
HAL Id: inria-00612418
https://inria.hal.science/inria-00612418

Submitted on 29 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ballot stuffing in a postal voting system
Véronique Cortier, Jérémie Detrey, Pierrick Gaudry, Frédéric Sur, Emmanuel

Thomé, Mathieu Turuani, Paul Zimmermann

To cite this version:
Véronique Cortier, Jérémie Detrey, Pierrick Gaudry, Frédéric Sur, Emmanuel Thomé, et al..
Ballot stuffing in a postal voting system. 2011 International Workshop on Requirements En-
gineering for Electronic Voting Systems (REVOTE 2011), 2011, Trento, Italy. pp.27 - 36,
�10.1109/REVOTE.2011.6045913�. �inria-00612418�

https://inria.hal.science/inria-00612418
https://hal.archives-ouvertes.fr


Ballot stuffing in a postal voting system

Véronique Cortier∗, Jérémie Detrey∗, Pierrick Gaudry∗, Frédéric Sur∗, Emmanuel Thomé∗,
Mathieu Turuani∗, and Paul Zimmermann∗

∗LORIA & CNRS & INRIA & INPL

Abstract—We review a postal voting system used in spring
2011 by the French research institute CNRS and designed
by a French company (Tagg Informatique). We explain how
the structure of the material can be easily understood out of
a few samples of voting material (distributed to the voters),
without any prior knowledge of the system. Taking advantage
of some flaws in the design of the system, we show how
to perform major ballot stuffing, making possible to change
the outcome of the election. Our attack has been tested and
confirmed by the CNRS. A fixed postal voting system has been
quickly proposed by Tagg Informatique in collaboration with
the CNRS, preventing this attack for the next elections.

I. INTRODUCTION

Voting systems have been invented a long time ago and
are one of the keystones of democracy. They are used in
many configurations with various issues, e.g., legislative or
presidential elections but also elections of representatives of
students, in unions and many other institutions. In France,
the most current and well known voting system uses paper
ballots, transparent ballot boxes and booth stations. This
standard voting system has been continuously improved
over the time and actually offers a good level of security
guarantees. It however requires the voters to attend a polling
station, which implies both some effort from the voters
and expenses for running a polling station. Therefore, some
voting systems also allow voters to vote from home. These
systems are typically used for medium-size and mid-level
elections. The simplest postal voting system consists of
having each voter use two envelopes: the voter chooses
his/her ballot and encloses it in a first (anonymous) envelope.
He/she then encloses the second envelope with the address of
the collector, this envelope being signed by the voter. While
convenient, this system can be easily subject to fraud since
malicious voters may vote on the behalf of other voters,
especially in case they know some voters will abstain (as
voters signatures are difficult to check). Moreover, there is
no guarantee that the collector will not open both envelopes
at the same time, therefore breaking voters’ confidentiality.
About a decade ago, electronic voting protocols have been

developed, allowing anyone to vote from any computer.
Voting machines have also been used in several countries
for national scale elections, replacing the old paper ballot
system. Such voting machines however still require the
voters to attend a polling station. While offering convenient
and efficient recording and tallying of the votes, these

new voting systems have been criticized and attacked. For
example, a catalogue of vulnerabilities and possible attacks
has been produced regarding the Diebold machines used
in 37 US states [14] or the Diebold AccuVote-TS voting
machine [9]. Recently, an electronic voting system about
to be used in Washington DC has been attacked in only a
few days [11], [20]. Consequently, these electronic voting
systems are still under evaluation.
In order to allow voters to vote from their home without

using computers, voting systems have been proposed to
improve the standard “two-envelope” system. They consist
of somewhat hybrid systems, still using paper ballots but
with barcodes (to facilitate the tallying phase using barcode
readers) and identifiers that should ensure that votes cannot
be linked to voters. They are typically used for elections
with intermediate issues such as elections of representa-
tives in unions, companies or many councils. Up to our
knowledge and surprisingly, these systems have not been
submitted to a careful security analysis (nor even design),
in contrast to electronic voting protocols. Some official
guidelines nevertheless exist. For example in France, the
Commission Nationale de l’Informatique et des Libertés

(CNIL) — which is an independent administrative authority
whose mission is to guarantee that data processing complies
with human rights, private life, or individual freedoms— has
recently issued recommendations about electronic voting [7].
A similar recommendation has been issued for postal voting
with barcodes [6].
In this paper, we review such a barcode voting system and

show that it suffers from a severe flaw that can be exploited
to perform major ballot stuffing. Specifically, we study the
postal voting system that has been used in spring 2011 by
the French research institute CNRS (Centre National de

la Recherche Scientifique) in an election involving about
30,000 voters (CNRS active and retired employees). The
voting system was designed and deployed by the French
company Tagg Informatique, contracted by the CNRS for
the organization of this election. We show how a malicious
user could perform ballot stuffing without even being noticed
by the system. This relies on the fact that the voting
material sent to voters contains predictable identifiers. The
predictability of the identifiers can then be exploited to forge
valid ballots. It is worth noticing that the discovery of the
attack has been made without any prior knowledge of the
system, simply by observing a few samples of the voting



material distributed to the voters. Moreover the attack can
be performed with only a few straightforward computations.
We have notified the CNRS and tested our attack by sending
50 (well identified) forged ballots, whose validity was later
confirmed by the CNRS. Informed of our discovery, the Tagg
Informatique company quickly changed its voting system,
preventing our attack scheme from being exploited further.
We believe that our attack exemplifies the need for clear

