
HAL Id: inria-00611823
https://inria.hal.science/inria-00611823

Submitted on 28 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Terrain Modeling using CPU-GPU Coupled
Computation

Adrien Bernhardt, André Maximo, Luiz Velho, Houssam Hnaidi, Marie-Paule
Cani

To cite this version:
Adrien Bernhardt, André Maximo, Luiz Velho, Houssam Hnaidi, Marie-Paule Cani. Real-time Terrain
Modeling using CPU-GPU Coupled Computation. SIGGRAPH ’11, Aug 2011, Vancouver, Canada.
pp.Article No. 65, �10.1145/2037715.2037788�. �inria-00611823�

https://inria.hal.science/inria-00611823
https://hal.archives-ouvertes.fr


Real-time Terrain Modeling using CPU–GPU Coupled Computation

Adrien Bernhardt1 André Maximo2 Luiz Velho2 Houssam Hnaidi3 Marie-Paule Cani1
1 INRIA, Grenoble Univ., France 2 IMPA, Brazil 3 LIRIS, CNRS, Univ. Lyon 1, France

(a) (b) (c)

Figure 1: Terrain modeling example: as each stroke is drawn (a) or manipulated (c), the terrain is tessellated in the GPU to follow the stroke.
In the CPU, the quadtree data structure (b) controls the quad patches sent to the GPU.

Introduction and Related Work In many editing tools, espe-
cially sketch-based modeling, it is important to have real-time feed-
back to help improve the editing quality. This importance is empha-
sized particularly in sketch-based terrain modeling, being able to
see the terrain morphing at the same time the drawing edition occurs
constitutes a great user experience (see Figure 1(a)). In this work,
we propose a real-time terrain modeling tool by combining a fast
GPU-based terrain solver [Hnaidi et al. 2010] with a lightweight
CPU-based data structure. Our tool is capable of dynamically gen-
erate multi-resolution heightmaps, enabling it to tessellate different
parts of the terrain at different resolutions.

In our framework, we have two types of editing interactions: in the
spirit of [Gain et al. 2009], the user can draw strokes creating eleva-
tions and crevices; and previous strokes can be interactively moved
to different regions of the terrain. Differently than Gain et al.’s sys-
tem, we do not extract noise from the user strokes to make the ter-
rain more realistic, however we use a CPU–GPU coupled method to
drastically improve the performance of our tool, generating terrains
two orders of magnitude faster than Gain et al.’s work.

The terrain modeling in our approach is accomplished by combin-
ing the multi-grid GPU terrain solver of [Hnaidi et al. 2010] with
an adaptive tessellation-based rendering shader capable of handling
dynamic heightmaps. The main contribution of Hnaidi et al.’s work
is to propose a GPU-based multi-grid diffusion equation solver,
which interpolates not only heights but also amplitude and fre-
quency noise. Our modeling tool uses Hnaidi et al.’s solver to allow
an interactive manipulation of complex terrain primitives.

Real-time Terrain Modeling Creation of terrain models in real-
time involves dealing with dynamically changing data that in-
creases exponentially depending on the terrain resolution. In order
to provide a real-time terrain modeling tool, we make use of two
complementary approaches. First, a coarse version of the terrain is
maintained in the CPU using a quadtree (see Figure 1(b)), where
regions closer to the viewer are subdivided more than far regions.
This simple and lightweight data structure fits the CPU main role
of data control, while allowing it to send adaptive quad primitives
to the GPU. Second, a fine version of the terrain is produced in the
GPU using the tessellation control and evaluation shaders. The tes-
sellation control shader is responsible to subdivide regularly each
patch primitive, i.e. the quad leaf node sent by the CPU, while the
tessellation evaluation shader reads the height values from a texture.

The first step of our algorithm is to update the quadtree data struc-
ture using a LOD-based approach. We consider the projection of
the bounding box of each quad node by reading the minimum and
maximum height value that falls inside the node. The projection
is used to determine if the patch node needs to be sent to the GPU
and to interactively adapt the quadtree in a way that each projection
shape has about the same size.

The second step of our algorithm is to translate the sketch-defined
terrain primitives to constraints that are used by the multi-grid GPU
solver of [Hnaidi et al. 2010]. This solver provides a sequence of in-
creasing resolution grids, up to an arbitrary size, which we store in
a mipmap-pyramid texture to be read in our tessellation control and
evaluation shaders. The tessellation control shader uses it to decide
the subdivision level of each patch, while the tessellation evaluation
shader uses it to place each generated vertex at the proper height
value. The multi-resolution texture is also used by the CPU, but
only a small resolution (6th mipmap level) of it since the quadtree
minimum leaf size is much bigger than the texel from the highest
resolution texture.

In our early experiments we discovered that by modifying several
aspects of the original GPU solver, we are able to compute the en-
tire multi-resolution heightmap texture (with4K × 4K maximum
size) in80 ms using an off-the-shelf graphics card. Moreover, we
use the CPU to control the solver iterations and stop at a certain res-
olution and then resume computing when the GPU is idle. Another
interesting feature of our method is the balance between terrain gen-
eration in the CPU and in the GPU, we can control this balance by
simply changing the quadtree refinement. With these features, the
user can draw strokes and see at the same time the terrain morphing
to the drawing. Terrain primitives, such as cliffs and mountains, are
controlled seamlessly in our framework. In short, we believe this
work has the potential to become an effective terrain modeling tool,
creating high-quality terrain models in real-time.

References

GAIN , J., MARAIS, P.,AND STRAßER, W. 2009. Terrain Sketch-
ing. In Proceedings of the Symposium on Interactive 3D Graph-
ics and Games, ACM, New York, NY, USA, I3D ’09, 31–38.

HNAIDI , H., GUÉRIN, E., AKKOUCHE, S., PEYTAVIE , A., AND
GALIN , E. 2010. Feature based terrain generation using diffu-
sion equation.Computer Graphics Forum 29, 7 (September).


