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Abstract: In functional neuroimaging, a crucial problem is to localize ac-
tive sources within the brain non-invasively, from the knowledge of the electro-
magnetic measurements outside the head. Identi�cation of point sources from
boundary measurements is an ill-posed inverse problem. In the case of electroen-
cephalography (EEG), measurements are only available at electrode positions,
the number of sources is not known in advance, and the medium within the head
is inhomogeneous. This paper presents a new method for EEG source localiza-
tion, based on rational approximation techniques in the complex plane. The
method is used in the context of a nested sphere head model, in combination
with a cortical mapping procedure. Results on simulated data prove the appli-
cability of the method in the context of realistic measurements con�gurations.

Key-words: inverse EEG problem, cortical mapping, source localization,
rational approximation



Localisation de sources par approximation
rationnelle sur des sections planes

Résumé : Un problème crucial en imagerie cérébrale (fonctionnelle ou clin-
ique) consiste en la localisation (par des techniques non invasives) de sources
de l'activité cérébrale dans le cerveau, depuis des mesures éléctromagnétiques
prélevées à la surface ou à l'extèrieur de la tête. L'identi�cation de sources
ponctuelles depuis des mesures frontière constitue un problème inverse mal posé.
Concernant l'électroencéphalographie (EEG), les mesures sont disponibles aux
positions des électrodes, le nombre de sources n'est pas connu à l'avance, et le
milieu conducteur à l'intérieur de la tête est inhomogène. Ce travail présente
une nouvelle méthode de localisation de sources en EEG, basée sur des tech-
niques d'approximation rationnelle dans le plan complexe. Cette méthode est
développée pour un modèle sphérique de tête, à plusieurs couches de conduc-
tivité constante (scalp, crâne, cerveau), en combinaison avec une procédure de
transmission des données, depuis le scalp jusqu'à la surface du cerveau. Des ré-
sultats numériques depuis des données simulées dans des con�gurations réalistes
démontrent l'applicabilité de la méthode.

Mots-clés : problème inverse en Électroencéphalographie, localisation de
sources, approximation rationnelle
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1 Introduction

Electromagnetic Source Mapping aims at localizing active sources within the
brain from measurements of the electromagnetic �eld they produce, which can
be measured passively outside the head. This article deals more speci�cally with
the electric potential which is measured using Electroencephalography (EEG).
Estimating neural current sources located within the bra1in from outside mea-
surements falls into a category of inverse source problems, that are severely
ill-posed in general, mainly due to the lack of continuity and stability, but also
to non-uniqueness [Isakov, 1998, Vessella, 1992].
When a limited number of sources are modeled as pointwise and dipolar, there
are in general more measurements than unknowns, and it has been proved that
the inverse problem of source estimation has a unique solution [Badia and Ha-
Duong, 2000]. However, even in this pointwise and dipolar case, solutions to
the inverse source problem are often unstable, in particular with respect to the
number of sources.
Several families of methods exist to solve the inverse source localization prob-
lem, when sources can be modeled as the superposition of a small number of
dipoles [Scherg et al., 1999]. Dipole Fitting methods must minimise a non-
convex goal function, yielding an outcome that is unstable with respect to the
number of dipoles in the model [Cu�n, 1995]. Whenever this number is as-
sumed to be known a priori, an algebraic (scanning) method has been proposed
in [Badia and Ha-Duong, 2000], which requires rank computation of related ma-
trices. In practise, one does not know this number in advance, and learning this
model order is far from trivial [Bénar et al., 2005]. If the sources are decorre-
lated in time, analyzing the covariance matrix of the measured data provides
an estimate of the number of active dipoles. The number of sources is indeed
equal to the number of singular values that are signi�cantly di�erent from zero.
The MUSIC Method �rst applies a principal component analysis (PCA) to the
measurements, identi�es a �signal subspace� of which the analysis subsequently
determines the dipole positions [Mosher et al., 1992]. In practise, the dimen-
sionality of the signal subspace is di�cult to determine, and the dipoles are
extracted one at a time by seeking the global maximum of a contrast function
among all possible source positions. MUSIC can thus only be applied if the
sources are well modeled by a small number of asynchronous dipoles. With
the stronger assumption of decorrelated sources, another method, Beamform-
ing, can also estimate active sources, by scanning a region of interest, and by
comparing the covariance of the measurement to that of the baseline, measured
in time windows that do not contain the activity of interest [Van Veen and
Buckley, 1988].
This article proposes a new approach, which, as MUSIC and Beamforming,
requires no prior information on the number of sources. However, unlikeMUSIC
or Beamforming, which require as input consecutive measurements within a time
window, the proposed method works instant by instant, and a fortiori, does not
require sources to be decorrelated across time.
Our method belongs to a new category of source estimation algorithms that
are grounded in Harmonic Analysis and Best Approximation theory, and o�er
stability [Baratchart et al., 2006, Kandaswamy et al., 2009]. These analytical
methods directly localize the sources as the singularities of the potential from
boundary measurements.
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The type of geometry and of boundary data which they require do not neces-
sarily coincide with actual measurements. Indeed, these methods usually work
in a homogeneous domain, and an explicit parametrization may be needed for
its boundary.
We present our constructive approach to this inverse problem, in the framework
of a (classical) spherical geometry. Under quasi-static assumptions, Maxwell's
equations lead to a formulation of the electric potential u as a solution to
Laplace's equation. In the innermost layer (the brain), there may be singu-
larities due to the presence of current sources. These singularities are to be
localized from available data on the outer boundary (the scalp). The core of
our inverse solution relies on approximation schemes that are meant to oper-
ate inside homogeneous domains, and not in such a nested geometry. Hence,
a preliminary stage consists of mapping to the cortex the data initially mea-
sured on the surface of the scalp. This Cortical Mapping problem is a Cauchy
(transmission) problem for the Laplace operator [Clerc and Kybic, 2007].
Source detection from cortical data is another classical inverse problem for the
Laplace operator, that consists of recovering an unknown number of pointwise
sources within a homogeneous domain from measurements of the potential and
its normal derivative on the boundary.
When the domain is a spherical ball, then the above issue is equivalent to a
sequence of 2D inverse problems, each of which consists of recovering the singu-
larities of some function f in a disk from the knowledge of f on the boundary
circle [Baratchart et al., 2006]. Consequently, we apply to these 2D problems a
technique inspired by that described in [Baratchart et al., 2005] that relies on
approximating f on the boundary circle by a rational function with poles in the
disk.
Finally, we locate the singularities by analyzing the cluster of these poles. Ge-
ometrical restriction to spherical domains allows one to make explicit (and not
too complex, in a preliminary feasibility study) the behaviour of the 2D singu-
larities with respect to the 3D sources, which is granted by our recovery scheme.
The outline is as follows: Section 2 introduces the inverse problem, and Section 3
presents the solution proposed in this paper. Section 4 demonstrates the method
on numerical examples. The paper also includes a conclusion in Section 5 and
technical Appendices that detail some mathematical aspects of the method.

