Real-Time Quasi Dense Two-Frames Depth Map for Autonomous Guided Vehicles

Abstract : This paper presents a real-time and dense structure from motion approach, based on an efficient planar parallax motion decomposition, and also proposes several optimizations to improve the optical flow firstly computed. Later, it is estimated using our own GPU implementation of the well-known pyramidal algorithm of Lucas and Kanade. Then, each pair of points previously matched is evaluated according to the spatial continuity constraint provided by the Tensor Voting framework applied in the 4-D joint space of image coordinates and motions. Thus, assuming the ground locally planar, the homography corresponding to its image motion is robustly and quickly estimated using RANSAC on designated well-matched pairwise by the prior Tensor Voting process. Depth map is finally computed from the parallax motion decomposition. The initialization of successive runs is also addressed, providing noticeable enhancement, as well as the hardware integration using the CUDA technology.
Type de document :
Communication dans un congrès
IV'11 - Intelligent Vehicles Symposium, Jun 2011, Baden-Baden, Germany. IEEE, pp.497-503, 2011, 〈10.1109/IVS.2011.5940507〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00612341
Contributeur : Nathalie Gaudechoux <>
Soumis le : mercredi 4 décembre 2013 - 15:51:38
Dernière modification le : lundi 25 septembre 2017 - 14:48:02
Document(s) archivé(s) le : mardi 4 mars 2014 - 22:05:50

Fichier

Ducrot-all-IV01-2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

André Ducrot, Yann Dumortier, Isabelle Herlin, Vincent Ducrot. Real-Time Quasi Dense Two-Frames Depth Map for Autonomous Guided Vehicles. IV'11 - Intelligent Vehicles Symposium, Jun 2011, Baden-Baden, Germany. IEEE, pp.497-503, 2011, 〈10.1109/IVS.2011.5940507〉. 〈inria-00612341〉

Partager

Métriques

Consultations de la notice

364

Téléchargements de fichiers

387