works do not distinguish be-
tween sensitive and non-sensitive information. They assume that
all items are equally likely to be sensitive; this assumption does not
conform to the real world. Even if we accepted this assumption as
true, [23, 14] are ineffective in the task they set out to accomplish.
Their declared objective is to prevent the inference of potentially
sensitive information, assuming that the “sensitivity potential” is
uniformly distributed among items. This objective is not achieved.
What they do achieve is to hide a vulnerable transaction in a crowd
of k others. As [17] has shown, such crowds do not effectively pre-
vent sensitive inferences: if a group of k transactions already con-
tain identical sensitive content, then [23, 14] can still group them
together without concealing this content [17].

Recently, [25] suggested a relational privacy model that distin-
guishes between sensitive and non-sensitive information only at the
value level. The extensibility of this model to transaction data is not
considered. Besides, [25] assumes, as [30, 12] do, that only non-
sensitive information is observable by an adversary, and that gener-
alizing a sensitive value to a non-sensitive hierarchy level conceals
its sensitivity. Yet such a generalization reveals that sensitivity is
hidden behind it. For example, the act of generalizing AIDS to
virus suggests that a sensitive value exists behind the generalized
one. An akin argument is made by [26] in another context.

3. MODELING
This section presents our privacy concept and information loss

metric, which form the two sides of the tradeoff we have to resolve.

3.1 Privacy Concept
Let D be a set of transaction or set-valued data. Every entry

t ∈ D is a subset of items drawn from a universe ℐ that is divided in
two subsets: a set of sensitive items ℐS , and a set of non-sensitive2

ones ℐN , with ℐ = ℐS ∪ℐN and ℐS ∩ℐN ∕= ∅. We assume that an
attacker may know a subset3 of items � of a transaction t, � ⊂ t,
which may include non-sensitive (in ℐN ) as well as sensitive items
(in ℐS). Our objective is to prevent such an attacker from infer-
ring, with high certainty, that a transaction t containing � ⊂ t also
contains a sensitive item � /∈ �. Such an inference corresponds to

1Currently banned from the Guantánamo Bay prison camp library.
2In case of individual preferences about what is sensitive, as in
[29], we combine all such preferences to a global list of sensitive
items, and treat items that are non-sensitive for all users separately.
3An attacker may conceivably know all items in a transaction t; in
this case the problem we address has no object.
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mining [2] association rule �→�. In such an association rule, the
left side � is the antecedent, and the right side � the consequent. A
rule whose consequent involves at least one sensitive item � ∈ ℐS
is a sensitive association rule (SAR). We need to bring the data in
a form that prevents the mining of high-confidence SARs.

TID Transaction Items
1 a1b1b2�

2 a1a2b2
3 a2b2
4 a2

5 a1b2�


Table 1: A transactional dataset
For example, Table 1 shows five transactions, in which items a1,

a2, b1, and b2 are non-sensitive, while � and 
 are sensitive. Given
this table, if Alice knows that Bob has bought b1, she can infer
that he also bought a1, b2, �, and 
. Furthermore, if Alice already
knows that Bob has bought the private item �, she can infer that he
also bought a formerly unknown sensitive item, 
. In both cases,
Alice gains knowledge that compromises Bob’s privacy.

To prevent such inferences, we would like the data to be ren-
dered in a form that keeps the confidence of each SAR lower than
a threshold �. Thus, we arrive at the following definition.

DEFINITION 3.1. A transaction data setD, drawing items from
ℐ, is said to satisfy �-uncertainty, if and only if, for any transaction
t ∈ D, any subset of items � ⊂ t, � ⊂ ℐ, and any sensitive item
� /∈ �, � ∈ ℐS , the confidence of the Sensitive Association Rule
(SAR) �→ � is less than a value � > 0.

The privacy concept in Definition 3.1 does not limit the prove-
nance of the items that make up � to ℐN . Sensitive items from ℐS
may also form part of adversaries’ prior knowledge. It poses no
bound on an association rule’s support either. All sensitive associ-
ations of high confidence need to be blocked, even if they involve
a single transaction; on the other hand, innocuous appearances of
sensitive items that imply no high-confidence associations are al-
lowed. For example, assume that, out of 1000 transactions contain-
ing milk, one also contains hemorrhoid cream. By �-uncertainty,
this transaction can be published, since no confident SAR is estab-
lished thereby, hence nobody’s privacy is compromised. On the
other hand, assume that the SAR “those who buy blue cheese also
buy strawberry-flavored condoms” can be mined from a few trans-
actions. Then the data should be transformed so that this rule shall
not be minable. These observations come in contrast to the view
of privacy in perturbation-based models [4]. We solve the natural
problem of rendering a given transaction data set �-uncertain:

PROBLEM 1. Given a transaction data set D, drawing items
from ℐ, including a subset of sensitive items ℐS ⊂ ℐ, transform D
to an anonymized form D′ that satisfies �-uncertainty, maintaining
the integrity of the data and as much of their utility as possible.

This problem is inherently adopted to the privacy threat trans-
action data are exposed to, and one of the data mining tasks they
are likely to be used for. [23, 14] also assume inference by as-
sociation to be the risk the data are subject to, yet do not explic-
itly design their models for it. Instead, they adopt precepts of k-
anonymization, which divides the data into homogeneous groups.
[12, 30] have an inference threat in mind, yet also divide transac-
tions into groups, and assume adversaries only have access to items
in ℐN , as if the data were relational data with one or more un-
known sensitive attributes. We discard such precepts of relational
anonymization. Table 2 gathers together our notations.

The support, sup(�), of a given a subset of items � is the number
of transactions t ∈ D such that � ⊂ t [2]. We represent the union

of two item sets (itemsets) or singleton items, �1 and �2, as �1�2.
The confidence of a SAR �→� is conf (�→�) = sup(��)

sup(�)
. To

attain �-uncertainty, we need to ensure that the confidence of each
SAR is lower than �. The following lemma shows that we only
need to consider association rules with a singleton consequent.

LEMMA 3.1. If an association rule �→�, where � is a single
item, has confidence conf (�→�) < �, then any rule �→Z with
� ∈ Z also has a confidence less than �.

PROOF. Every transaction that contains �Z also contains ��.
Then sup(�Z) ≤ sup(��), hence

conf (�→Z) =
sup(�Z)

sup(�)
≤ sup(��)

sup(�)
= conf (�→�) < �

Thus, the confidence of rule �→Z is less than �.

Notation Meaning
ℐ The domain of items
ℐS The set of sensitive items in I
ℐN The non-sensitive items in I; ℐS ∪ ℐN = ℐ
ℋ The hierarchy of non-sensitive items in ℐN
D A set of transactions
D′ The anonymized form ofD

sup(a) The number of transactions inD that contain item a

Table 2: Notations and their meanings

3.2 Information Loss Metric
A utility metric should indicate the expected performance in a

task. We adapt the information loss metric used in [15, 23, 14].
This metric measures the fitness of the anonymized data for a va-
riety of data mining tasks, including classification, analytical pro-
cessing, and rule mining. We emphasize that the nature of this
metric reflects an established consensus that antecedent research on
anonymization using generalization and suppression has arrived at
[12, 11, 30, 23, 14], which we follow. It would also be desirable to
compare the association rules mined from anonymized data to those
mined from the original data. Still, there is no straightforward way
of doing so. The anonymized data can be used to mine generalized
association rules [22]. Such rules are correct; they can be mined
from the original data too; there is no error in them. After all, min-
ing generalized association rules is a valid and self-contained data
mining application in itself [22]. These rules are characterized by
less specificity, as they view the data from a higher (but not less in-
teresting) point, blurring details. The degree to which a generalized
association rule correctly reflects more particular associations de-
pends on the nature of the underlying data. Still, generalized rules
can offer bounds on the confidence of the more particular rules they
may represent. An exploration of this question would open a sep-
arate and worthwhile research question, following the footsteps of
[22]. Here it is safe to claim that the more generalization or sup-
pression we perform, the less specific rules we will derive. Our
metric measures this indistinctness in the anonymized data.