2 The inverse problem

2.1 Model setting

In a simpli�ed spherical model, the head is assumed to be the union of three
disjoint homogeneous spherical layers1 Ω0, Ω1, Ω2, namely the brain, the skull,
and the scalp, within a non-conductive medium Ω3 representing the air. Up to
a rescaling, one may assume the ball Ω0 representing the brain to have radius
1 and to be centered at the origin. The spheres separating the volumes Ωi are
denoted S0, S1 and S2 (see Figure 1). The conductivity in each Ωi is denoted
σi. For simplicity and without loss of generality, we assume that σ0 = 1. Then,
we de�ne a piecewise constant function σ in R3 by σ|Ωi

= σi. The current

1In the remainder of this article, all domains are supposed to be open.

RR n° 7704
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S2

Figure 1: A nested conductor model for the head (left), in which brain, skull
and scalp have a homogeneous conductivity. Our 3D spherical nested model
(right, 2D view), where the brain and scalp (Ω0, Ω2) conductivity is 0.33, the
skull conductivity is 0.0042 and the air Ω3 is non-conductive.

sources are modeled as dipoles situated strictly inside the inner layer Ω0 and
are characterised by their number n, their positions Ck ∈ Ω0 and their moments
pk ∈ R3, k = 1, ..., n.

2.2 The inverse problem

The potential created by the dipolar sources (Ck, pk) located inside Ω0 is a
solution to the forward problem

(FP)

 ∇ · (σ∇u) = S =
n∑
k=1

pk .∇ δCk
in R3

σ∂νu|S2 = 0 (current �ux)

(1)

where ν denotes the outward unit normal vector to the surfaces. The homoge-
neous Neumann boundary condition is due to the fact that the outer medium
(air) is non-conductive. The current �owing through the neck is neglected.
Let K denote a set of points on S2, representing electrode positions. The inverse
source localization problem (IP) associated to the forward problem (FP) is then
the following:
(IP) Given measurements of u on K, �nd the number of unknown pointwise
dipolar sources, their positions Ck ∈ Ω0 and their moments pk ∈ R3, such that
u satis�es (FP).

2.3 Properties of solutions to (IP)

Mathematical properties of (IP) have been established when the data is known
in an open subset K of the boundary. In our case, the data is only known on a
discrete set, but it is assumed that the underlying potential is smooth enough
so that it is well approximated on an open set K from the data. Uniqueness of
solutions to (IP) (identi�ability from boundary measurements) has been estab-
lished in [Badia and Ha-Duong, 2000]. If two �nite distributions of pointwise
dipolar sources generate the same potential on some open subset K of S2, then
they are identical.

RR n° 7704
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Stability properties for (IP) may only hold for smooth enough boundary data on
K (in Sobolev spaces). This is due to the classical ill-posedness of Cauchy-type
issues (Section 3.1.1) [Alessandrini et al., 2009, Isakov, 1998, Phung, 2003, Zghal,
2010]. Concerning the source problem in homogeneous domain (sections 3.3
and 3.4), stability results are established in [Badia, 2005, Vessella, 1992].

3 Solution to the inverse problem (IP)

The resolution of the above inverse problem (IP) consists of two main steps as
represented in the �owchart in Figure 2.
Data Transmission from S2 to S0, which involves:

� Cortical Mapping (Section 3.1.1): the data is transmitted from the
surface of the scalp S2 where it is measured (on electrodes) onto the surface
S0 of the brain.

� Harmonic Projection (Section 3.1.2): �ltering out possible outer sources
by keeping only the information related to the e�ective inner sources in
Ω0.

Source Recovery in Ω0 from data on S0, which involves:

� Plane Sections (Section 3.2): the sphere S0 is sliced along families of
parallel planes, perpendicular to a chosen axis, yielding disks inside which
the singularities will be sought.

� Planar Singularity Detection (Section 3.3): 2D approximation tech-
niques are used to �nd the planar singularities on the plane sections of Ω0

(disks).

� 3D Source Localization (Section 3.4): for a putative number of sources,
the sources are localized in 3D by analyzing the sets of planar singularities.

The Data Transmission step uses the approach proposed in [Clerc and Kybic,
2007] while the Source Recovery step uses the one described in [Baratchart et al.,
2006] (see also [Abda et al., 2009], in two dimensions).

3.1 Data Transmission

3.1.1 Cortical Mapping

The goal, as recalled in Figure 2, is to estimate the values of the potential and the
normal current on the cortex, from the values on electrodes of a potential that
satis�es the Forward Problem (1). This Forward Problem can be decomposed
in each of the three layers Ωi, i = 0, 1, 2. By assumption, there are no sources
outside the inner volume Ω0, hence the potential u satis�es a homogeneous
Laplace equation in the layers Ω1 and Ω2:

∆u = 0 in Ωi , i = 1, 2.

RR n° 7704
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Figure 2: Flowchart of the Source Localization method, consisting of two main
steps: Data Transmission and Source Recovery. Source Recovery makes use of
a 2D Rational Approximation technique, which is run independently on slices
of the domain. The Planar Singularities are then analyzed jointly to yield the
positions and moments of the sources.

The continuity of the potential and of the normal current across the interfaces
are expressed through the following transmission conditions:

u+ = u− on Si , i = 0, 1, (2)

and σi+1 ∂νu
+ = σi ∂νu

− on Si , i = 0, 1, (3)

where superscripts + and − indicate the limiting values when approaching Si
from Ωi+1 (outside) and Ωi (inside), respectively.
The Data Transmission problem which we aim to solve is a Cauchy Problem
(CP), for u harmonic within Ω1 and Ω2, satisfying the transmission conditions
(2-3):
(CP) Given measurements uK of u on K ⊂ S2 and given that ∂νu = 0 on S2,
�nd the values g = u|S0 and φ = ∂νu

−
|S0

on S0.

Solving (CP) is non-trivial, because the Cauchy problem for the Laplace equa-
tion is the prototype of an ill-posed problem. Indeed, (CP) has similar stability
properties to those described in Section 2.3 for K ⊂ S0. Regularization schemes
have been proposed in [Atfeh et al., 2010, Kozlov et al., 1992]. We solve the Cor-
tical Mapping with a regularized Tikhonov method deriving from a �boundary
elements� formulation of the problem (this step is thus not limited to spheri-
cal interfaces): from its values uK on the measurement set K, u is estimated,
along with σ∂νu, on the three surfaces S2, S1, and S0. This method, originally
presented in [Clerc and Kybic, 2007], is detailed in A.

