Component-trees and multivalued images: Structural Properties

Abstract : Component-trees model the structure of grey-level images by considering their binary level-sets obtained from successive thresholdings. They also enable to define anti-extensive filtering procedures for such images. In order to extend this image processing approach to any (grey-level or multivalued) images, both the notion of component-tree, and its associated filtering framework, have to be generalised. In this article we first deal with the generalisation of the component-tree structure. We define a new data structure, the component-graph, which extends the notion of component-tree to images taking their values in any (partially or totally) ordered set. The component-graphs are declined in three variants, of increasing richness and size, whose structural properties are studied.
Type de document :
Rapport
[Research Report] 2011, pp.10
Liste complète des métadonnées

https://hal.inria.fr/inria-00611714
Contributeur : Benoît Naegel <>
Soumis le : jeudi 20 octobre 2011 - 09:43:49
Dernière modification le : samedi 13 janvier 2018 - 01:03:11
Document(s) archivé(s) le : samedi 21 janvier 2012 - 02:25:23

Fichier

article_double.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00611714, version 2

Collections

Citation

Nicolas Passat, Benoît Naegel. Component-trees and multivalued images: Structural Properties. [Research Report] 2011, pp.10. 〈inria-00611714v2〉

Partager

Métriques

Consultations de la notice

144

Téléchargements de fichiers

146