security requirements for voting systems, even for non
electronic ones. Here the CNRS had insisted in its security
requirements on the confidentiality and anonymity of the
votes. Similarly, the recommendations of the CNIL French
commission [6] mostly insist on the fact that it should not
be possible to link votes to the voters. While prominent and
rather obvious, voter eligibility (the fact that only eligible
voters should be able to cast at most one vote) seems to
have received insufficient attention.
Related work. There is an important amount of work on

the design and security analysis of electronic voting systems
in particular on voting machines [14], [9] or pure electronic
voting protocols such as Helios [1], Civitas [12], [5], or some
more theoretical ones [18], [10], [15]. By contrast, we focus
here on systems that do not require voters to use a computer.
ThreeBallot [19], Scantegrity [3] and Prêt à Voter [4] are
the three main examples of voting schemes that are purely
paper-based (from the user’s point of view). They however
require the voters to attend physical voting stations with
external authentication processes (such as ID card or voter
card). In the system we study, it is an important feature that
voters can vote from home.
Outline of the paper. We provide an informal description

of the system in Section II, as it can be observed by any
voter. In Section III, we explain how the structure of the
identifiers can be understood out of some ballot samples,
performing reverse engineering. Based on this reverse engi-
neering phase, we explain how to perform ballot stuffing in
Section IV. Further possible security flaws (e.g., regarding
confidentiality of the votes) are discussed in Section V. We
discuss which lessons should be learned from this case study
in Section VI.

II. DESCRIPTION OF BARCODE VOTING

The postal voting protocol at hand has been used by the
CNRS in spring 2011, for a nationwide union representative
election involving about 30,000 voters. The election was a
list system: the number of affiliated candidates being elected
depends on the number of votes that the list receives, each
list corresponding to a different trade union. Let us describe
the voting process from the candid user point of view.
Each voter receives the documents for the vote at home
by post. These documents are made of directions for use,
a detachable ballot (Fig. 1), and a sheet with the name of
the lists running for the election together with a sticker for
each one of them (Fig. 2). More precisely:

• The ballot displays a barcode with a 10-digit number.
The directions for use claim that it is “a random

barcode which permits to sign the attendance sheet,

while preserving anonymity and secrecy.” A place is left
blank to affix the sticker corresponding to the selected
list.

• The stickers for the lists display a barcode, with a 8-
digit number.

To sum up, once the voter has made his/her decision,
he/she affixes the corresponding sticker on the ballot (Fig. 3),
and then mails the ballot inside an anonymized envelope.

CARTE DE VOTE

1501229157

EXPRESSION DU VOTE

Figure 1. A blank ballot. The upper 10-digit barcode identifies the voter.

III. REVERSE ENGINEERING

Although we eventually had to study a total of ten samples
of voting material in order to guess what we believe to be,
with quite some confidence, most of the actual specifics of
the voting system, we want to stress that a good deal of
that knowledge was obtained after examining only a few
samples, and that even a single sample gave away some
critical information. This distinction is all the more relevant
since the most limiting factor for an adversary to be able to
carry out an attack is by far the number of samples he/she
will be able to procure.
To illustrate this point, we detail in the following para-

graphs how much understanding of the system can be
progressively guessed from the knowledge of one, then a
handful, and finally ten samples of voting material.

A. From one sample of voting material

1) Common prefix: Taking the example of the voting ma-
terial presented in Figs. 1 and 2 (sample #1 in Appendix A),
one can immediately remark that the 10-digit voter identifier
(1501229157) and all of the seven 8-digit list identifiers
(15010394, 15011485, and so on) start with the same 4-
digit sequence 1501. Whether this sequence is specific to
this sample only or to the whole election is unknown at this
stage, but we can nonetheless focus our first study on the
remaining digits of the identifiers.



LISTES CANDIDATES

List #1 (hidden for privacy)

15010394

List #2 (hidden for privacy)

15011485

List #3 (hidden for privacy)

15012576

List #4 (hidden for privacy)

15013667

List #5 (hidden for privacy)

15014758

List #6 (hidden for privacy)

15015849

List #7 (hidden for privacy)

15016930

SANS OBJET

SANS OBJET

Figure 2. The sheet with the names of the lists running for the election
(hidden here for privacy). A sticker with an 8-digit barcode is associated
with each list.

2) List identifiers: Let us now consider the last 4 digits
of the list identifiers: 0394, 1485, 2576, 3667, 4758, 5849,
and 6930. The somewhat regular increasing of these 4-digit
sequences, when seen as decimal integers, hints at a kind
of arithmetic progression. Indeed, there appears to be a
common difference of 1091 between the first 6 numbers.
However, trying to extend this guess to the last one, one
remarks that 5849+1091 is 6940 and not the observed 6930:
it seems that the first carry digit was not propagated to the
second digit. This led us to believe that the last digit had to
be considered separately, as would be the case for a check
digit, for instance.

Ignoring this last digit, we now observe a perfect arith-
metic progression on all the list identifiers, with common
difference 109, from L1 = 039 to L7 = 693 = L1+6×109.

Alternatively, one might also look at the last 4 digits of
the list IDs individually and remark that each of them forms
an increasing sequence, except for the third one which is
decreasing. In other words, noting xyzt the last 4 digits of

CARTE DE VOTE

1501229157

EXPRESSION DU VOTE

15012576

Figure 3. A cast ballot. The 8-digit barcode for the chosen candidate list
(here list #3) is affixed just above the mention “Expression du vote”.

the list ID #i, then the list ID #(i + 1) is x′y′z′t′, where:














x′ = (x + 1) mod 10,
y′ = (y + 1) mod 10,
z′ = (z − 1) mod 10, and
t′ = (t + 1) mod 10.