ALL

wine

alcohol

beer

meat

beeffish
Figure 1: A hierarchy of non-sensitive items

As we discuss in Appendix B, we employ a generalization hierar-
chy for items in ℐN . A leaf node therein represents a non-sensitive
item. An internal node is a generalized value of its descendants; the
root stands for the generalized value of all items. Figure 1 shows
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an example. Items beer, wine, fish, and beef are non-sensitive.
The former two can be generalized to alcohol, and the latter two
to meat. alcohol and meat can be further generalized to ALL.

Let ℋ be a hierarchy of non-sensitive items, and n a node in it.
We define the information loss of n as follows:

ℐℒn =
∣leaves(n)∣
∣ℐN ∣

where leaves(n) is the set of leaves under the subtree rooted at n
inℋ. If n is a leaf, then leaves(n)=∅. For the hierarchy in Figure
1, the information loss of node alcohol is ∣leaves(alcohol)∣

4
= 1

2
.

Given an item a, the information loss it involves is defined as:

infoLoss(a) =

{
ℐℒn, if a is generalized to node n ∈ ℋ

1, if a is suppressed
For example, if beer is generalized to alcohol, it incurs infor-

mation loss infoLoss(beer) = ℐℒalcohol = 1
2

. As we will discuss
in Sections 4 and 5, we opt for global suppression and general-
ization. That is, a suppressed item is deleted from all transactions
containing it, and a generalized one is substituted by the same hier-
archy node in all transactions where it appears. These choices en-
sure that no false inferences are drawn from the anonymized data.

For any item a, let sup(a) be the number of transactions in a
transaction data set D that contain a, before anonymization. Then
the average information loss of an anonymized form D′ of D is:

avgLoss
(
D′
)

=

∑
a∈ℐ sup(a) ⋅ infoLoss(a)∑

a∈ℐ sup(a)

EXAMPLE 3.1. Assume there are three transactions as follows:
{wine, fish, pregnancy test, viagra}

{wine, beef}
{beer}

Assume a hierarchy (for non-sensitive items) as in Figure 1. If
we generalize fish and beef to meat and suppress viagra, then
avgLoss

(
D′
)

= 1/2+1/2+1
7

= 2
7

.

4. SUPPRESSION METHOD
We now examine how value suppression can be applied to con-

trol the confidence of sensitive association rules (SARs). We start
out by discussing what type of suppression is appropriate here.

Given a transactional dataset D and an item a participating in its
transactions, a can be partially suppressed, i.e., deleted from only
a subset of transactions in D that contain it. However, such partial
suppression may have undesired side-effects, such as the genera-
tion of false association rules [24]. As [27] has shown, an attempt
to prevent such effects limits our capacity to hide all sensitive rules.
To avoid such repercussions, we opt for global suppression: a sup-
pressed item is deleted from all transactions in D that contain it.
Global suppression does not generate false rules, and does not per-
turb the confidence of rules other than those we intend to conceal.

Suppression can be applied on both sensitive and non-sensitive
items. This flexibility comes in contrast to the usual assumptions
about anonymizing microdata, where there is exactly one sensi-
tive attribute whose values are not supposed to be suppressed [17].
Here, it may be advisable to suppress one sensitive item in order to
decrease one’s confidence for inferring the existence of another.

Our goal is to suppress a set of items S⊂ℐ so that the confidence
of all minable SARs is kept lower than �, while avgLoss(D) is min-
imized. This is a combinatorial optimization problem. We could try
all subsets S⊂ℐ, check which ones yield a �-uncertain data set D′
when suppressed, and select the one of them that achieves the low-
est information loss; that would be the optimal solution. However,

checking all subsets of ℐ yields O
(
2∣ℐ∣
)

complexity. Given the
hardness of the problem, we direct our efforts towards an effective
heuristic. We opt for an iterative greedy heuristic. In a nutshell, it
conceals SARs in iterations of increasing antecedent cardinality. In
the ith iteration, it considers all derivable SARs with antecedents of
exactly i items, computes their confidences, and suppresses items
so as to blanket those that violate �-uncertainty. Suppressions con-
ducted at lower i save us from some confidence computations at
higher i; we gain efficiency at the price of optimality. The process
terminates after checking the longest minable SARs.

Let Sℛi be the set of SARs that violate �-uncertainty, hence
have to be concealed, in the ith iteration. Given an item b, either
sensitive or non-sensitive, let C(b,Sℛi) be the number of rules in
Sℛi that contain it (either in their antecedents or in their conse-
quents), and sup(b) the number of transactions in D that contain
it. We define the payoff ratio of item b with respect to Sℛi as
payoff(i, b) = C(b,Sℛi)

sup(b)
. This ratio expresses the amount of SARs

concealed per unit of lost information when we suppress b, hence
quantifies the suppression’s payoff. Higher payoff is preferable.

Our heuristic first computes the payoff ratios of all items in-
volved therein. Then, it progressively suppresses the next item of
highest payoff ratio. After suppressing an item b, it deletes from
Sℛi all SARs that contain it. This process terminates when Sℛi
becomes empty; then we move to Sℛi+1. The pseudo-code of this
SuppressControl algorithm is found in Section A.1.

Item Transaction Cover
a1 1, 2, 5
a2 2, 3, 4
� 1, 5
b1 1
b2 1, 2, 3, 5

 1, 4, 5

Itemset Cover SupportIntersection
a1, a2 2 1
a1, 
 1, 5 2
a1, b2 1, 2, 5 3
a1, b2, 
 1, 5 2

(a) Vertical format of Table 1 (b) Support computation
Figure 2: Support computation by cover intersection

To calculate the confidence of SAR �→�, we have to compute
the support of itemsets � and ��. We represent our transaction data
set in vertical format, where each item is followed by its transac-
tion cover, i.e., the list of transactions containing it [20, 32]. This
format allows us to compute the support of an itemset � by inter-
secting the transaction covers of any two subsets �,  ⊆ �, such
that �∪ =�. Figure 2(a) illustrates the vertical format of Table 1.

root

α

1a [1,5] 1b [1] 2b [1,5] [1,5] 1a [1,5] 2a [4] 1b [1] 2b [1,5]
α
[1,5]

intersection
1b [1]

Figure 3: First nodes of a Sensitive Rules Trie (SRT)
To facilitate SAR generation and antecedents support counting,

we employ two tries [5, 6]. The Sensitive Rules Trie (SRT) has
nodes associated to SARs, conceptualized as k-itemsets, including
the sensitive item in an SAR’s consequent and k−1 items in its
antecedent. The root corresponds to an empty itemset. Nodes at-
tached to the root represent an SAR’s sensitive consequent. Each
subsequent node stores the last item in the antecedent of the SAR it
stands for. A full SAR is reconstructed by following a path through
the SRT. A node’s siblings represent SARs that differ only at one
antecedent item. A join of sibling nodes generates an SAR of an-
tecedent larger by one item. Figure 3 shows a trie for all SARs de-
rived from Table 1 with antecedent size 1, and one with antecedent
size 2, namely a1b1→�; the latter is produced by joining sibling
nodes a1 (representing a1→�) and b1 (representing b1→�), and
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stored by appending a node of item b1 as a child of node a1; its
transaction cover is an intersection of those of a1 and b1.

Similarly, the Antecedents Trie (AT) is used to generate candi-
date itemsets that serve as SAR antecedents. Now each node rep-
resents an antecedent itemset, and is labeled by the last item in the
itemset it represents. A full itemset is reconstructed by following
a path through the AT. Nodes at lower levels represent itemsets of
higher cardinality. As with the SRT, larger antecedent itemsets are
generated from existing ones by joining sibling nodes. Each node
stores the transaction cover of the itemset it stands for. Thus, again,
an intersection operation suffices to calculate the cover of a larger
itemset and its support. Figure 4 illustrates an example of AT node
generation and support computation for the data set in Table 1. The
full AT is too large to show here, as it has 37 nodes over 5 levels.

root

1a [1,2,5] 2a [2,3,4] 2b [1,2,3,5] [1,4,5]1b [1]
α
[1,5]

intersection

1b [1]
Figure 4: First nodes of an Antecedents Tree (AT)

Our algorithm uses these structures to identify SARs whose con-
fidence exceeds �, expanding them by one level per iteration. To
facilitate this operation, we use a structure akin to the Frequent
Pattern tree [13], the Payoff Tree (PT). A path in a PT represents
an SAR to be concealed. Now the sensitive consequent is repre-
sented by the leaf node where the path ends, and its ancestors stand
for the antecedent. For each item, a header table records the num-
ber of SARs and transactions in which this item is involved. This
information aids the calculation of payoff ratios. The worst-case
complexity of these structures is O

(
∣D∣m2m−1

)
, where m is the

maximum transaction length in D. In practice, it is pruned by sup-
pressions performed before high itemset cardinalities are reached,
as in [31]. Section A.1 illustrates our method with an example.