3.1.2 Harmonic Projection (in R3)

After the Cortical Mapping step has provided the potential g = u and its normal
derivative φ = ∂νu on the surface of the cortex S0, the potential u satis�es in

RR n° 7704
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Ω0 an equation of the form: ∆u = S =
n∑
k=1

pk .∇ δCk
in Ω0 ,

∂νu = φ , u = g on S0 .

(4)

From g and φ on S0, we �rst look for the part ua of the potential u which is
harmonic outside the ball Ω0, vanishes at ∞, and still contains on S0 all the
information on the distribution of sources.
Knowing that the potential u in Ω0 is solution of (4), let ua be the convolution
of S with the Green function for the Laplacian in R3:

ua(x) =
n∑
k=1

〈pk, x− Ck〉
4π |x− Ck|3

, x 6= Ck , (5)

where the brackets 〈 , 〉 denote the scalar product in R3 × R3. Note that:

∆ua = ∆u = S in Ω0 ,

while ∆ua = 0 in R3 \ Ω0, and lim
|x|→∞

|ua(x)| = 0 .

Consequently, for x ∈ Ω0 \ {Ck}, we have:

u(x) = h(x) + ua(x) = h(x) +
n∑
k=1

〈pk, x− Ck〉
4π |x− Ck|3

,

for a harmonic function h in Ω0.
In practise, ua is computed from the available boundary data g and φ on S0 by
expanding u there on the basis of spherical harmonics [Baratchart et al., 2006,
Dautray and Lions, 2000]. Indeed, u being a harmonic function in a neighbour-
hood of S0, the coe�cients of its expansion on S0 of negative indices coincide
with those of ua. They are given through a linear system, by identi�cation with
the coe�cients of the spherical harmonics expansions of the discretized g and φ
on S0.
Figure 3 shows the singular part ua of the potential, computed from its expres-
sion (5) on S0, from n = 2 sources C1 = (0.5, 0.5, 0.5), C2 = (0.5,−0.5,−0.4)
with moments p1 = (1, 1, 1), p2 = (−1, 1, 1).

3.2 From 3D to 2D

Given ua, we can now formulate an inverse source recovery problem in Ω0:
(SP) Given ua on S0, �nd the number of unknown pointwise dipolar sources,
their locations Ck ∈ Ω0 and their moments pk ∈ R3, such that ua satis�es (5).
Following [Baratchart et al., 2006], we �rst study the singularities of u2

a on plane
sections of Ω0, where the function can be analytically extended to the complex
plane.
The ball Ω0 is sliced along a family of P planes, Πp, p = 1, · · · , P , parallel to
some plane Π ⊂ R3. The intersections of the planes Πp with Ω0 are disks Dp,
whose boundaries are circles Tp (intersections Πp ∩S0). The Data Transmission

RR n° 7704
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(a) (b) (c)

(d)

Figure 3: Data Transmission. Cortical Mapping: from electrode data (a), yield-
ing the normal current (b) and the potential (c) on the cortical surface. Har-
monic Projection: (d) representation on the cortex S0 of the singular part ua of
the potential, whose singularities are restricted to Ω0.

Figure 4: Plane Sections. Ω0 is sliced into disks Dp by a series of parallel planes
Πp.

step (Section 3.1) has provided the singular part ua of the potential on S0, and
we now consider its restriction to each circle Tp.

The computations that follow are detailed in B. Denote by (x1, x2, x3) the Carte-
sian coordinates in R3. Choose for simplicity Π = {x3 = 0} (this is always
possible by composition with a rotation) whence Πp = {x3 = x3,p}. For some
�xed x3,p ∈ (−1, 1), let

x ∈ Tp : x = (x1, x2, x3,p) , rp =
√

1− x2
3,p , z = (x1 + i x2)/rp , (6)

where rp is the radius of the circle Tp, and z ∈ T is the normalised complex a�x
associated to x ∈ Tp.

RR n° 7704
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From ua on Tp, we build the complex variable function fp on the unit circle
T ⊂ C (the complex plane) as follows.

fp(z) = u2
a(x1, x2, x3,p) , (7)

For �xed p, the function fp coincides with the trace on T of a function de�ned
on C except at singularities: due to the n sources Ck, this extended function
(that we still call fp) has n singularities inside the unit disk D (as well as n
related singularities outside the closed disk D).
Indeed, let us denote the source coordinates by Ck = (x1,k, x2,k, x3,k), and their
corresponding complex a�x by zk = x1,k + ix2,k, for k = 1, . . . , n. Assuming
zk 6= 02, we have from (5), (7), at x ∈ Tp and corresponding complex a�x z ∈ T
through (6):

fp(z) =

[
n∑
k=1

ϕk,p(z)
(z − sk,p)3/2

]2

(8)

where sk,p are the singularities induced inside D by the source Ck and ϕk,p are
smooth functions in D.
The localization of sk,p then leads to that of Ck. Indeed, the complex argument
of sk,p is independent of p, and equal to the argument of zk, which allows us
to determine the number n of sources. Further, for �xed k, when p varies, the
quantity rp |sk,p| attains its maximal value, equal to |zk|, when x3,k = x3,p, in
the slice p corresponding to Ck.
Figure 5 shows the trajectories of the singularities sk,p in a two sources case.

Figure 5: True sources C1, C2 and theoretical singularities s1,p, s2,p, p =
1, · · · , P , which when joining the dots form singular lines lk (see Section 3.4:
3D view (left), top view (right).

3.3 Recovering 2D singularities

This section deals with the computation of the singularities sk,p from the sliced
boundary data fp on T , given by (7) at �xed p.
From formula (8), it can be seen that the function fp has the following properties:

2This is generically true with respect to the plane Π. See however B for the degenerated
situation where zk = 0.

RR n° 7704
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� If there is a single source (n = 1), then fp is exactly a rational function
with a single triple pole in D at position s1,p:

fp(z) =
ϕ2

1,p(z)
(z − s1,p)3

. (9)

� If there are multiple singularities (n ≥ 2), fp is no longer a rational func-
tion (because of terms with power 3/2 at the denominator of (8)). In
this situation, the sk,p are both (triple) poles and branchpoints (of order
3/2)3. Yet, fp can be well approximated on the boundary T by a rational
function with poles in D, see C and [Baratchart et al., 2006], [Baratchart
and Yattselev, 2009].