This conjecture is however quickly disproved as soon as a
borrow or a carry propagation occurs, as can be observed in
samples #2, #4, #6, #8, #9, and #10 in Appendix A. An easy
exhaustive enumeration over all possible sets of list IDs (see
Appendix C1) shows that the probability for such a carry to
appear in a sample of voting material is actually over 81%,
which rapidly allows one to find a counter-example.

B. From three or four samples

The knowledge of several samples confirms most of the
guesswork that could be obtained from one single sample:

• the 4-digit prefix 1501 is common to all voter and list
IDs, and

• out of the 4 last digits xyzt in list IDs, the first 3 (xyz)
follow an arithmetic progression of common difference
109, while the last one (t) seems to be acting as a check
digit.

1) Check digit: With a few samples available, one can
now start investigating how this check digit t is computed.
Since it can apparently take any value between 0 and 9, a
first idea is that this digit is the remainder modulo 10 of a
linear combination of the preceding digits:

t = check_digit(1501xyz)
= (δ + xλ5 + yλ6 + zλ7) mod 10,

where δ = 1λ1 + 5λ2 + 0λ3 + 1λ4 stands for the constant
contribution to the check digit due to the prefix 1051. Putting
together the observed list IDs and check digits of n samples
therefore yields a system of 7n linear equations modulo 10
in the four unknowns δ, λ5, λ6, and λ7. The probability



of this system being of rank 4 modulo 2 and 5 (the two
prime factors of 10) is about 27% with n = 1 sample, 75%
with 2 samples, 94% with 3, and almost 99% with 4 (see
Appendix C2).
Solving this system of modular equations gives the check

digit coefficients δ = 0, λ5 = 7, λ6 = 5, and λ7 = 1. In
other words, we have

t = check_digit(1501xyz) = (7x + 5y + z) mod 10.

Note that the system obtained from the first 4 samples in
Appendix A is only of rank 3 over Z/2Z: even though one
ends up with two acceptable sets of check digit coefficients
instead of a unique solution as above, this is still enough to
forge correct check digits with probability 1/2.

2) Voter identifiers and check digits: Let us now focus
on voter IDs. Since they are also barcodes, one can extend
the assumption made for list IDs and consider the last digit
of voter IDs to be a check digit. We therefore denote the last
6 digits of voters IDs as abcdek, where abcde is assumed to
be the actual voter ID, while k would be the corresponding
check digit. Using the same approach as for the list IDs, one
can express the value of this digit as a linear combination
of the preceding digits:

k = check_digit(1501abcde)
= (ǫ + aµ5 + bµ6 + cµ7 + dµ8 + eµ9) mod 10,

with ǫ = 1µ1 + 5µ2 + 0µ3 + 1µ4 being the contribution due
to the prefix 1501.
Since each sample of voting material yields only one such

modular equation, finding the value of the six unknowns
ǫ and µ5 to µ9 requires more than just 3 or 4 samples.
However, one can make an educated guess and suppose that
the check digit algorithms for voter and list IDs have good
chances of being the same. In other words, we can assume
that the sequence of check digit coefficients is either (a) left-
aligned, and that ǫ = δ = 0, µ5 = λ5 = 7, µ6 = λ6 = 5, and
µ7 = λ7 = 1; or (b) right-aligned, and that µ7 = λ5 = 7,
µ8 = λ6 = 5, and µ9 = λ7 = 1.
Once again, only a handful of samples of voting material

are necessary to disprove assumption (a): given n samples,
trying to solve the system of n linear equations of the form

7a + 5b + c + dµ8 + eµ9 ≡ k (mod 10)

will result in an empty solution space with probability 15%
with only n = 1 sample, 45% with 2, 92% with 3, and 99%
with 4 samples (see Appendix C3).
Similarly, assumption (b) can be trusted with a reasonable

level of confidence seeing how it is satisfied by all the avail-
able samples of voting material: even though the confidence
is zero with only one sample, it increases to almost 18% with
2, 49% with 3, and finally reaches 92% with 4 samples (see
Appendix C3).
Having disproved assumption (a) while verifying that

assumption (b) had good chances of being valid, one can

now try and solve the resulting system of n linear equations
of the form

ǫ + aµ5 + bµ6 + 7c + 5d + e ≡ k (mod 10)

in the three unknowns ǫ, µ5, and µ6. Using n = 3 samples,
this system can be completely solved modulo 2 and 5 with
probability 26%. With 4 samples, this probability increases
to 56%, with an expected number of solutions of 2 (see
Appendix C3). Although this is not enough to gain full
understanding of the check digit mechanism, it is sufficient
to know how to forge correct check digits for some chosen
voter IDs, as discussed in Section IV. For instance, under
assumption (b) and using the samples #1 to #4 given in
Appendix A, one obtains the two following solutions:

(ǫ, µ5, µ6, µ7, µ8, µ9) =

{

(2, 4, 2, 7, 5, 1), or
(2, 9, 2, 7, 5, 1),

which allows one to forge valid check digits, as long as the
digit a of the corresponding voter ID is chosen to be even.

3) Range of voter IDs: After looking at several samples
of voting material, one can also remark that all voter IDs
seem to fall in the range {0, . . . , N}, where N is the number
of voters taking part in this election (about 30,000), while
the 5 digits of voter IDs would allow for a possible 100,000
values. The probability of this happening for all of the n
available samples is therefore (3/10)n, i.e., less than 1%
for n = 4 samples. Hence, it seems reasonable to make
the assumption that all the voter IDs in this election form a
contiguous range between 0 and N .
When forging ballots, making this assumption should

allow one to pick valid voter IDs with very high probability.