5. GENERALIZATION METHOD
In this section we examine how value generalization can be ap-

plied to our problem. Like suppression, generalization comes in
two variants: local and global. In local generalization [14], differ-
ent instances of the same item may be generalized to different levels
in a generalization hierarchyℋ. However, as the case is with partial
suppression, local generalization has unwelcome side-effects. It al-
lows for inconsistencies in our generalization choices, from which
privacy-threatening inferences can be made by an adversary, as in
[26]. Besides, the extra precision it allows for does not translate
to more precise association rule mining. When mining association
rules from a locally generalized data set, no precise confidences can
be calculated for rules involving locally generalized items, but only
upper and lower bounds thereof; thereby, the estimated confidence
of certain association may be inadvertently increasing, leading to
the mining of false positive rules. On the other hand, global gener-
alization [23] maps all instances of an item b, as well as all items
of the same subtree of hierarchy ℋ, to the same level in ℋ. For
example, using the hierarchy in Figure 1, if an instance of beer is
generalized to alcohol, then all other instances of beer, as well as
all instances of wine, are consistently generalized in the same man-
ner. Even if only an instance of beer were generalized to alcohol,
one would not be able to mine exact inferences involving beer and
wine; only inferences at the generalization level of alcohol would
be unambiguous. This state of affairs is the same with global gen-
eralization; local generalization does not offer a significant mining

advantage. In conclusion, we opt for global generalization.
A further question is whether we should apply generalization on

both sensitive and non-sensitive items, as we do with suppression
in Section 4. We opt for generalizing only non-sensitive items. Ap-
pendix B presents our detailed argument. Its core is that a sensitive
item should never be generalized at an intermediate hierarchy level;
if it were, then that choice itself would reveal sensitive information.
Again, this argument is reminiscent of the minimality attack argu-
ment made by [26] in the context of microdata anonymization.

In effect, we develop an algorithm that anonymizes D by ap-
plying global generalization over the hierarchyℋ of non-sensitive
items in ℐN , along with selective global suppression of some items.
In a nutshell, our algorithm performs a top-down particularization
process. It starts out assuming that all items in D are generalized
at the top level of ℋ, represented by the root node. This state of
affairs satisfies �-uncertainty, but provides no information at all. In
order to recover some information, we relax, or particularize, the
generalization by moving along branches ofℋ in a greedy manner.
A particularization is a move from (i.e., split of) a node n inℋ to its
children, which allows all items in D that belong to leaves of n to
assume the more particular values in those children. For example,
in the hierarchy of Figure 1, splitting node ALL to its children nodes
alcohol and meat allows all instances of fish and beef (beer
and wine) in our data to assume the value meat (alcohol) instead
of ALL. A particularization move aims to gain as much information
as possible. However, a particularization per se may uncover item
values in a way that violates �-uncertainty. In a such a case, our
algorithm examines whether the violation of �-uncertainty can be
avoided by suppressing some items, and calculates the net informa-
tion gain of the combined particularization-and-suppression move.
At each step, the algorithm opts for the move of maximum net in-
formation gain. We now present the tools this algorithm employs.

5.1 The Particularization Tree
We represent particularizations (i.e., from a bottom-up view, gen-

eralizations) using a particularization tree T . A node n of T maps
a node ofℋ, which represents a set of items v(n), as follows:

v(n) =

{
{n}, if n is a leaf node inℋ

leaves(n), otherwise

The leaves of T (which may be internal nodes of ℋ) show the
level of generalization to which all instances of items beneath them
inℋ are generalized. A leaf node ℓ∈T that maps a leaf node inℋ
indicates that the related item is not generalized at all. A leaf node
ℓ in T that maps an internal node in ℋ prescribes that any item
a ∈ v(ℓ) that appears in any transaction t ∈D is generalized to ℓ.
This generalization at ℓ, applied on D, yields information loss:

Gℐℒ(ℓ) =
∑
a∈v(ℓ) sup(a) ⋅ ℐℒℓ (1)

Coming back to the example using the hierarchy ℋ in Figure 1,
a particularization tree T built over ℋ initially consists of the root
node ALL. The split of this node, provided it incurs positive infor-
mation gain, adds alcohol and meat as leaves in T . Next, assume
that splitting alcohol brings about positive net information gain,
but splitting meat does not. Then alcohol is split into beer and
wine. Eventually, T contains three leaf nodes, beer, wine, and
meat, denoting the adopted generalization rules (GRs). According
to these GRs, all instances of fish and beef in D are mapped to
meat. More details on this algorithm are discussed in Section 5.3.

5.2 Potential Net Information Gain
As we discussed, our algorithm aims to achieve as much net in-

formation gain as it can at each step. When faced with more than
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one option, it greedily carries out the move that offers the greatest
information gain benefit. Information gain is negative information
loss. When particularization is combined with suppression, we cal-
culate their net effect on data utility. Negative information gain (i.e.,
positive information loss) can also arise from a move.

To faciliate the greedy choice of one among the leaf nodes of T
that are candidate for splitting, we define the Potential Net Infor-
mation Gain (PNIG) a node’s split will effect, if carried out:

pnig(x) =

(
Gℐℒ(x)−

∑
C∈children(x) Gℐℒ(C)

)
− loss (2)

This function calculates the information that would be gained
by splitting a leaf node x in T as the difference of the informa-
tion loss by generalization involving x before the split (first term)
from that after the split (second term), minus the loss of informa-
tion caused by item suppressions required to maintain �-uncertainty
(third term). A need for such suppressions can arise from SARs
violating �-uncertainty, whose antecedents contain the newly par-
ticularized children of x. In order to find items that would have
to be suppressed to maintain �-uncertainty, we use a variant of
suppressControl that duly selects items for suppression, but does
not suppress them; it only returns the third term in Equation 2.

Still, in order to properly calculate the loss incurred by sup-
pressions of generalized items, we have to enhance the definition
of payoff ratio. The information loss incurred by suppressing a
generalized item g is not simply equal to the number of transac-
tions where it is found; it is only the difference between the loss
of a wholesale suppression and that already incurred by general-
ization to g. Suppressing g amounts to suppressing all items in
D already mapped to g. The number of such items is sup(g) =∑
c∈v(g) sup(c). The information lost by this mapping is sup(g) ⋅

ℐℒg , hence the information surviving after it is sup(g)⋅(1−ℐℒg).
Therefore, we redefine the payoff ratio as C(g,Sℛ)

sup(g)⋅(1−ℐℒg)
, where

Sℛ is the set of SARs we try to conceal and C(g,Sℛ) the number
of rules in Sℛ that contain g. Our suppression mechanism again
selects the item of highest payoff ratio. The pseudo-code for our
PNIG calculation procedure infoGain is found in Section A.2.

5.3 The Algorithm
We now give more details on our top-down global generalization

algorithm, TDControl. As we discussed, it constructs a particular-
ization tree T in a greedy manner, aiming to achieve the highest in-
formation gain possible in each move. It terminates when no move
of positive net information gain is possible any more; i.e., when
any possible particularization move would violate �-uncertainty,
and the suppressions required to safeguard it would cause more loss
of information than the gain the particularization offers in the first
place. In such circumstances, Equation 2 would acquire negative
values for all candidate nodes. These leaf nodes in the final partic-
ularization tree T define the final GRs applied to anonymize D.

In more detail, T is initialized as the root ALL of ℋ, which
holds all items in ℐN . Then, at each iteration, we calculate the
PNIG of all leaf nodes of T , and split the node ℓ of highest PNIG.
This split adds to T the children of ℓ, as found inℋ, which become
leaf nodes in T themselves, and hence candidates for splitting in
the next iteration. Section A.2 provides the pseudo-code of this
TDControl algorithm and a full example of its operation.

