Spatial Fisher Vectors for Image Categorization - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2011

Spatial Fisher Vectors for Image Categorization

(1) , (1) , (1, 2)


We introduce an extension of bag-of-words image representations to encode spatial layout. Using the Fisher kernel framework we derive a representation that encodes the spatial mean and the variance of image regions associated with visual words. We extend this representation by using a Gaussian mixture model to encode spatial layout, and show that this model is related to a soft-assign version of the spatial pyramid representation. We also combine our representation of spatial layout with the use of Fisher kernels to encode the appearance of local features. Through an extensive experimental evaluation, we show that our representation yields state-of-the-art image categorization results, while being more compact than spatial pyramid representations. In particular, using Fisher kernels to encode both appearance and spatial layout results in an image representation that is computationally efficient, compact, and yields excellent performance while using linear classifiers.
Vignette du fichier
logo.png (399.86 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
RR-7680.pdf (276.68 Ko) Télécharger le fichier
Format : Figure, Image
Origin : Publisher files allowed on an open archive

Dates and versions

inria-00613572 , version 1 (04-08-2011)


  • HAL Id : inria-00613572 , version 1


Josip Krapac, Jakob Verbeek, Frédéric Jurie. Spatial Fisher Vectors for Image Categorization. [Research Report] RR-7680, INRIA. 2011. ⟨inria-00613572⟩
587 View
1062 Download


Gmail Facebook Twitter LinkedIn More