Learning Tree-structured Descriptor Quantizers for Image Categorization

Josip Krapac 1 Jakob Verbeek 1 Frédéric Jurie 1, 2
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Current state-of-the-art image categorization systems rely on bag-of-words representations that model image content as a histogram of quantization indices that code local image appearance. In this context, randomized tree-structured quantizers have been shown to be both computationally efficient and yielding discriminative visual words for a given categorization task. This paper presents a new algorithm that builds tree-structured quantizers not to optimize patch classification but to directly optimize the image classification performance. This approach is experimentally validated on several challenging data sets for which it outperforms other patch quantizers such as standard decision trees or k-means.
Type de document :
Communication dans un congrès
Jesse Hoey and Stephen McKenna and Emanuele Trucco. BMVC 2011 - British Machine Vision Conference, Aug 2011, Dundee, United Kingdom. BMVA Press, pp.47.1-47.11, 2011, 〈10.5244/C.25.47〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00613118
Contributeur : Thoth Team <>
Soumis le : mardi 2 août 2011 - 18:49:08
Dernière modification le : mardi 5 juin 2018 - 18:00:02
Document(s) archivé(s) le : lundi 12 novembre 2012 - 15:07:18

Fichiers

paper.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Josip Krapac, Jakob Verbeek, Frédéric Jurie. Learning Tree-structured Descriptor Quantizers for Image Categorization. Jesse Hoey and Stephen McKenna and Emanuele Trucco. BMVC 2011 - British Machine Vision Conference, Aug 2011, Dundee, United Kingdom. BMVA Press, pp.47.1-47.11, 2011, 〈10.5244/C.25.47〉. 〈inria-00613118〉

Partager

Métriques

Consultations de la notice

768

Téléchargements de fichiers

695