6. EXPERIMENTAL EVALUATION
Now we evaluate the effectiveness of our algorithms. We clar-

ify that SuppressControl is a stand-alone scheme that achieves �-
uncertainty by suppression. TDControl obtains �-uncertainty by

both generalization and suppression, while it uses SuppressControl
as a component. Our schemes are not comparable to previous
works in transaction anonymization, because such works do not
provide �-uncertainty guarantees. Thus, we compare against a
baseline �-uncertainty-attaining method, denoted as Simple, which
suppresses all sensitive items and preserves others without gener-
alization. Qualitatively, this suppression incurs a distinctive dam-
age, as it disables all mining related to sensitive items. The de-
sired outcome is to enable such mining to the extent allowed by
�-uncertainty. Our methods are designed with this goal in mind.

We assess performance in terms of runtime and the information
loss incurred to achieve �-uncertainty. Algorithms were imple-
mented in C++ and ran on an Intel Core 2 Duo 2.33GHz machine
with 4GB RAM running Windows XP. We used benchmark data
that are popular in related research [23, 14], described in Appendix
C. As no distinction of sensitive from non-sensitive items is pro-
vided in the data, we randomly select sensitive items, tuning their
percentage; its default value is 40%. Given the set of non-sensitive
items ℐN , a fan-out parameter determines the shape of hierarchyℋ.
Our default fan-out is 4. The problem posed by �-uncertainty be-
comes computationally harder as the maximum transaction length
increases. Even so, our best method can process 99% of the largest
test dataset. We also conduct detailed experiments on transactions
of at most 5 items. Last, our default value of � is 0.5.

Varying dataset. We first run all algorithms with default pa-
rameters on all datasets. Figure 5 illustrates the results. WV1
stands for BMS-WebView-1, WV2 for BMS-WebView-2, and POS
for BMS-POS. SuppressControl performs poorly in both informa-
tion quality and time. Checking the anonymized datasets it pro-
duces, we find that SuppressControl suppresses almost all the sen-
sitive items, and it also suppresses a few non-sensitive items. For
instance, SuppressControl suppresses 90% of sensitive items in
WV1, as well as 60% of non-sensitive ones, but TDControl sup-
presses 80% percent of sensitive items only. Thus, the output of
SuppressControl is worse than Simple, even as it tries to mini-
mize information loss at each iteration. SuppressControl performs
worse than TDControl in terms of efficiency too, as the former
needs to consider all SARs in the whole dataset at each iteration,
while the latter only processes SARs restricted to a subset of items.
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Figure 5: Varying datasets
In the following experiments we use the BMS-POS dataset. Re-

sults with the other two datasets exhibit similar trends. Further-
more, BMS-POS is much larger than the others. Thus, we consider
BMS-POS as a better ground for testing the strengths and weak-
nesses of the algorithms we compare.

Processing transactions of increasing length. In our previous
experiments we have set the maximum length at 5. This setting
allows us to illustrate the practical feasibility of our strong privacy
objective with real-world data of reasonable transaction length, for
which our techniques are most suitable. This choice has processed
306, 983 out of 515, 597 transactions in BMS-POS, thus excluded
40.5% of the transactions, which have length more than 5. It is
interesting to examine to what extent our �-uncertainty algorithms
can operate on data of unbounded transaction length. To this end,

1038



we have experimented as follows. We sorted the transaction in
BMS-POS by length in ascending order, and processed prefixes of
this ordered dataset, using the default settings of �=0.5, fan-out 4,
and the percentage of sensitive items at 40%.
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Figure 6: Varying the size of dataset
Figure 6 shows the results as a function of the size of the dataset

prefix involved. Given the sorted order, larger size involves not only
more transactions, but also increasingly longer transactions. The
maximum transaction lengths for the six prefixes in the experiment
are 2, 3, 5, 9, 23, and 77, respectively. SuppressControl can pro-
cess up to 400, 000 tuples before running out of memory. However,
our method of choice, TDControl, can satisfactorily process up to
515, 500 tuples (i.e., 99% percent of data in BMS-POS), involving
all transactions of length no more than 77, i.e., allowing an adver-
sary’s knowledge of up to 76 items in a transaction, and maintains
its information loss advantage with respect to Simple. This result
confirms that �-uncertainty is a feasible privacy objective even for
data sets containing very long transactions and a high percentage of
sensitive items. Previous works dealing with sensitive item disclo-
sure do not experiment with such settings, even while they define
the problem in a less general manner. [30] assumes as a default
setting that an adversary may know only up to p = 4, only non-
sensitive, items in a transaction; [12] assumes as a default setting
that there are only 10 sensitive items in the data and also postulates
that an adversary can only know about non-sensitive items. Simple
is the fastest algorithm in this experiment, but its information loss
does not present a clear pattern, as sensitive items are randomly se-
lected. The amount of SARs to conceal grows as a function of the
maximum transaction length, which increases as the prefix is en-
larged. Thus, it is increasingly harder to reduce the confidence of
SARs lower than �. Therefore, the information loss of TDControl
and SuppressControl grows with prefix size. Last, the runtime of
all three algorithms grows with the prefix size as expected.
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Figure 7: Varying the value of �
Tuning �. Next, we use the prefix with 300, 000 tuples as the

experiment dataset, denoted as POS 30k. We randomly mark 40%
percent of the items in POS 30k as sensitive, denoted as ℐS 30k 40,
and vary �. Figure 7 shows our results. As expected, the informa-
tion loss of both TDControl and SuppressControl decreases as a
function of �. This is due to the fact that higher � requires less
SARs to be concealed. However, as � grows, the amount of sup-
pressed sensitive items decreases, therefore more SARs need to be
checked at each step. In effect, runtime grows with �. As in pre-
vious experiments, TDControl achieves the best information qual-
ity, while its time efficiency stands between those of Simple and
SuppressControl. The performance of Simple is not affected by �.
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Figure 8: Varying the fanout of the hierarchy

Tuning fan-out. Figure 8 presents our results as a function of the
fan-out value in the hierarchy ℋ, using dataset POS 30k and the
set of sensitive items ℐS 30k 40. This parameter only affects the
performance of TDControl, yet the information quality achieved
by TDControl does not change uniformly as a function of fanout.
Still, overall the curve suggests that a smaller value of fanout tends
to preserve more information. After all, when the fan-out is higher,
then more nodes are generalized to a single node in one step, hence
the likelihood of over-generalization is increased. On the other
hand, for lower fan-out the hierarchy ℋ is deeper, hence the num-
ber of possible intermediate generalization levels for each leaf node
is increased, and it becomes more likely that an item is generalized
to a level where more information is preserved. For similar reasons,
runtime tends to drop for higher fan-out.
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Figure 9: Varying the percentage of sensitive items

Tuning percentage of sensitive items. We now tune the per-
centage p of items selected as sensitive with POS 30k. Six sets of
sensitive items are generated. For consistency, we ensure that the
set of sensitive items for a smaller percentage is a subset of that for
larger. Figure 9 shows the results. The number of minable SARs
that have to be concealed grows with p. In effect, the time required
to calculate the confidences of such SARs increases, hence infor-
mation loss and runtime grow. TDControl is again the clear winner
in terms of information preserved with a satisfactory runtime.
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Figure 10: Varying the number of items

Tuning ∣ℐ∣. Using POS 30k, we prepared datasets of differ-
ent numbers of distinct items. Let ℐ 30k be the item domain of
POS 30k. We randomly selected subsets of items ℐ′ from ℐ 30k,
and generated a dataset by removing from POS 30k all items not
appearing in ℐ′. For each generated dataset we randomly select its
set of sensitive items, ensuring that smaller sets of selected items
(sensitive items) are subsets of larger ones. Figure 10 shows our
results. Runtime grows with ∣ℐ′∣, as growing ℐ′ implies more data
and more SARs to handle. The information loss curve of Simple is
unstable, as the number of instances of each suppressed item varies.
However, since the amount of SARs to conceal grows as a function
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of ∣ℐ′∣, the information loss of TDControl and SuppressControl
grows with it as well. TDControl clearly outperforms the other
two methods in information quality in this experiment too.