4) Link between voter and list IDs: Let us now consider
the first two samples of voting material from Appendix A:
their voter IDs — omitting the prefix 1501 and the check
digit — are V = 22915 and V ′ = 05166, respectively. When
seen as decimal numbers, the difference between the two is
V −V ′ = 17749, which is congruent to 91 modulo 109. Now
looking at the identifier of list #1 for these two samples,
namely L1 = 039 and L′

1 = 057, we also observe that
L1−L′

1 = −18 ≡ 91 (mod 109). Pushing this investigation
further, we find that

L1 = (V mod 109) + 14 and L′

1 = (V ′ mod 109) + 14.

This construction can then be checked for consistency with
the other available samples.
Even though this may not be the only linear congruence

which can relate the voter and list IDs of 3 or 4 different
samples of voting material, the fact that this particular
congruence happens modulo 109, which is also the common
difference in the arithmetic progression of list IDs, is a very



good indicator that this is a correct assumption. Indeed, since
the identifier Li of list #i is computed as

Li = L1 + 109(i− 1) = (V mod 109) + 109(i− 1) + 14,

we have that Li ≡ V + 14 (mod 109) for all lists. When
tallying up the votes, this enables the organizer of the
election to check very quickly that the voter and list IDs
from a cast ballot are coherent, i.e., that they come from the
same voting material.

C. From ten samples

The more samples of voting material one is able to collect,
the higher the confidence one will have in the conclusions of
the above reverse engineering. Using the 10 actual samples
we secured, we were thus able to verify all the assumptions
made in the previous paragraphs. With a level of confidence
close to absolute certainty, we can now describe what we
believe to be the full internal works of the voting system:

• 5-digit voter IDs V are taken from a contiguous range
between 0 and N , where N is the number of voters
(i.e., about 30,000);

• noting abcde the 5 digits of V , the full voter ID is
1501abcdek, where the check digit k is computed as

k = (4a + 2b + 7c + 5d + e + 2) mod 10;

• the 3-digit identifier Li for list #i, 1 ≤ i ≤ 7, is
computed as

Li = (V mod 109) + 109(i− 1) + 14;

• noting xyz the 3 digits of Li, the full identifier for list
#i is 1501xyzt, where the check digit t is computed as

t = (7x + 5y + z) mod 10.

IV. BALLOT STUFFING

A. Forging ballots

From the complete description of the voting system given
in Section III-C, an attacker is able to forge up to N valid
ballots for the list of his/her choosing with a probability
of success of 100%: picking any voter ID V in the range
{0, . . . , N} and constructing the corresponding list ID and
check digits as explained above is guaranteed to produce a
valid ballot.
However, gaining full knowledge of the voting system

with high confidence requires procuring around 10 samples
of voting material, which may not be possible in the context
of an attack, especially since this would imply either (a)
colluding with several voters, at the risk of one of them re-
porting the attack in progress to the organizer of the election;
or (b) intercepting several samples of voting material, which
is hardly practical at all since they are sent directly by post
to the home address of the voters.
Nevertheless, as we showed in Section III-B, the knowl-

edge of only 3 or 4 samples, along with a few reasonable

assumptions, is enough to retrieve most of the specifics of
the voting system and to forge ballots. Indeed, even if one
cannot find the unique solutions for computing the check
digits of the voter and list IDs, and ends up with m possible
solutions instead, one is still able to forge at least N/m
ballots by picking only the voter and list IDs on which the
m solutions agree.
For instance, considering the first 3 samples from Ap-

pendix A, the linear system for computing the check digit t
of list IDs of the form xyz is only of rank 3 modulo 2, and
thus yields two solutions:

t =

{

(7x + 6z) mod 10, or
(7x + 5y + z) mod 10.

Following assumption (b) from Section III-B2, the check
digit coefficients for the last 3 digits of voter IDs should
also be either (7, 0, 6) or (7, 5, 1). However, the former is
disproved by the voter IDs from samples #1 and #3, which
allows us to conclude that only the latter is valid, and that
t = (7x + 5y + z) mod 10. We can then solve the linear
system for computing the check digit k of voter IDs of the
form abcde and obtain the two solutions

k =

{

(4a + 2b + 7c + 5d + e + 2) mod 10, or
(9a + 2b + 7c + 5d + e + 2) mod 10.

Consequently, we just need to pick only voter IDs whose
first digit a is even in order to successfully forge the cor-
responding check digit. Assuming that N is around 30,000,
we are still able to forge around 20,000 valid ballots under
this restriction.
Combining the expected number of solutions to each

system as computed in Appendices C2 and C3, the expected
number of valid ballots one is able to forge using knowledge
from 3 samples of voting material is over 6,200, and over
14,500 using 4 samples.