This gives rise to the following algorithm that provides estimates ŝk,p of sk,p
from sample values f̂p built from (7).

Finding Planar Singularities ŝk,p ' sk,p from Cortical Data f̂p

1. Choose the number n of sources.

2. Find initial values s∗k,p of sk,p, to be the poles of a rational
approximation f∗p of fp with appropriate degree (depend-
ing on n).

3. If n = 1 then ŝk,p = s∗k,p.

4. Otherwise, for fp linked to sk,p by (8) and starting with
the initial values s∗k,p, �nd ŝk,p by minimizing (gradient
descent) the criterion:

ŝk,p = arg minsk,p

∥∥∥f̂p − fp∥∥∥ .
Remark 1 Though it should become an output of the proposed method, the
number n is a necessary preliminary guess in the present algorithm.
In point (iv), ‖ ‖ is the l2 norm on T . The data fp is assumed to be given either
by a number of its pointwise values on T , or by a number of its Fourier coe�-
cients, using the spherical harmonics expansion of ua on S0 from Section 3.1.2.
From this Fourier expansion, we shall keep only the part with negative indices,
for it is enough to account for the singularities of fp in D (see C.2), that we still
call fp, for simplicity.

Strategies for achieving step (ii) of this algorithm are discussed in C.
The present Planar Singularity Detection step must be performed with several
slicing directions Π, in order to get more accuracy on the localization process
and to separate sources (see Section 3.4 and [Marmorat et al., 2002, Marmorat
and Olivi, 2004]).

3Recall that a pole (or polar singularity) is the zero of some polynomial at the denominator
of the function, while a branchpoint is the singular point of some multivalued complex analytic
function, as log or square-root.

RR n° 7704
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3.4 From estimated singularities to sources positions and
moments

Given a slicing direction Π, the method described in Section 3.3 provides esti-
mates of the singularities ŝk,p of fp in each slice. But, we know from Section 3.2
that the points (rpsk,p)k,p are organized along as many lines lk as there are
sources (k = 1 . . . n, see the lines formed by green dots in Figure 5).

3.4.1 Sources from a single slicing direction

Each line lk is (generically, for most slicing directions) associated with one of
the sources Ck and has the following theoretical properties (from section 3.2):

1. lk lies in a single half-plane Hk de�ned by Ck and by the direction of the
slicing plane Π: Hk contains Ck and is orthogonal to Π;

2. lk goes through its associated source Ck. At this point, the radial distance
of the line lk to the boundary of Hk (the diameter of S0 orthogonal to Π)
reaches its maximum.

The �rst property is used to group the points rpŝk,p into n estimated lines l̂k.
To do so, these points are clustered in n classes by applying Matlab's algorithm
clusterdata to their polar angles. For each class, the best �tting half-plane Ĥk

is then estimated using a least-squares algorithm and the points are reprojected
on that plane, providing us with an estimation l̂k of the line lk. The polar angle
of Ĥk is an approximation of the complex argument Arg ẑk of Arg zk. We can
now compute |zk| using the second above property as:

|̂zk| = max
p∈1,...,P

{|rpŝk,p| among rpŝk,p ∈ l̂k ⊂ Ĥk} .

We then get ẑk which, together with the argument p of the above max, provides
an estimate Ĉk of the source positions, for direction Π.

3.4.2 Combining information from multiple slicing directions

The above procedure is repeated for a number np of di�erent slicing directions,
which yields a family of np × n estimations of the n source positions. Matlab's
algorithm clusterdata is again used to build n separate clusters from these
np × n points. The �nal estimations Ĉk of the sources are obtained as the
barycenter of each cluster. As in the previous section, the distance between
points is de�ned so as to ensure that each slicing direction contributes only
once to each cluster.
Once the source positions are known, the measured potential is a linear function
of the moments. These are thus estimated using a simple linear least squares
minimization procedure.

4 Numerical validation

We now present numerical results obtained with FindSources3D, a Matlab code
that implements the above algorithm [Bassila et al., 2008].

RR n° 7704
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We simulated two data sets with OpenMEEG, which implements the symmetric
Boundary Element Method [Gramfort et al., 2010, Kybic et al., 2005]. We
considered data at the scalp level (potential measured by 128 electrodes), and
also at the cortex level (potential and normal current on a 642 points mesh),
in order to test the in�uence of the Cortical Mapping step on the quality of
the source estimation. The spherical 3-layer head model is the one described in
Section 2.1.
In the case of cortical data, that is with potential and current at the cortex
level as computed by OpenMEEG, Figure 6 displays for twelve di�erent slicing
directions, the top views of the planar detected singularities. Figure 7 shows
the 3D superposition of all these estimated singularities for all axis directions
and the estimated source positions for all the slicing directions.
Figure 8 displays true and estimated sources from the two datasets, while Table 1
displays numerical values of the corresponding positions and moments.

Figure 6: Top views of 2D planar singularities computed from cortical dataset
for 12 di�erent slicing directions Π.

We can see in Figures 6, 7, 8 how the present numerical results illustrate theo-
retical properties estabished in Section 3.3:
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Figure 7: 3D superposition for di�erent slicing directions: all singularities (left),
estimated sources positions Ĉk for all slicing directions (right).

Figure 8: True vs estimated sources: cortical data (left), electrodes data (right).

positions moments

True sources 0.2000 0.3000 0.4000 0.0000 0.2000 0.6000
-0.3000 -0.2000 0.4000 0.1000 0.0000 0.8000

Estimated sources 0.1951 0.3056 0.4260 0.0194 0.2068 0.5874
(cortical data) -0.3006 -0.2059 0.4208 0.0808 -0.0052 0.7993

Estimated sources 0.1917 0.2797 0.4160 0.0112 0.2579 0.5563
(electrodes data) -0.2798 -0.1777 0.4015 0.0929 -0.0486 0.8487

Error 0.0049 -0.0056 -0.0260 -0.0194 -0.0068 0.0126
(cortical data) 0.0006 0.0059 -0.0208 0.0192 0.0052 0.0007

Error 0.0083 0.0203 -0.0160 -0.0112 -0.0579 0.0437
(electrodes data) -0.0202 -0.0223 -0.0015 0.0071 0.0486 -0.0487

Table 1: True vs estimated sources from cortical and electrodes datasets.

� For a given slicing direction Π, the singularities associated with a source Ck
lie in a planeHk containing the source itself and the slicing axis (Figure 6).

� As a consequence, singularity lines associated to various slicing directions
Π intersect at the sources, which allows to estimate their positions (Fig-
ure 7).
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� Once these positions are estimated, the linear problem s easily solved to
recover the source moments (Figure 8).