A comparison to �1-to-�2 privacy. We introduce a new pri-
vacy model, �-uncertainty, and deterministic, generalization-based
algorithms to achieve it. Still, the same privacy guarantee can in
principle be provided, in expectation, by probabilistic perturbation-
based models. While the work needed in this area goes beyond the
scope of this paper, we can safely say that a starting point for a
perturbation-based scheme that achieves �-uncertainty in expecta-
tion would be the mechanism of �1-to-�2 privacy [9, 4], which aims
to hide the exact contents of transactions. Therefore, we conduct a
basic comparison to this technique in terms of information loss. We
adopt a basic version of �1-to-�2 privacy, using a simple form of
its select-a-size randomization operator; more sophisticated vari-
ants may achieve higher privacy (which we do not measure) at the
price of more information loss (which we measure). This operator
[9] features two parameters: a randomization level, 0 ≤ � ≤ 1 that
determines the amount of new items added in a transaction, and a
transaction subset size selection probability distribution, {p[j]}∣t∣j=0

[10, 9]. For each transaction t, an integer 0 ≤ j ≤ ∣t∣ is selected
with probability p[j], and j randomly chosen items from t are kept
in its perturbed version, t′. Then, each item a /∈ t is added to t′

with probability �. We assume a “default” probability distribution,
where p[j] =

(∣t∣
j

)
⋅ �∣t∣−j(1 − �)j , as each item in t is kept with

probability 1−�. We measure the information loss incurred by each
noisy item in t ∖ t′ as ℐℒn, where n is the lowest common ancestor
of all items in (t′∖t)∪(t∖t′), i.e. items added in, and missing from,
t′, in a hierarchy ℋ′ containing all items; when sensitive items are
removed fromℋ′, we get the hierarchy used by TDControl.
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Figure 11: A comparison to �1-to-�2 privacy

We first set �=�= 0.5 and study the effect of dataset size with
prefixes of BMS-POS sorted by length. Figure 11(a) shows the av-
erage information loss results. The loss of select-a-size roughly de-
pends on the amount of items kept, while that of TDControl is less
for smaller data size and converges robustly to a value lower than
that of select-a-size as the size grows. This result indicates that our
deterministic generalization framework can effectively contain the
amount of information sacrificed to achieve �-uncertainty in a way
competitive to randomization. Then we process transactions of size
at most 5, and study the effect of �, setting �= 1−�. This setting
forms a baseline for a perturbation scheme aiming at �-uncertainty.
Figure 11(b) shows our results. Higher � allows for more items to
be preserved, hence better accuracy. TDControl achieves higher
information accuracy for practically significant values of �.

7. CONCLUSIONS
This paper introduced �-uncertainty, the first, to our knowledge,

anonymization model that naturally safeguards against mining sen-
sitive inferences, without imposing constraints on an adversary’s
prior knowledge, and without falsifying data. Despite, or because
of, its naturalness, the model poses a non-trivial problem. Render-

ing a transaction data set �-uncertain in a way better than suppress-
ing all sensitive items is a challenging task. We apply sophisticated
techniques on this problem, with an algorithm that couples global
generalization over non-sensitive items with selective global sup-
pression of some items, without relying on precepts of relational
anonymization. We show that this algorithm consistently leads to
anonymizations of higher quality than the naive approach, and fa-
vorable results compared to a baseline perturbation-based scheme.
Appendix D discusses questions peripheral to our work.
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[2] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets

of items in large databases. In SIGMOD, 1993.
[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In VLDB, 1994.
[4] S. Agrawal, J. R. Haritsa, and B. A. Prakash. FRAPP: A framework for

high-accuracy privacy-preserving mining. Data Min. Knowl. Discov.,
18(1):101–139, 2009.

[5] A. Amir, R. Feldman, and R. Kashi. A new and versatile method for association
generation. Information Systems, 22(6-7):333–347, 1997.

[6] R. J. Bayardo, Jr. Efficiently mining long patterns from databases. In SIGMOD,
1998.

[7] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma. Probabilistic query expansion using
query logs. In WWW, 2002.

[8] E. Dasseni, V. S. Verykios, A. K. Elmagarmid, and E. Bertino. Hiding
association rules by using confidence and support. In IHW, 2001.

[9] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In PODS, 2003.

[10] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving
mining of association rules. In KDD, 2002.

[11] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis. A framework for efficient
data anonymization under privacy and accuracy constraints. ACM TODS,
34(2):1–47, 2009.

[12] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of sparse
high-dimensional data. In ICDE, 2008.

[13] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate
generation. In SIGMOD, 2000.

[14] Y. He and J. F. Naughton. Anonymization of set-valued data via top-down, local
generalization. PVLDB, 2(1):934–945, 2009.

[15] V. S. Iyengar. Transforming data to satisfy privacy constraints. In KDD, 2002.
[16] D. Kifer. Attacks on privacy and deFinetti’s theorem. In SIGMOD, 2009.
[17] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.

ℓ-diversity: Privacy beyond k-anonymity. ACM TKDD, 1(1):3, 2007.
[18] S. J. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule

mining. In VLDB, 2002.
[19] P. Samarati. Protecting respondents’ identities in microdata release. IEEE

TKDE, 13(6):1010–1027, 2001.
[20] A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for

mining association rules in large databases. In VLDB, 1995.
[21] Y. Saygin, V. S. Verykios, and C. Clifton. Using unknowns to prevent discovery

of association rules. SIGMOD Rec., 30(4):45–54, 2001.
[22] R. Srikant and R. Agrawal. Mining generalized association rules. In VLDB,

1995.
[23] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving anonymization

of set-valued data. PVLDB, 1(1):115–125, 2008.
[24] V. S. Verykios, A. K. Elmagarmid, E. Bertino, Y. Saygin, and E. Dasseni.

Association rule hiding. IEEE TKDE, 16(4):434–447, 2004.
[25] K. Wang, Y. Xu, A. W. C. Fu, and R. C. W. Wong. FF-anonymity: When

quasi-identifiers are missing. In ICDE, 2009.
[26] R. C.-W. Wong, A. W.-C. Fu, K. Wang, and J. Pei. Minimality attack in privacy

preserving data publishing. In VLDB, 2007.
[27] Y.-H. Wu, C.-M. Chiang, and A. L. Chen. Hiding sensitive association rules

with limited side effects. IEEE TKDE, 19(1):29–42, 2007.
[28] X. Xiao and Y. Tao. Anatomy: simple and effective privacy preservation. In

VLDB, 2006.
[29] X. Xiao and Y. Tao. Personalized privacy preservation. In SIGMOD, 2006.
[30] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing transaction databases

for publication. In KDD, 2008.
[31] G. Yang. The complexity of mining maximal frequent itemsets and maximal

frequent patterns. In KDD, 2004.
[32] M. J. Zaki. Scalable algorithms for association mining. IEEE TKDE,

12(3):372–390, 2000.
[33] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule

algorithms. In KDD, 2001.

1040



APPENDIX
A. PSEUDO-CODES AND EXAMPLES

A.1 Suppression Method
Algorithm 1 presents our suppression algorithm SuppressControl,

operating on a transactional dataset D.

Algorithm 1: SuppressControl(D)

Initialize i = 1;1
Initialize loss = 0;2
while true do3
Sℛ′

i = {�→ �∣ � ∈ ℐS , ∣�∣ = i};4
if Sℛ′

i = ∅ then5
break;6

Sℛi = {r∣r ∈ Sℛ′
i, conf(r) ≥ �} ;7

while Sℛi ∕= ∅ do8
Find the item b of maximum payoff(i, b);9
Suppress b;10
Delete all rules in Sℛi containing b;11
loss = loss+ sup(b);12

i = i+ 1;13
Return loss;14

The algorithm operates iteratively with increasing i. In the ith

round, it finds the set Sℛ′i of all SARs whose antecedents contain
exactly i items. It then extracts from Sℛ′i the set of those SARs that
have confidence at least � (Lines 4-7). Then it goes about conceal-
ing the SARs in Sℛi by suppressing the highest-payoff item until
Sℛi becomes empty (Lines 8-12). For that purpose, we maintain
a priority queue of item payoffs. For each item, we keep a bag of
rules that contain it, and for each rule the items in it. After each
item suppression, we update accordingly the payoff ratios of items
affected by the rule’s deletion, and the queue. The cost of Step 9
is logarithmic on the number of items. The algorithm terminates
when there is no SAR with an antecedent of i items, hence neither
one for larger values of i (Lines 5-6).