B. Ballot stuffing attack

In order to assess the feasibility of a ballot stuffing attack
using forged ballots as above, one also has to take into
account the way duplicate ballots are detected and handled
by the election organizer when tallying up the votes. Indeed,
since each forged ballot corresponds to an actual voter,
this voter might also have cast his/her vote, resulting in a
duplicate ballot.
The recommendations of the CNIL on this matter [6]

stipulate that “the voting system should include a mechanism

for rejecting a ballot which has already been processed.”
One can then reasonably assume that this is the case for the
election at hand, and that all forged ballots corresponding
to voters who actually voted will be discarded. Since the
voter turnout for such elections is usually pretty low, around
40% [2], this means that more than half of the forged ballots
will be accepted and counted. This probability goes up to
80% if we assume that in the case of duplicates our forged



ballot has the same probability of being counted as the
legitimate ballot.
Finally, we remark that the highest-ranking list in such

elections usually receives around 25% of the votes, i.e.,
3,000 out of the 12,000 cast ballots [2]. We can then
conclude that the proposed ballot stuffing attack has a very
good probability of changing the outcome of the election and
bringing about the desired result, as it is able to generate at
least 6,200 valid ballots, out of which between 60% (3,720)
and 80% (4,960) will actually be taken into account in the
tally.

C. Experiment

To convince the CNRS and Tagg Informatique of our
attack, we have sent 50 (well identified) forged ballots,
all casting a vote for the first list. These forged ballots
have been scanned in a test phase before the actual tallying
phase. We received confirmation that our forged ballots were
considered to be valid by the system and would have been
counted in the tallying phase.

V. FURTHER POTENTIAL WEAKNESSES

Our findings led the company in charge of the preparation
of the voting material (Tagg Informatique) to modify their
procedures. From what we have been able to observe, the
modifications carried out are twofold:

• The voter ID is two digits longer (7 significant digits),
still accompanied with a 4-digit prefix identifying the
election, and a check digit. The barcode for the voter
IDs thus encodes 4 + 7 + 1 = 12 digits.

• The list IDs are no longer prefixed with an election
identifier. The 8-digit number encoded by the barcode
in this modified version still has a check digit, thereby
leaving 7 significant digits (instead of only 3 previ-
ously). We did not find any particular regularity in these
numbers.

Four samples of such modified voting material are repro-
duced in Appendix B.
To have a guarantee of security, the system should choose

the voter ID randomly. We make here the assumption that
this is indeed the case, and that the list IDs are also generated
randomly. However, the use of “random” data requires some
caution. We wish to stress that the use of a cryptographically
strong random number generator is necessary to thwart any
attempt of ballot stuffing. We show that should this not be
the case, then under plausible assumptions the complete list
of voter IDs and list IDs can be retrieved, with very serious
consequences.

A cryptographically strong (pseudo-)random number gen-
erator ensures that a sequence of generated numbers is
indistinguishable from random noise. In particular, a proba-
bilistic polynomial-time algorithm which tries to guess one
bit output by the random number generator, based on the

information of the complete previous output, has to succeed
no more often than a coin flip.
Practical examples of pseudo-random number generators

for which this strong hypothesis is believed to hold in
practice can be obtained using essential building blocks
such as hash functions and stream ciphers [16, Chap. 5].
Examples of random number generators which typically
do not meet these requirements are those whose intent is
originally to model randomness from a statistical point of
view, which is a significantly weaker requirement. Most
random number generators encountered in computer appli-
cations and programming languages essentially care about
this second requirement only (e.g., most C programming
language libraries implement a rand() function which
is barely satisfactory from a statistical point of view, and
certainly not suitable for cryptographic use).

In order to explain further potential weaknesses, let us
assume that the generation of voting material is done with
some pseudo-random number generator. The output of such
a generator is entirely determined by the initial value (seed)
of its internal state. When cryptographic strength is not a
design requirement, pseudo-random number generators with
an internal state of 50 bits or less are commonly encountered.
This is the case, for example, of the pseudo-random number
generator used by the Microsoft Excel program. Its RAND()
function is described in [17] — following the design pro-
posed in [21] — and relies on floating-point arithmetic. The
internal state of this function is 45-bit wide. We consider
that this function is likely to have been used for generating
random values in the modified voting system under scrutiny.
In such a situation, assuming the attacker has the knowl-

edge of the voting material for one or several voters, it
is feasible to simulate the random number generator by
exploring all the successive values taken by the internal
state. For a poll with N voters and k lists, a sequence
of N(k + 1) values taken by the internal state determines
the complete identifier database. Testing whether the known
ballot values are encountered among N(k + 1) successively
generated values is sufficient to gain confidence in the
guessed initial internal state. Upon achievement of this
complete regeneration of the identifier database, it is trivially
possible to forge valid ballots. Furthermore, if it occurs that
the identifiers are generated successively for the voters in a
publicly available, or easily guessable voters list1, it is also
possible to break anonymity of votes.

The computational cost of the attack described above is
dominated by the number of possible values of the internal
state. This brute-force approach is clearly enabled by the
small size of this number. For the case of Microsoft Excel’s
RAND() function, this induces 245 trials, which is not

1Such a list is indeed publicly available for the poll considered in our
study. We do not know however whether it has been used in order for
generating the voting material.



frightening, especially given the distribution opportunities
of such an approach.
We also notice that if some additional conditions hold re-

garding the procedure for generating the identifier database,
retrieving the internal state of the random generator can
happen to be significantly easier. For example, Microsoft
Excel’s RAND() function is essentially a linear congruential
generator2. If a given list ID is obtained as the truncation
of RAND() · 107, it is straightforward to list the roughly
224 possibly corresponding internal states. If list IDs are
generated in order for each candidate, one can cross-check
each of these guesses against the next random draw, and thus
quickly validate the right guess. From this data, all previous
and future output of the random generator can be deduced3.
In this case, a mild computational load (224) incurs the same
devastating consequences already described.
Although potentially very effective, these attacks have

however not been attempted for two reasons. First, although
we believe our guesses, including the use of Microsoft Excel,
to be plausible, these are only guesses. Lacking the precise
specification of the procedure, mounting the attack is not
very tempting, since potentially unfruitful.
Furthermore, in order to mount such an attack, it is

necessary to assume that Microsoft Excel follows some
well-defined standard for floating-point arithmetic, such as
the IEEE-754 standard. Unfortunately this is not the case.
As remarked in [13], Microsoft Excel employs cosmetic

rounding, which is nowhere defined. This feature is certainly
not meant as a security countermeasure, and can quite
probably be reverse-engineered as well, but we have not
tried to do so.