As could be expected, estimation is better when data are directly taken at the
cortical level on many points. The treatment of more realistic datasets (from
scalp electrodes) needs an additional Cortical Mapping step and thus achieves a
less precise estimation. However the full procedure proves to be e�cient enough:
when estimating sources from the electrodes dataset, the global position error
is less than 10% of the sphere radius (order of the cm).

5 Conclusion

We presented here some insights concerning the resolution of a source estima-
tion problem. The techniques rely on constructive approximation, they are
robust and e�cient towards the EEG inverse source problem, as is illustrated
by preliminary numerics.
More accuracy on source localization may be achieved by extending the present
method. A �rst possibility would be to take into account several time samples
while constraining the source positions to be �xed. Also, the computation steps
concerning the singular part of the cortical potential and its 3D to 2D transfor-
mation could be made more direct, in order to limit the numerical errors.
The number of unknown sources is not yet identi�ed automatically. However,
at many steps, information is available to build good estimates of this unknown
number: singular values in the rational 2D approximation scheme, residual
boundary approximation error, clustering procedure, . . .Work is in progress to
make this number an output of the whole process, using techniques such as the
Akaike information criterion to decide when increasing the number of sources is
no longer signi�cative with respect to the data.
Magnetic data from MEG (magnetoencephalography) will be incorporated as
well, coupled to the available EEG, that may lead to additional precision in the
source localization process.
Geometrically, the approach applies in principle to more general smooth 3D
domains [Ebenfelt et al., 2001], but we did not carry out such generalizations
here and only considered spherical models. One may observe that whenever the
complexity of the geometry increases, so does the quantity of planar singularities
associated to a source. For an ellipsoidal domain, which has been theoretically
studied in [Leblond et al., 2008], we already get 2 planar singularities for each
source, in each ellipse.
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A Data transmission by Cortical Mapping

The Cortical Mapping Method, originally presented in [Clerc and Kybic, 2007],
proceeds as follows. With the rationale of the symmetric Boundary Element
method [Kybic et al., 2005], u (resp. the normal current σ∂νu) is approximated
with continuous, piecewise-linear elements (resp. discontinuous, piecewise-constant
elements). The discretization of these two variables on each of the boundaries
Si, i = 0, 1, 2 yields a set of values which are combined in a single vector-valued
variable X. The harmonic nature of u in Ω1 ∪ Ω2, along with the fact that
∂νu = 0 on S2 and the transmission conditions (2-3) are all handled by saying
that X must belong to the kernel of a speci�c linear operator. This linear op-
erator is represented by a dense matrix H, whose elements involve boundary
integral operators. The knowledge of u on K is handled by a �measurement
operator� M , such that M X represents uK , i.e. the measurements on K. Ide-
ally one would like to �nd X such that M X = uK and HX = 0, but the
ill-posedness of the Cauchy inverse problem makes it necessary to stabilise the
system through a regularization. As a consequence, the method seeks X be-
longing to the kernel of H solving

arg minX∈KerH‖M X − uK‖2 + λ‖RX‖2 .

The norms above are discrete l2 norms, λ is a real positive Lagrange parameter
to be adjusted, and R is an appropriate regularization operator. Once the
minimizer X has been computed, it is immediate to extract from X the desired
transmitted data u and σ∂νu on S0. Results obtained by this method are
illustrated in Figure 9, where the 2 sources were taken as in Section 3.1.2, and
each sphere was meshed with 642 points. This �gure shows the propagation of
the potential measured on 128 electrodes onto the outer skull surface S1 and
cortical surface S0.
Note that other transmission schemes can be obtained by best approximation
with harmonic gradients, as in [Atfeh et al., 2010], and robust interpolation
issues can be handled using spherical harmonics [Dautray and Lions, 2000].

B Link between 3D sources and 2D singularities

Choose a �xed slicing direction Π, as in Section 3.2. For x ∈ Tp and z ∈ T given
by (6), let us establish equation (8) for fp, which is equal to u2

a according to
(7), where ua has been de�ned in (5). Indeed, with hk,p = x3,p − x3,k,

|x− Ck|2 = (x1 − x1,k)2 + (x2 − x2,k)2 + (x3,p − x3,k)2

= |rpz − zk|2 + h2
k,p ,

thus:

|x− Ck|2 = (rpz − zk)(rpz̄ − z̄k) + h2
k,p = (rpz − zk)

(rp
z
− z̄k

)
+ h2

k,p

because z̄ = 1/z for z ∈ T (use that |z|2 = zz̄ = 1). Assuming �rst that zk 6= 0,
we get

(rpz − zk)
(rp
z
− z̄k

)
+ h2

k,p = −rpz̄k
z

(
z2 −

h2
k,p + |zk|2 + r2

p

rpz̄k
z +

zk
z̄k

)
.
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Measured potential Estimated potential
on scalp electrodes on scalp surface S2

Estimated normal current Estimated potential
on skull surface S1 on skull surface S1

Estimated normal current Estimated potential
on cortical surface S0 on cortical surface S0

Figure 9: Cortical mapping reconstruction. From the potential measured on
128 electrodes (top left), the Cortical Mapping method reconstructs the normal
current and the potential on all surfaces of the model. The normal current is
not represented on the scalp because it is simply equal to zero in our model.
Note that the spatial distribution of the potential is less sharp on the scalp and
skull surfaces (top right and middle right) than on the cortex, due to the high
resistivity of the skull.

Hence, for x ∈ Tp, |x − Ck|2 coincides with the values on T of the function
de�ned in the whole of D by:

−rp z̄k
z

(z − sk,p)(z − σk,p) ,

where the singularities sk = sk,p ∈ D and σk = σk,p ∈ D are linked between each
other and with the source parameters (Ck being determined by the quantities
zk, hk,p and rp) by the relations:

σk,p =
zk

z̄ksk,p
and

sk,p =
zk

2|zk|2rp

(
h2
k,p + r2

p + |zk|2
√

(h2
k,p + (rp + |zk|)2)(h2

k,p + (rp − |zk|)2)
)
.
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Also, for each slice index p = 1, · · · , P ,

|sk,p| |σk,p| = 1 and arg sk,p = argσk,p = arg zk . (10)

With the standard convention that the square-root is positive for positive argu-
ments (which is used throughout the paper), sk,p is the root with the smallest
modulus and (10) ensures that sk,p ∈ D while σk,p ∈ D. Recalling (7) and (5),
this leads to the expression (8), or equivalently to

fp(z) =
n∑
k=1

ϕ2
k,p(z)

(z − sk,p)3
+ 2

n∑
k,j=1
k 6=j

ϕk,p(z)ϕj,p(z)
(z − sk,p)3/2(z − sj,p)3/2

, (11)

which shows that fp admits the singularities sk,p in D. See below for the func-
tions ϕk,p at the numerators. The above computation exposes two useful prop-
erties of sk,p which are used in Section 3.4 towards the localization of Ck:

1. The argument of the complex number sk,p is independent of p, and equal
to the argument of zk. In any slicing direction that separates the sources
(that is if zk 6= zj for k 6= j, which generically holds), this property allows:

� to determine the number of sources n, since the quantity of sources
should be equal to the number of values taken by the complex argu-
ment of sk,p, as k and p vary;

� for any �xed index k0, to track sk0,p among all the sk,p in any slice
p (the complex argument of sk0,p does not depend on p);

� to determine the argument of zk0 .