An example of our suppression strategy is shown below.

EXAMPLE A.1. We wish to render the transaction data set in
Table 1 in a �-uncertain form with � = 0.7. Assume that � and 

are sensitive items, while all the remaining ones are non-sensitive.
The tree in Figure 12 depicts the generated SRT for all the SARs
processed in the first round of the algorithm, for i = 1. Each path
in the tree starts out with the sensitive consequent of the rule it
forms, and continues with the nodes of all antecedent items.

root

α

1a [1,5] 1b [1] 2b [1,5] [1,5] 1a [1,5] 2a [4] 1b [1] 2b [1,5]
α
[1,5]

Figure 12: Sensitive rules with ∣�∣ = 1

root

1a [1,2,5] 2a [2,3,4] 2b [1,2,3,5] [1,4,5]1b [1]
α
[1,5]

Figure 13: Antecedents with ∣�∣ = 1

In order to calculate the confidences of the SARs in the SRT of
Figure 12, we also maintain an AT containing all possible SAR
antecedents, as in Figure 13. Using the information contained in
these two trees, we calculate the confidence of all SARs for ∣�∣ = 1,
and find the set of SARs whose confidence violates the threshold

� = 0.7, namely Sℛ1 = {� → 
, b1 → 
, b1 → �}. We need to
conceal the rules in Sℛ1.

Header table

item
Head of
node-link

α
1b

root

   :1

α :1 1b :2

α
   :1

rule info

:1

2

2
2

2

3
1

Figure 14: Payoff tree for ∣�∣ = 1

In order to carry out this concealment operation, we first con-
struct the payoff tree and the associated header table for these
SARs, as illustrated in Figure 14. The header table records the
number of SARs and transactions in which each item is involved.
The payoff tree paths represent the three SARs to be concealed. The
values beside each node label in this payoff tree denote the number
of paths (i.e., SARs) in the tree that pass through that node. For
example, the node label b1 : 2 indicates that there are two paths
passing through the node of item b1, hence two SARs involving that
item. Moreover, all nodes with the same item-label are linked by
dashed lines in the figure. Following these links, we can calcu-
late the aggregate number of SARs involving a certain item in the
header table. Thus, using the transaction number information in
the header table, we calculate, for example, that the payoff ratio
for item b1 is 2

1
. This payoff ratio is the highest among the three

items in our payoff tree. Thus, our algorithm first suppresses b1.
After suppressing b1, the SAR counters for the remaining two

items are updated accordingly. In particular, the SAR counter of
� becomes 1, since the SAR b1 → � has been now concealed and
only �→ 
 remains. Likewise, the SAR counter of 
 also assumes
the value 1, as b1 → 
 has been suppressed and only � → 

remains. In fact, a single SAR involves both of these two remaining
items. The highest payoff ratio is now achieved by �, hence we
suppress it. Thus, we have now concealed all rules in Sℛ1.

After we have suppressed b1 and �, the only SAR with i = 2
items in its antecedent that we can derive in the second round is
b2a1 → 
 with transaction cover [1, 2, 5] and conf(b2a1 → 
) =
sup(b2a1
)
sup(b2a1)

= 2
3
< �. Since this confidence does not violate our

threshold �, no SAR needs to be hidden. Eventually, in the third
round, we find there is no SAR with 3 items in its antecedent, hence
the suppression operation ends. Table 3 shows the resulting pub-
lished �-uncertain dataset.

TID Transactions
1 a1b2

2 a1a2b2
3 a2b2
4 a2

5 a1b2


Table 3: The published form of Table 1 after suppression

A.2 Generalization Method
Function 2 shows our PNIG calculation procedure infoGain. It

calculates the effect of splitting node x, receiving three input pa-
rameters: ℒ, the set of leaf nodes in the particularization tree;
x ∈ ℒ, the leaf node to be split; and ℋ, the hierarchy over non-
sensitive items. It is assumed that the anonymized dataset gener-
ated by applying on D the generalization rules defined by ℒ does
not give rise to SARs violating the � threshold; by induction, the re-
sult of the algorithm will satisfy �-uncertainty too. The information
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that would be gained if we split x is calculated as the difference of
the information loss before the split from that after the split (Lines
3-5). The splitting of x would transform ℒ to ℒx, in which x is
replaced by its children (Lines 6-9).

Function infoGain( ℒ, x,ℋ)
if x is a leaf node inℋ then1

Return -1;2
oldcost =

∑
a∈v(x) sup(a)× ℐℒx;3

newcost =
∑

C∈cℎildren(x)

(∑
d∈v(C) sup(d)× ℐℒC

)
;4

gain = oldcost− newcost;5
Copy ℒ to a local variable ℒx;6
Remove x from ℒx;7
foreach child C of x inℋ do8

Add C to ℒx;9
Dx = Particularize(trans(x),ℒx);10
loss = suppressTest(Dx);11
sx = set of items selected by suppressTest;12
pnig(x) = gain− loss;13
Return pnig(x);14

Still, the particularization carried out to gain information may
allow the derivation of SARs that violate the confidence thresh-
old �. In order to preserve �-uncertainty, we should perform some
suppression in combination with particularization. A violation of
�-uncertainty caused by splitting x can only arise from sensitive as-
sociation rules whose antecedents contain the newly particularized
children of x. Thus, in order to hide SARs that violate the thresh-
old � after splitting x, we only need to process transactions that
contain children of x. To facilitate this task, we need to know the
set trans(x) of transactions containing items in v(x); we discuss
how we do this in the overall algorithm later. Then, all transac-
tions in trans(x) are particularized (i.e., the children of x in them
are mapped to more specific generalization levels) according to the
(now relaxed) generalization rules defined by ℒx (Line 10). Then
we find those items that would need to be suppressed in the ensu-
ing data set Dx so as to maintain �-uncertainty. For this purpose
we use Function suppressTest, a variant of suppressControl that
selects items for suppression, but does not actually suppress them
(Line 11). We store the set of items sx that would have to be sup-
pressed (Line 12), so that we can retrieve them if we actually opt
for splitting x and incurring the calculated PNIG. Besides, this sup-
pression, if opted for by the algorithm, would cause information
loss, which is deducted from gain (Line 13).

Algorithm 3: TDControl(D,ℋ)

Let SD be a set of transactions, initialized to be empty;1
foreach t ∈ D do2

Let st be the set of sensitive items in t;3
if st is non-empty then4

Insert st into SD;5
SuppressControl(SD);6
ℒ = set of leaf nodes in T , initialized to empty;7
AddALL to ℒ;8
trans(ALL) = D;9
pnig(ALL) = infoGain(ℒ, ALL,ℋ);10
while true do11

m = node of maximum pnig in ℒ;12
if pnig(m) ≤ 0 then13

break;14
Suppress fromD all items in sm;15
Removem from ℒ;16
foreach child C ofm inℋ do17

Add C to ℒ;18
trans(C) = collect(trans(m), C);19

foreach node x ∈ ℒ do20
pnig(x) = infoGain(ℒ, x,ℋ);21

Generalize(D, ℒ);22

Next, Algorithm 3 illustrates the TDControl scheme. At the on-
set, this algorithm examines whether there are any SARs whose

antecedents consist only of sensitive items. Generalization of non-
sensitive items will have no effect on the confidence of such rules.
Therefore, in a pre-processing step, we use our suppression tech-
nique to control the confidence of such rules. We identify such
rules by collecting transactions containing at least one sensitive
item (Lines 1-5). We then apply our suppression technique to en-
force the � thershold on any SAR composed of sensitive items only.
The call to SuppressControl in Line 6 pertains to the suppression
of such rules only, since it receives a special data set SD containing
only the sensitive-item subset of each transaction t in D.