VI. CONCLUSION

We have shown how to attack (with very few compu-
tational resources) a barcode-based postal voting system,
with the access to only 4 samples of voting material, our
guesses being fully confirmed when accessing to 10 samples
of voting material. Due to the fact that the ballots are
completely predictable, it is possible to forge the whole
voting material sent to the voters and therefore to use it
to perform major ballot stuffing.
We believe that our attack demonstrates two main points.

Firstly and obviously, the postal voting system we studied
was clearly designed in a rather naive manner. Secondly and
more importantly, anonymity and confidentiality, albeit very
desirable, are not the only security goals a voting system
should ensure. The current research on electronic voting
has however already allowed to better understand what a

2The n-th iterate of this function is {xn} = xn − ⌊xn⌋, where xn =
171n/p1 + 172n/p2 + 170n/p3, the pi’s being 30269, 30307, 30323.
This is equivalently written as xn = gn(p1p2 +p2p3 +p1p3)/(p1p2p3),
where the numerator arithmetic is performed modulo p1p2p3, and g is
obtained with the Chinese Remainder Theorem.

3Previous output can be deduced because the internal state iteration
function is reversible.

good voting system should offer in terms of security (see
for instance [8]). Such works point out that voting systems
should of course guarantee the confidentiality of the votes
(no one should know that a voter has voted in a particular
way) but also eligibility (only registered voters can vote,
at most once), fairness (the result reflects the actual votes),
and verifiability (voters can check that their votes have been
counted). In our case study, we probably attacked what is
called eligibility verifiability, i.e., the fact that voters can
check that only eligible voters have voted. Future require-
ments on barcode voting systems should probably include
such properties, in order to prevent, at the very least, ballot
stuffing.
As discussed in Section V, we also would like to empha-

size that the use of random generators as required by the
CNIL or the CNRS does not suffice per se for guaranteeing
security, in particular anonymity of the voters. Instead, it is
necessary to make use of unpredictable random generators,
that is cryptographically strong random number generators.
Our security analysis was focused on possible threats of

outside attackers, who do not have any prior information
on the system. Even the proposed fixed version of this
postal voting system is clearly not robust to inside attackers.
Indeed, the person responsible for mailing the ballots out can
duplicate voting material and stuff the ballot box. Similarly,
a dishonest employee of Tagg Informatique could have
access to the seed (or key) used in the random generator
and could re-generate the voting material. A (standard) way
to defend against inside attackers would be to distribute the
sensitive information (like the seed of the random generator)
among several authorities who are assumed not to collude.

ACKNOWLEDGEMENTS

Firstly, we would like to thank our colleagues who kindly
agreed to provide us a copy of their voting material, which
allowed us to confirm our initial guesses. We also thank
the election group (Organisation des élections) at CNRS
for their reactivity and their willingness to understand, test,
and correct the flaws in the voting system in use. We are
also grateful to the anonymous reviewers for their helpful
comments and suggestions.
The research leading to these results has received funding

from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement n◦ 258865, project ProSecure, and the
ANR-07-SeSur-002 AVOTÉ project.

REFERENCES

[1] Ben Adida. Helios: Web-based Open-Audit Voting. In
Proc. of the 17th USENIX Security Symposium (USENIX
Security’08), pages 335–348. USENIX Association, 2008.

[2] Centre National de la Recherche Scientifique. Élec-
tion 2011, conseil d’administration du CAES du CNRS,
March 2011. http://www.dgdr.cnrs.fr/elections/caes/resultats/
resultats_CAES2011_T2.pdf.



[3] David Chaum, Aleks Essex, Richard Carback, Jeremy Clark,
Stefan Popoveniuc, Alan Sherman, and Poorvi Vora. Scant-
egrity: End-to-End Voter-Verifiable Optical-Scan Voting.
IEEE Security and Privacy, 6(3):40–46, 2008.

[4] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A
Practical Voter-Verifiable Election Scheme. In Proc. of
the 10th European Symposium On Research In Computer
Security (ESORICS’05), volume 3679 of LNCS, pages 118–
139. Springer, 2005.

[5] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers.
Civitas: Toward a Secure Voting System. In Proc. of the 29th
Security and Privacy Symposium (S&P’08), pages 354–368.
IEEE Computer Society, 2008.

[6] Commission Nationale de l’Informatique et des Libertés.
Délibération 98-041 du 28 avril 1998 portant recommandation
sur l’utilisation des systèmes de vote par codes-barres dans
le cadre d’élections par correspondance pour les élections
professionnelles, 1998. http://www.cnil.fr/en-savoir-plus/
deliberations/deliberation/delib/71/.

[7] Commission Nationale de l’Informatique et des Libertés.
Délibération 2010-371 du 21 octobre 2010 portant adoption
d’une recommandation relative à la sécurité des systèmes
de vote électronique. Journal Officiel de la République
Française, 0272, 2010. page texte 29, http://www.cnil.fr/en-
savoir-plus/deliberations/deliberation/delib/249/.