2. When p varies (for x3,p ∈ (−1, 1)), the modulus of rp sk,p increases mono-
tonically for x3,p < x3,k (decreases monotonically for x3,k < x3,p), and
attains a maximum when x3,k = x3,p or hk0,p = 0, in which case one
has rp |sk0,p| = |zk0 |. This second property allows us to determine |zk0 |,
whence �nally zk0 .

Also, if we put pk = (p1,k, p2,k, p3,k) for the moments and %k = p1,k + ip2,k, we
get from (5) that:

ϕk,p(z) =
1

8π
%̄k

(rpz̄k)3/2

√
z

(σk,p − z)3/2
π2,k,p(z)

are uniformly bounded inD and π2,k,p are polynomials of degree 2 (see also [Baratchart
et al., 2006]):

π2,k,p(z) = rpz
2 + 2

p3,khk,p − Re (zk%̄k)
%̄k

z +
%k
%̄k
rp .

Finally, whenever zk = 0 (that is when the associated Ck lies on the vertical
axis), then |x−Ck|2 = r2

p +h2
k,p is a constant and the corresponding term of (8)

becomes a rational function of z which assumes the form π2,k,p(z)/z for the
above mentioned polynomials π2,k,p. In this situation, the function fp to be
approximated has a unique (double) pole in D at 0, in every planar section p,
which will be revealed by the Rational Approximation step. The sum of the
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roots of the polynomial π2,k,p is equal to − 2p3,k

%̄k rp
hk,p. If p3,k 6= 0, the behaviour

of these roots still allows to compute the index p such that hk,p = 0, and to
�nally locate the singularity Ck. The situation where zk = 0 and p3,k = 0
however is degenerated w.r.t. the present choice of Π, which is the reason why
several slicing directions should be used.

C Best Rational Approximation Schemes

C.1 Best Rational Approximation

From the knowledge of fp on the surrounding circle T , the sk,p in D, k = 1, ..., n
are localized using Rational Approximation on T , with poles in D. Indeed, as
we will see, the poles s∗k,p of such approximants accumulate to the singularities
sk,p of the approximated function fp.
Let us �rst brie�y explain the best quadratic Rational Approximation techniques
that are used.
As explained in Section 3.3, the singularities sk,p can be described both as
branchpoints and as triple poles of fp. For a single source, we noted that fp
is exactly a degree 3 rational function and the singularity sk,p is itself a triple
pole. For multiple sources, the situation is not so simple, but the property that
poles lines pass near the singularities still remains. This makes it interesting to
consider two Rational Approximation schemes: one with simple poles and the
other with triple poles.
We de�neRm to be the set of rational functions Rm with less thanm poles in D:

Rm =
πm
qm

, where πm and qm are polynomials such that deg πm < deg qm ≤ m,

and where the zeroes of qm belong to D.
A best quadratic rational approximant to fp in Rm is a function R∗m ∈ Rm,
verifying:

‖fp −R∗m‖ = min
Rm∈Rm

‖fp −Rm‖ , (12)

for the L2(T ) norm, see [Baratchart et al., 1992]. Existence and non-uniqueness
of R∗m are discussed in [Baratchart et al., 1992]. Concerning constructive as-
pects, e�cient algorithms to generate local minima are obtained using Schur
parametrization [Marmorat et al., 2002]. Computation of R∗m is made e�ec-
tive through suitable parametrization of rational functions, using gradient algo-
rithms [Marmorat et al., 2002].
Generally and properly speaking, for functions fp ∈ L2(T ), the approximation
class Rm should be the set of �meromorphic� functions with less than m poles
in D. Such a meromorphic function is the sum of a rational function πm

qm
and

of a function h �holomorphic� (or equivalently �analytic�) in D (which has no
singularities in D but may have poles outside D). Because

πm
qm

+ h =
πm + hqm

qm
,

we see that a meromorphic function coincides with the quotient of a holomorphic
function by a polynomial.
Further, whenever fp has singularities only in D and is analytic in C \D (and
vanishes at∞), its best meromorphic approximant coincides with its best ratio-
nal approximant with poles in D. This is the reason why we explain in C.2 how

RR n° 7704



Source localization using rational approximation on plane sections 20

to get, in general, this part of fp, analytic in C\D, which shares the singularities
of fp in D but as no singularity outside D.

C.2 2D Analytic Projection

Observe from B that fp possesses singularities both inside and outside the unit
disk, that are linked to each other and to the sources Ck, see e.g. (10).
Indeed, the representation (8) involves the singularities sk,p of fp in D but also
the additional re�ected ones σk,p (hidden in ϕk,p) outside D. First, these are
linked with each other by (10). Next, the Rational Approximation algorithms
available for data on T require the singularities of the approximated functions to
belong to a region of the plane limited by T (see Section 3.3; in particular, this
leads to a lower degree of the approximants, that also possess strong robustness
properties). We thus choose to keep only those of the singularities sk,p of fp
that belong to the disk D, and we need to �lter the σk,p out.
It is easily seen from (8) that the function fp is continuous on T , because none
of its singularities belong to T . Thus it belongs to the Lebesgue space L2(T )
of functions with square summable modulus on T . Consequently, it can be
uniquely written on T as the sum fp = F + Fo, where F is the holomorphic
projection of fp in C \ D and vanishes at ∞, while Fo is holomorphic in D.
Actually, F and Fo respectively belong to the Hardy classes of C \D and of D,
their traces on T belonging to L2(T ) [Rudin, 1987]. The Hardy-Hilbert spaces
H2
−, resp. H

2
+ are the sets of functions analytic in C\D (vanishing at∞), resp.

analytic in D, and bounded in L2(T ) norm (i.e. the space of L2(T ) functions
with vanishing Fourier coe�cients of positive indices, resp. of strictly negative
indices). We can directly compute F from the Fourier series expansion of fp on
T :

fp(eiθ) =
∑
l∈Z

Fl e
ilθ ,

∑
l∈Z
|Fl|2 <∞

⇒ F (z) = (P−fp)(z) =
∑
l<0

Fl z
l , |z| ≥ 1 , (13)

if P− denotes the orthogonal �anti-analytic� projection from L2(T ) onto H2
−.