In its main part, the algorithm progressively constructs the par-
ticularization tree T , while keeping track of the set of its leaf nodes
ℒ. The leaf nodes in ℒ are stored in a priority queue that pro-
vides the node m that offers the maximum potential information
gain (Line 12). The while loop of Lines 11-21 recursively expands
T , greedily splitting the maximum-gain node m at each iteration,
until no positive gain can be harnessed any more. As we discussed,
when a maximum-gain node m is split, we may have to suppress
some items in order to preserve �-uncertainty; these items are pro-
vided by the set sm calculated by infoGain (Line 15). Moreover,
the children of a split node replace it in ℒ (Lines 16-19).

As we have seen before, to facilitate the PNIG computation for
a certain node x, we need to know the set trans(x) of all transac-
tions that contain items in v(x). Thus, for each child C of a split
node m, we collect the set trans(C) from the already known set
trans(m), where trans(C) ⊆ trans(m) (Line 19). Besides, after
ℒ is updated, the PNIGs of all nodes in ℒ are re-calculated by the
infoGain process (Lines 20-21). This recalculation is needed be-
cause the suppressions that may be needed after splitting any node
inℒmutually depend on the positions of all other nodes inℒ (Lines
10-11 in infoGain). Thus, they all have to be re-calculated. Even-
tually, after the particularization process is finished, the generaliza-
tion specified by ℒ is applied on D (Line 22). By construction,
the anonymized data set D′ so generated does not contain SARs
violating �-uncertainty.

The following example illustrates our generalization strategy.

EXAMPLE A.2. Assume we wish to anonymize the data in Ta-
ble 1 with � = 0.7. Items � and 
 are sensitive, while all others
are non-sensitive. The hierarchy of non-sensitive items ℋ is given
in Figure 15, ignoring the dotted lines in it: the children of A are
a1 and a2 only, and those of B are b1 and b2 only. Then SD =
{�
, 
, �
} (Lines 1-5 in algorithm 3). Then suppressControl will
suppress item � (Line 6). ℒ and trans(ALL) are initialized as
ℒ = {ALL} and trans(ALL) = {1, 2, 3, 4, 5}. By the applica-
tion of the generalization rules inℒ, trans(ALL) assumes the form
{ALL
,ALL,ALL,ALL
,ALL
}. The only sensitive rule that
can be derived is ALL → 
, with a confidence of 0.6, which
does not violate �-uncertainty. Thus, we proceed to particulariza-
tion. For the splitting of ALL into A and B, it is oldcostALL =
(sup(a1) + sup(a2) + sup(b1) + sup(b2)) ⋅ ℐℒALL = 11 and
newcostALL = (sup(a1)+sup(a2))⋅ℐℒA+(sup(b1)+sup(b2))⋅
ℐℒB = 5.5. Thus, gainALL = oldcostALL − newcostALL =
5.5. If the split is carried out, then it will be ℒALL = {A,B}.
DALL, the form of data generated by applying the generaliza-
tion specified by ℒALL, is {AB
,AB,AB,A
,AB
}. No sen-
sitive rule that violates the threshold � can be generated, hence
lossALL = 0 and pnig(ALL) = 5.5. Therefore the split is al-
lowed, and ℒ = ℒALL = {A,B}. Now we have two candidates
in ℒ for splitting. v(B) = {b1, b2}, so trans(B) = {1, 2, 3, 5}
and ℒB = {A, b1, b2}. DB , generated by applying the generaliza-
tion specified by ℒB on trans(B), is {Ab1b2
,Ab2, Ab2, Ab2
}.
oldcostB = (sup(b1) + sup(b2)) ⋅ ℐℒB = (1 + 4) ⋅ 1/2 =
2.5. newcostB = 0, since b1 and b2 incur no generalization on
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trans(B), hence gainB = 2.5. However, the sensitive rule b1 → 

will then have confidence 1. Therefore, we need to suppress b1, and
the real PNIG is pnig(B) = gainB − lossB = 2.5 − 1 = 1.5.
On the other hand, the PNIG for splitting A is 3, thus we opt
for splitting A first, and get ℒ = {a1, a2, B}. Finally, we also
split B, while suppressing b1, hence ℒ = {a1, a2, b2}. We do
not include b1 in ℒ, since it has been globally suppressed. Apply-
ing the generalization implied by ℒ on Table 1, we eventually get
D′ = {a1b2
, a1a2b2, a2b2, a2
, a1b2
}. This result is by coinci-
dence the same as that of Table 3.

ALL

A B

1a 2a 1b 2bα

Figure 15: A simplified item hierarchy

B. DELIMITATION OF THE GENERALIZA-
TION DOMAIN

This Section discusses our generalization choices. We assume an
adversary who has knowledge of the published data, as well as the
generalization hierarchy that we employ. Such knowledge needs to
be made public, in order for the published form of the data to retain
its usefulness.

We first discuss whether we should adopt a generalization hi-
erarchy that combines sensitive and non-sensitive items (i.e., ℐN
and ℐS). A straightforward application of global generalization
would suggest generalizing all items in ℐ so as to achieve low
confidences for sensitive rules, assuming that a generalization hi-
erarchy defines mixed categories containing sensitive along with
non-sensitive items. Still, we should examine the ramifications of
such an approach. We start our study with the following lemma.

LEMMA B.1. Let D be a transactional data set, and ℋ′ be a
generalization hierarchy over its domain ℐ, including both sensi-
tive and non-sensitive items. If an item �, either sensitive or non-
sensitive, is generalized to one of its ancestors in ℋ′, Γ, then, for
any itemset �, conf(�→ Γ) ≥ conf(�→ �).

PROOF. Let t ∈ D be a transaction that contains �� ⊆ t. As-
sume t is transformed to t̄ when � is generalized to Γ. Then �Γ ⊆
t̄. Thus, any transaction containing �� prior to generalization, con-
tains �Γ after it. Then sup(�Γ) ≥ sup(��), from which it follows
that conf(�→ Γ) = sup(�Γ)

sup(�)
≥ sup(��)

sup(�)
= conf(�→ �).

Lemma B.1 appears superficially similar to Lemma 3.1, but they
are quite different. Lemma 3.1, deals with rule � → Z, where Z
is a combination of items. Thus, for a transaction to contain Z, it
should contain each of the items combined in Z; this requirement
is expressed as a conjunction. On the other hand, in Lemma B.1,
we deal with rule � → Γ, where Γ is a generalization. Thus,
for a transaction to contain Γ, it should contain any of the items
generalized to Γ; this requirement is expressed as a disjunction.

We proceed to examine the consequences of generalization ap-
plied on mixed hierarchies of sensitive and non-sensitive items in
ℐ. Let D be a transaction data set over ℐ with a mixed general-
ization hierarchy ℋ′. Assume an item b ∈ ℐ and sensitive item

 ∈ ℐS , such that the SAR b → 
 has conf(b → 
) ≥ �. Then,
we should decrease the confidence of this rule by generalization.
Suppose that we generalize b (and its siblings) to an ancestor Γ in

ℋ′, b ∈ leaves(Γ), so that the confidence of the rule Γ → 
 be-
comes less than �. This reduction of confidence can be effectively
achieved, because now sup(Γ) is counted over all items general-
ized to Γ along with b.

However, an attempt to decrease the confidence of a certain SAR
via generalization may inadvertently blur the confidence of another
SAR. Assume there exists a sensitive item � among the leaves of
Γ as well, � ∈ leaves(Γ). Then, after generalizing b to node Γ,
any SAR � → � is generalized to the rule � → Γ. According to
Lemma B.1, this generalized rule has higher or equal confidence
in relation to its more specific form.

Nevertheless, a suspicious adversary would assume that we have
generalized � to Γ in order to conceal its sensitive nature, and as-
sume the higher confidence of rule � → Γ as an upper bound for
the confidence of the hidden rule � → �. However, our inten-
tion is to allow interested parties who know the published form
of the data and the generalization hierarchy that we employ to de-
rive useful associations, while preventing them from inferring sen-
sitive associations. Employing a hierarchy that mixes sensitive with
non-sensitive items does not help our objectives. It complicates the
problem without offering an advantage.

EXAMPLE B.1. Assume the transaction data set of Table 1, with
the item hierarchy of Figure 15, and � = 0.65. Items � and 
 are
sensitive. SAR a1 → 
 has confidence 2

3
, higher than �. If we

generalize a1 to A, then conf(A → 
) = 3
5
< �. However,

this generalization blurs the confidence of another SAR, namely
b2 → �; its confidence before generalization is 1

2
< �, but after

generalization it is inadvertently submerged by rule b2 → A with
a confidence of 1.