[8] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Ver-
ifying privacy-type properties of electronic voting protocols.
Journal of Computer Security, 17(4):435–487, July 2009.

[9] Ariel J. Feldman, J. Alex Halderman, and Edward W. Fel-
ten. Security analysis of the Diebold AccuVote-TS voting
machine. http://itpolicy.princeton.edu/voting/, 2006.

[10] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A
Practical Secret Voting Scheme for Large Scale Elections.
In Proc. of the Workshop on the Theory and Application of
Cryptographic Techniques (AUSCRYPT’92), volume 718 of
LNCS, pages 244–251. Springer, 1992.

[11] Alex Halderman. Hacking the D.C. internet vot-
ing pilot. http://www.freedom-to-tinker.com/blog/jhalderm/
hacking-dc-internet-voting-pilot, 2010.

[12] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. In Proc. of the 4th Workshop
on Privacy in the Electronic Society (WPES’05), pages 61–70.
ACM Press, 2005.

[13] William Kahan. Floating-point arithmetic besieged by
“business decisions”. http://www.cs.berkeley.edu/~wkahan/
ARITH_17.pdf, July 2005. Keynote talk at ARITH’17 sym-
posium on Computer Arithmetic.

[14] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and
Dan S. Wallach. Analysis of an electronic voting system. In
Proc. of the 25th IEEE Symposium on Security and Privacy
(SSP’04), pages 27–28. Comp. Soc. Press, 2004.

[15] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim,
Jeongmo Yang, and Seungjae Yoo. Providing Receipt-
Freeness in Mixnet-Based Voting Protocols. In Proc. of the
6th International Conference on Information Security and
Cryptology (ICISC’03), volume 2971 of LNCS, pages 245–
258. Springer, 2004.

[16] Alfred Menezes, Paul C. van Oorschot, and Scott A. Van-
stone. Handbook of applied cryptography. CRC Press, 1997.

[17] Microsoft corporation. Description of the RAND function
in Excel. http://support.microsoft.com/kb/828795, 2010. Mi-
crosoft knowledge base article.

[18] Tatsuaki Okamoto. An electronic voting scheme. In Proc. of
the IFIP World Conference on IT Tools, page 21–30, 1996.

[19] Ronald L. Rivest and Warren D. Smith. Three voting proto-
cols: Threeballot, vav, and twin. In Proc. of the Electronic
Voting Technology Workshop (AVT’07), Boston, MA, 2007.

[20] Stateline. http://www.stateline.org/live/details/story?
contentId=522635, October 2010.

[21] Brian A. Wichmann and I. David Hill. Algorithm AS 183:
An efficient and portable pseudo-random number generator.
Applied Statistics, (31):188–190, 1982.

APPENDIX

A. Set of 10 samples of voting material used for reverse

engineering the system

Note that for the sake of clarity, the prefix 1501, common
to all voter and list identifiers in this election, has been
omitted.

Sample # 1 2 3 4 5

Voter ID 22915 7 05166 5 06870 5 21545 2 21140 9
039 4 057 2 017 2 086 6 117 9
148 5 166 3 126 3 195 7 226 0
257 6 275 4 235 4 304 5 335 1

List IDs 366 7 384 5 344 5 413 6 444 2
475 8 493 6 453 6 522 7 553 3
584 9 602 4 562 7 631 8 662 4
693 0 711 5 671 8 740 9 771 5

Sample # 6 7 8 9 10

Voter ID 07381 8 00766 7 00206 2 08146 1 14010 9
092 7 017 2 111 3 094 9 072 7
201 5 126 3 220 4 203 7 181 8
310 6 235 4 329 0 312 8 290 9

List IDs 419 2 344 5 438 1 421 9 399 5
528 3 453 6 547 2 530 0 508 3
637 4 562 7 656 3 639 6 617 4
746 5 671 8 765 4 748 7 726 5

B. Samples of corrected voting material

Below are four samples of voting material including the
corrective modifications by Tagg Informatique after they
were made aware of our findings. Note that, in the following
table, all voter IDs should be prefixed with 2943, omitted
here for concision.



Sample # 1 2 3 4

Voter ID 3247782 9 8619722 5 8971889 5 2909147 4
5381135 9 2989495 8 3719965 6 8497343 2
0886456 1 3566740 9 3560045 3 8392673 2
5739954 4 7977436 1 0008984 3 5204306 7

List IDs 7664888 8 0517221 3 0015821 1 0468390 0
5588005 3 8561033 8 2989942 5 1617446 6
7332815 6 3436714 0 0192921 0 2486192 8
6988239 8 8680259 0 1971011 8 5821665 5

C. Details of probability estimates

1) Carry propagation in list IDs: As the identifier of the
first list L1 is computed as (V mod 109) + 14, where V
is the voter ID, we have that L1 ∈ {14, . . . , 122}. There
are therefore exactly 109 possible values for L1, and thus
109 different possible sets of list IDs. Out of these 109 sets,
only 20 will not generate any carry. This gives an 89/109 =
81.7% chance of getting a sample of voting material with
such a carry, hence detecting the arithmetic progression of
common difference 109 as described in Section III-A2.

2) Finding the check digit t in list IDs: It is important
to note that the seven list IDs from a single sample of
voting material can be enough to solve the system of linear
equations modulo 10 in order to find the coefficients of the
check digit t. First of all, the first identifier L1 = xyz and
its check digit t give the equation

δ + xλ5 + yλ6 + zλ7 ≡ t (mod 10).