The important point here is that fp and F share the same singularities inside D
while F has no singularities outsideD, since F possesses an expression analogous
to (8), with identical denominators, but numerators given by smooth functions.
This is necessary for the best Rational Approximation problem o be solved
among rational (no longer meromorphic) functions with poles in D.
We shall then assume from now on, and already for the computations of Section
3.3, that fp is analytic in C \D, and vanishes at ∞, without loss of generality.

C.3 Behaviour of Simple Poles with respect to Singulari-
ties and Sources

If the degree m is not preliminarily given, observe that its estimation can be
obtained by computing the boundary error on T (the value of the criterion
in (12)) for increasing values of m, until it is small enough, see Remark 1. This
will happen in principle for m ' 3n, the number of singularities of fp in D
according to their multiplicity.

RR n° 7704



Source localization using rational approximation on plane sections 21

For such a value of m, compute the best approximant R∗m itself (that the ap-
proximant should be computed only once, for m large enough for the error to
be su�ciently small, is one of the features that make this scheme e�cient).
In sections p close to Ck, fp is (numerically) close to a rational function with
poles at (sk,p). Thus, for m large enough, typically m ≥ 3n, the m poles of R∗m
must then be located near the (sk,p) (see Property (P), C.5), and they should
be packed in a number of clusters coinciding with the number n of sources.
This is illustrated in Figures 10�12 where m = 1, 2 and 3 simple poles cases
are respectively shown for the same situation with n = 2 sources as in Section
3.1.2. For k = 1, 2 and varying p, theoretically known singularities (rp sk,p) are
shown in disks Dp as green dots whereas estimated poles are shown with red
dots. Black dots represent the sources C1, C2.

Figure 10: 1 simple pole Figure 11: 2 simple poles

Figure 12: 3 simple poles

C.4 Behaviour of Triple Poles with respect to Singulari-
ties and Sources

Recall that the singularities sk,p that we aim at recovering appear at triple poles
of fp, from (8), which motivates the computation of best rational approximants
with triple poles.
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Recall that for a single source (n = 1), then (8) is to the e�ect that fp is a
rational function with a triple pole in D, see (9). Hence, its best rational ap-
proximant with a single triple pole inD should coincide with fp itself. Whenever
n > 1, the situation is of course more complicated since fp admits the sk,p both
as triple poles and branchpoints. However, as we shall see, the behavior of poles
dominates whence its best rational approximant with triple poles still allows to
recover the sk,p.
These best rational approximants with triple poles in D are functions R∗3m =
π3m/q

3
m ∈ R3m that satisfy (12), where π and q are polynomials such that

deg qm ≤ m, deg π3m < 3m. An advantage is that the computations can then
be performed with a lower degree than in the simple poles case, since m = n is
enough.
Again, even though fp is not a rational function (it admits poles and branch-
points located at the same place), it is (numerically) close to rationals of R3

with a single triple pole (m = 1), in plane sections p close to the one containing
(Ck), even for several sources, when n > 1.
For such data fp, close to a rational function of R3 with a single triple pole, say
t, in D, then the single triple pole of the best rational approximant is close to
t, see the robustness property (P'), C.6.
Hence the above best approximants R∗3m possess an even stronger property:
in general a single (m = 1) triple pole is enough in order to localize several
singularities sk,p in D, hence several sources (Ck) (n ≥ 1), by varying p. Indeed,
in the slice p containing a source Ck, the single triple pole s∗p of R∗3 is close to
the associated singularity sk,p.
This situation is illustrated in Figure 13 for the same source con�guration as the
one used for Figures 10�12. As previously, sources are indicated with black dots,
green dots show the known theoretical positions of singularities while red dots
show the triple poles. One can notice that there is only one pole trajectory for
both singularity lines. Thus the triple pole line does not follow the singularity
lines as in the single pole case. However, close to sources, the triple poles
approximate the singularity lines quite well.

Figure 13: 1 triple pole
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C.5 Behaviour of Simple Poles of Rational Approximants

We give a few additional considerations concerning the asymptotic behaviour of
the poles.
In situations where fp is already a rational function RN of RN , then its best
rational approximant R∗m coincides with fp for m ≥ N . This result is robust in
the sense of property (P) below. Observe that whenever n ≥ 2, the function fp
has poles and branchpoints in D, and it can be shown that the degree of the
denominator qm of R∗m is in fact equal to m, for each integer m. Property (P)
can be deduced from [Baratchart, 1986, Prop. 5]:
(P) Whenever fp is close (in L2(T )) to a rational function RN , then the poles
of R∗m accumulate to those of RN , as m increases.
Further, deep convergence results from potential theory [Baratchart and Yattse-
lev, 2009] assert that, for a function fp as in the present situation (which ad-
mits �nitely many poles and branchpoints in D and has a smooth behaviour
near T ), the m poles of R∗m converge (in some weak sense) to the singularities
(sk) = (sk,p) of fp as m increases (where, for notational simplicity, the index p
is �xed and has been omitted).
For n = 2, the sequence of counting probability measures of the poles of R∗m
will asymptotically charge s1 and s2 (the poles will accumulate �near� s1 and
s2), while only �nitely many poles stay away from s1, s2 and from the arc of
circle orthogonal to T joining them [Baratchart et al., 2001].
These results are related to the fact that, for n = 2, fp can be represented as:

fp(z) = R6(z) +R2(z)
∫ s2

s1

dt

(z − t)
√

(t− s1)(s2 − t)
,

for rationals R2 ∈ R2 and R6 ∈ R6 with, respectively, two simple poles for R2

and two triple poles for R6, at s1 and s2. This result is used in [Baratchart and
Yattselev, 2009] to study the behaviour of the poles of best rational approxi-
mants.

C.6 Behaviour of Triple Poles of Rational Approximants

We have the robustness property:
(P') For a function fp, close to a rational of R3 with a single triple pole t ∈ D,
then the triple pole t∗ of its best rational approximant R∗3 (with a single triple
pole in D) and t are close to each other.
Property (P') is a restatement of:

Proposition 1 Let R3(z) = π(z)/(z − t)3 be a rational function of R3 with a
triple pole t ∈ D, strictly proper (degπ < 3), and irreducible (π(s) 6= 0). Then,
there exists K > 0 such that for all rational function R̃3(z) = π̃(z)/(z − b)3 with
a triple pole b ∈ D, the following inequality holds: |t − b| ≤ K‖R3 − R̃3‖,
for the L2(T ) norm.