Still, one could argue that generalizing sensitive items to a hier-
archy node deemed non-sensitive provides a handy method of pro-
tection. In fact, [25] suggests this approach as an anonymization
method. However, this approach defeats its own purpose. General-
izing at a specific non-sensitive level directly reveals that there has
been a need to do so, hence sensitivity is unveiled.

For example, assume we employ a hierarchy that generalizes Flu
and AIDS to Virus. An adversary who knows we employ this hi-
erarchy immediately assumes a high likelihood of AIDS in case
we have adopted such a generalization. Our generalization may in
fact be a side-effect of the need to generalize a non-sensitive sib-
ling of the sensitive item. We would prefer this kind of side-effects
to be avoided. After all, the problem at hand is to conceal sensi-
tive pieces of information by limiting an attacker’s ability to infer
them by association. Concealing sensitivity by merely mapping a
sensitive value to a non-sensitive ancestor in a generalization hi-
erarchy is only a solution of last resort. As we will discuss, the
form in which we employ such a solution of last resort is complete
suppression, which does not leave any room for ambiguity.

From the preceding discussion we conclude that it is preferable
to disengage the generalization hierarchy of non-sensitive items
(ℐN ) from that of sensitive items (ℐS). Thus, we employ gener-
alization hierarchyℋ consisting of non-sensitive items in ℐN only.
Sensitive items in ℐS should be treated separately.

We now discuss whether we should apply separate generaliza-
tion on ℐS itself. A generalization hierarchy over ℐS can be of
two kinds: Either intermediate nodes are considered as sensitive,
or as non-sensitive. Still, in both cases, the very generalization
of a sensitive value at a higher level does not conceal its sensitiv-
ity from an adversary; it would always reveal the sensitivity we
attempt to hide, defeating our purpose. This state of affairs is remi-
niscent of the minimality attack problem encountered in microdata
anonymization [26].
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To effectively prevent this problem, we opt for generalization for
ℐN only combined with selective global suppression. In this ap-
proach, a sensitive item may still appear in an SAR’s antecedent,
and it may be globally suppressed; but it will never be generalized
to an intermediate level. An SAR in the anonymized data set D′
may then only appear in the form Y → �, where Y may con-
tain intact sensitive items and (possibly) generalized non-sensitive
items, and � is a non-generalized sensitive item. For example, as-
sume that a data set D over the ℐN hierarchy of Figure 1 contains
the transaction {beer, beef, viagra}. If we generalize beer to
alcohol, then a mined SAR can be alcohol→ viagra.

C. DESCRIPTION OF DATA

dataset ∣D∣ ∣ℐ∣ max ∣t∣ avg∣t∣
BMS-POS 515,597 1,657 164 6.5

BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-2 77,512 3,340 161 5.0

Table 4: Dataset characteristics

We have used 3 datasets: BMS-POS, BMS-WebView-1, and BMS-
WebView-2. All are introduced in [33] and are common bench-
marks in the data mining community. The transactions in BMS-
POS are several years worth of point-of-sale data, collected from
a large electronics retailer. BMS-WebView-1 and BMS-WebView-2
are composed of the click-stream data generated in several months
from two e-commerce web sites. Table 4 summarizes the charac-
teristics of these data sets, where max ∣t∣ and avg∣t∣ represent the
maximum and average transaction size, respectively.

These data sets do not specify which items in them are sensitive.
Thus, we randomly choose a subset of items from the item domain
ℐ as sensitive items ℐS . We consider the remaining items to be non-
sensitive, and build a hierarchyℋ over them. We sort non-sensitive
items in the ascending order of their IDs, and assign neighboring
items to a common parent. The number of children per internal
node is controlled by the fan-out of the hierarchy.

D. DISCUSSION
To the best of our knowledge, this paper is the first to propose

generalization as a data anonymization technique aiming to con-
ceal sensitive association rules. Previous works either used gener-
alization in the context of differently defined objectives that do not
protect against the disclosure of sensitive information [23, 14], or
defined their models differently and did not use generalization as a
tool either [10, 8, 24, 12, 30, 12, 25].

Still, a discussion of the effects of generalization as an anonymiza-
tion technique in the context of the problem we examine is due.
Figure 16(a) shows 4 transactions, in which � is a sensitive item.

TID Transactions
1 a1�
2 a2�
3 a1a2�
4 a1a2

Rule Confidence
a1 → � 2

3

a2 → � 2
3

a1a2 → � 1
2

(a) A non-monotonic data set (b) Original Confidences

Figure 16: A non-monotonic dataset and original confidences

The confidences of three derivable SARs are presented in Figure
16(b). Still, if we generalize items a1 and a2 to A, then the only
derivable sensitive rule A → � has a confidence of 3

4
, higher than

that of any of the original SARs with � as the consequent.

We conclude that generalization does not obey the monotonicity
property. That is, generalizing to a higher level in the generaliza-
tion hierarchy does not necessarily lead to generalized forms of
derivable SARs with confidence equal to or lower than the specific
SARs they stand for; it may also lead to generalized [22] SARs
of higher confidences. The confidence of a generalized SAR, like
A → � in this example, provides to an adversary only an up-
per bound to the true confidence value of the more specific SARs
a1 → �, a2 → �, and a1a2 → � it represents. Thus, generaliza-
tion does not allows for exact calculation of the confidences of spe-
cific SARs, but only for the derivation of an upper bound therefor.
Our algorithm considers these upper bounds of confidence when it
tries to conceal SARs violating the �-uncertainty principle. Thus,
it provides safe guarantees.

We clarify that our algorithms are meant for application where
the number of distinct items per transaction is relatively small, while
the number of transactions is large. For example, that is the case
for e-commerce store or movie theater transactions. Our algorithm
SuppressControl, which forms a component of TDControl, needs
to iteratively compute all SARs formed for increasing antecedent
size. This process can be efficiently preformed for relative small
antecedent sizes [3].

Another question arises from the termination condition of
TDControl. This algorithm terminates when further particulariza-
tion would incur information loss, instead of gain, due to suppres-
sions required to prevent a breach of �-uncertainty. In effect, par-
ticularization ends at, and hence reveals, the point where a privacy
risk was at stake if it were carried forward. This revelation is rem-
iniscent of a state of affairs that arises in the problem of microdata
anonymization [26]. Throughout this paper, we have made argu-
ments akin to the ones made in [26] to justify our choices of global
suppression and generalization, and of not generalizing sensitive
items. Still, a discussion about the relevance of the exact argument
made by [26] is also due. We provide such a discussion here.

In the microdata anonymization problem, an adversary has ac-
cess to an eponymous (i.e., not anonymous) external table of all per-
sonal non-sensitive attribute values. Furthermore, anonymized mi-
crodata fully preserve the values of a sensitive attribute in the pub-
lished table, hence the adversary has access to those too. On top of
that, it is assumed that an adversary knows the privacy goal the em-
ployed anonymization algorithm aims at, as well as the anonymiza-
tion technique it uses. Armed with all this information, and ob-
serving the generalization choices the anonymization algorithm has
made, adversaries can deduce sensitive information. The reasoning
they apply in such a minimality attack is based on counting the total
appearances of each sensitive value in the published table [26].

It is tempting to examine whether such an attack, or, for that
matter, a deFinetti-style attack [16], could apply to transaction data
anonymization, as they apply in the context, and under the partic-
ular assumptions, of microdata anonymization. Nevertheless, the
transaction anonymization problem does not involve the collateral
publication of all non-sensitive transaction contents in an epony-
mous rendering. Thus, there is nothing analogous to the epony-
mous external table of microdaa anonymization. Adversaries only
have as much information about individual itemsets as they can
themselves observe. The equivalent state of affairs in microdata
anonymization is to know non-sensitive attribute values of specific
persons, not a full table. Furthermore, not all sensitive transaction
items are preserved in the published data, hence their full frequency
distribution cannot be reconstructed from the published data, as the
case is in microdata anonymization. In conclusion, the core of the
reasoning behind the type of attacks raised in [26, 16] is rendered
moot in the case of transaction data anonymization.

1044