Furthermore, the difference between two consecutive list
IDs xyz and x′y′z′ can also produce linearly independent
equations of the form

(x′ − x)λ5 + (y′ − y)λ6 + (z′ − z)λ7 ≡ t′ − t (mod 10).

More precisely,

• if no carry or borrow occurs, assuming x′ = x + 1,
y′ = y + 1, z′ = z − 1, then t′ ≡ t + 1 (mod 10) and
we have the equation

λ5 + λ6 + 9λ7 ≡ 1 (mod 10);

• if a borrow occurs between z and y (i.e., when z = 0,
as for instance between lists #3 and #4 of sample #6),
then t′ ≡ t + 6 (mod 10) and we have

λ5 + 9λ7 ≡ 6 (mod 10); and

• if a carry occurs between y and x (i.e., when y = 9
and z 6= 0, as for instance between lists #5 and #6 of
sample #2), then t′ ≡ t + 8 (mod 10) and we have

2λ5 + λ6 + 9λ7 ≡ 8 (mod 10).

Out of the 109 possible sets of list IDs, 30 produce a
system of rank 4 both modulo 2 and 5. This represents
a 30/109 = 27.5% chance of being able to completely
solve the system with a single sample of voting material. On
average, solving the system obtained with one sample will
yield 24.04 solutions. Enumerating for up to four available
samples, we obtain the following probabilities of success:

Nb. of samples (n) 1 2 3 4

Prob. of being of
27.5% 79.1% 95.1% 98.8%rank 4 modulo 2

Prob. of being of
27.5% 89.7% 99.1% 99.9%rank 4 modulo 5

Prob. of success 27.5% 75.1% 94.5% 98.8%

Expected nb. of solutions 24.04 2.09 1.10 1.02

3) Finding the check digit k in voter IDs: Let us first
consider the validity of assumption (a), submitted in Sec-
tion III-B2, which supposes that the check digit k of a voter
ID abcde is computed as

k = (7a + 5b + c + dµ8 + eµ9) mod 10.

Consider a set of n voter IDs a1b1c1d1e1 to anbncndnen

along with the corresponding check digits k1 to kn. For these
check digits to satisfy assumption (a), the modular system
in µ8 and µ9











d1µ8 + e1µ9 ≡ k′

1 (mod 10)
...

...
dnµ8 + enµ9 ≡ k′

n
(mod 10),

where k′

i
= ki − 7ai − 5bi − ci, needs to have at least one

solution. Taking the n×3 matrix of the homogenized system

M ≡







d1 e1 −k′

1

...
...

...
dn en −k′

n






(mod 10),

the previous condition is equivalent to checking that M has
at least one vector of the form (µ8, µ9, 1)T in its kernel,
both modulo 2 and 5. This is finally tantamount to ensuring
that the vector (0, 0, 1) does not lie in the row space of M

modulo 2 and modulo 5.
Assuming that voter IDs are taken uniformly in the range

{0, . . . , 29999}, for n = 1 sample of voting material, 25410
of these voter IDs satisfy the above condition (7 out of 8
satisfy it modulo 2, and 121 out of 125 modulo 5). Therefore,
the probability of being able to disprove assumption (a) by
finding a counter-example using only one sample is 1 −
25410/30000 = 15.3%. The probabilities for more samples
are given below:

Nb. of samples (n) 1 2 3 4

Prob. of finding a
12.5% 32.8% 58.8% 77.3%counter-example modulo 2

Prob. of finding a
3.2% 18.6% 80.8% 96.0%counter-example modulo 5

Prob. of disproving (a) 15.3% 45.3% 92.1% 99.1%

A similar computation allows one to compute the level of
confidence one can have in assumption (b) given a set of
n samples of voting material verifying it. For instance, for
n = 2 samples, out of the 300002 possible pairs of voter IDs,
161000000 (i.e., 17.9%) would provide a counter-example
if assumption (b) were wrong. Therefore, after checking that
the 2 available voter IDs satisfy the condition, one can have
a 17.9% confidence in this assumption: in other words, one
was not able to disprove (b) despite the 17.9% chance of



this happening. The probabilities for larger values of n are
given in the following table:

Nb. of samples (n) 1 2 3 4

Prob. of finding a
0.0% 13.9% 35.4% 60.5%counter-example modulo 2

Prob. of finding a
0.0% 5.3% 23.2% 81.2%counter-example modulo 5

Confidence in (b) 0.0% 17.9% 48.9% 92.5%

Finally, being able to completely solve the system of n
modular equations in the three unknowns ǫ, µ5, and µ6

arising from assumption (b) only depends on the rank of
the corresponding matrix modulo 2 and 5. For instance,
with n = 3 samples of voting material, there are 300003 =
2.7 · 1013 possible matrices, out of which only 7.2 · 1012

(i.e., 26.7%) are of rank 3 modulo 2 and modulo 5. This
corresponds to an expected number of solutions of 4.41. The
probability of solving the system increases with the number
of available samples, as shown in the table below:

Nb. of samples (n) 3 4 5 6

Prob. of being of
33.3% 59.3% 75.6% 85.4%rank 3 modulo 2

Prob. of being of
71.1% 92.4% 98.0% 99.4%rank 3 modulo 5

Prob. of success 26.7% 56.9% 75.0% 85.3%

Expected nb. of solutions 4.41 2.03 1.41 1.19

D. Examples of fake ballots

CARTE DE VOTE

1501030192

EXPRESSION DU VOTE

15010905

CARTE DE VOTE

1501073830

EXPRESSION DU VOTE

15010949

CARTE DE VOTE

1501270215

EXPRESSION DU VOTE

15011124