Indeed, as a corollary, if ‖fp − R3‖ ≤ ε (in L2(T ) norm), for some ε > 0
and R3 ∈ R3 with a single triple pole t in D, then we have the inequality:
|t − t∗| < Kε.

Proof of Proposition 1: Let R = π/q, and R̃ = π̃/q̃, be two proper rational
(irreducible) functions in L2(T ): in particular, π, q, π̃, q̃ are polynomials, and
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the roots of q and q̃ lie inside the open unit disk D (q and q̃ are called �stable�
polynomials).
Step 1 We look for a lower bound to

d(R, R̃) =
∥∥∥∥πq − π̃

q̃

∥∥∥∥
(L2(T ) norm). If n is the degree of q̃, put ˇ̃q(z) = znq̃(1/z̄) for its reciprocal
polynomial. Then q̃/ˇ̃q has modulus 1 on the unit circle, and we also have:

d(R, R̃) =
∥∥∥∥πq q̃ˇ̃q − π̃

ˇ̃q

∥∥∥∥ .
From the orthogonal decomposition of L2(T ) into Hardy spaces of analytic func-
tions [Rudin, 1987], and because P−(π̃/ˇ̃q) = 0, since the poles of π̃/ˇ̃q belong to
C \D.
we get that:

d(R, R̃) ≥
∥∥∥∥P−(πq q̃ˇ̃q

)∥∥∥∥ . (14)

Remark 2 The right hand-side of (14) vanishes if and only if q is a divisor of
q̃.

Step 2 In the particular case where R ∈ R3 and R̃ have a single triple pole
respectively at t ∈ D, and and at b ∈ D, then q(z) = (z − t)3, q̃(z) = (z −
b)3, ˇ̃q(z) = (1 − b̄z)3, and we can evaluate this right hand-side by a fractional
decomposition. Indeed, expand π(z)q̃(z) in powers of (z− t) in order to obtain:

P−

(
π

q

q̃
ˇ̃q

)
= P−

(
1

(1− b̄z)3

(
A1

z − t
+

A2

(z − t)2
+

A3

(z − t)3

))
(15)

with

A1 = 3π(s)(t− b) + 3π′(t)(t− b)2 + π′′(t)(t− b)3/2 ,
A2 = 3π(s)(t− b)2 + π′(t)(t− b)3 , A3 = π(t)(t− b)3 .

Expanding now 1/ˇ̃q in a neighbourhood of z = t in D, we get:

1
ˇ̃q(z)

=
1

(1− b̄z)3
=

1
(1− b̄s)3

(
1 +

3b̄(z − t)
1− b̄t

+
6b̄2(z − t)2

(1− b̄t)2

)
+O((z−t)3) .

The P− projections in (15) can then be expressed as:

P−

(
1

(1− b̄z)3

1
z − t

)
= α

z−s ,

P−

(
1

(1− b̄z)3

1
(z − t)2

)
= α

(z−t)2 + β
z−t ,

P−

(
1

(1− b̄z)3

1
(z − t)3

)
= α

(z−t)3 + β
(z−t)2 + γ

z−t ,

where

α =
1

(1− b̄t)3
, β =

3b̄
(1− b̄t)4

, γ =
6b̄2

(1− b̄t)5
.
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Thus:

P−

(
π

q

q̃
ˇ̃q

)
= Φt,b(z) = (t− b) Nt,b(z)

(z − t)3
= (t− b)Ψt,b(z) ,

where Φt,b, Ψt,b are rational functions, and Nt,b is a polynomial of degree 2, as
follows from:

Φt,b(z) =
αA3

(z − t)3
+
αA2 + βA3

(z − t)2
+
αA1 + βA2 + γA3

z − t
.

Using (14), we thus get:
d(R, R̃) ≥ ‖Φt,b‖ .

Note that Φt,b, Ψt,b, and Nt,b have continuous coe�cients in the variable b ∈ D.
In particular, for b = t ∈ D:

Φt,t(z) = 0 , Ψt,t(z) =
3π̃(t)

(1− |t|2)3

1
z − t

.

Step 3 Consider the L2(T ) norms of Φt,b and Ψt,b as functions of b, and put

φ(b) = ‖Φt,b‖ , ψ(b) = ‖Ψt,b‖ , whence φ(b) = |t− b|ψ(b) .

From (14), we now have that

d(R, R̃) ≥ φ(b) .

The above expressions are then to the e�ect that φ and ψ are continuous func-
tions of b ∈ D. Further, φ and ψ admit continuous extensions up to the closed
disk D, and ψ does not vanish on D. Indeed, let |b| = 1 and bn ∈ D, bn → b.
Then, ∀z ∈ D, q̃n(z)/ˇ̃qn(z) = (z−bn)3/(1− b̄nz)3 converges to the constant −b3,
whence (πq̃n)/(q ˇ̃qn) → −b3π̃/q̃ in L2(T ). Since P−(π/q) = π/q = R (because
Rm is contained in the above mentioned Hardy class of functions analytic in
C \D and by de�nition), we deduce that φ continuously extends to T and that
φ(b) = ‖R‖, ∀b ∈ T . Hence, ψ also admits a continuous extension on T and
ψ(b) = ‖R‖/|t− b|, ∀b ∈ T .

Step 4 Finally, the continuous positive function ψ attains its minimal value
K ′ ≥ 0 in D at some point b0 ∈ D. In order to establish by contradiction
that K ′ > 0, assume that K ′ = 0; then ψ(b0) = 0 which implies φ(b0) = 0.
Then b0 /∈ T , since φ|T = ‖R‖. But if b0 ∈ D, then necessarily b0 = t,
the unique point in D where φ vanishes, from Remark 2. However, because∥∥∥ 1
z−t

∥∥∥ = (1 − |t|2)−
1
2 , we have ψ(t) = 3|π̃(t)|(1 − |t|2)−

7
2 . Because R = π/q is

irreducible, then π(t) 6= 0, so ψ(t) 6= 0, and this is a contradiction. Hence,
K ′ > 0.

Step 5 Thus ψ(b) ≥ K ′ > 0 whence, with K = 1/K ′, φ(b) ≥ |t− b| and:

|t− b| ≤ Kφ(b) ≤ Kd(R, R̃) ,

which achieves the proof of Proposition 1, with R3 = R. �

Remark 3 The expressions of α, β, γ lead to a similar result for the hyperbolic
distance:

∃K0 > 0,
∣∣∣∣ t− b1− b̄t

∣∣∣∣ ≤ K0φ(b) ≤ K0d(R, R̃) .
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