Multifractal description of road traffic structure

Abstract : In this work, we study the structure of road traffic with the help of fractal and multifractal tools. Using classical models of traffic that lead to a Burgers' equation and recent results on the solutions of this equation when the initial conditions are scaling, we predict that, under some circumstances, the traffic can possess a multifractal structure similar to those of multiplicative processes. We then verify this behavior on six minute data of traffic flows. The high sampling rate allows to evidence the highly irregular nature of the flows and to quantify this irregularity using the classical tools of the multifractal theory, namely the (q, A(q)) and the (A, f(A)) curves. These characterizations in turn permit to classify the complex traffic data, with some application to short-term prediction.
Type de document :
Communication dans un congrès
7th IFAC/IFORS Symposium on Transportation Systems : Theory and Application of Advanced Technology, 1994, Tianjin, China. 1994
Liste complète des métadonnées

https://hal.inria.fr/inria-00613991
Contributeur : Lisandro Fermin <>
Soumis le : lundi 8 août 2011 - 14:40:52
Dernière modification le : mercredi 29 novembre 2017 - 15:08:42

Identifiants

  • HAL Id : inria-00613991, version 1

Collections

Citation

Jacques Lévy-Vehel, Robert Vojak, Mehdi Danech-Pajouh. Multifractal description of road traffic structure. 7th IFAC/IFORS Symposium on Transportation Systems : Theory and Application of Advanced Technology, 1994, Tianjin, China. 1994. 〈inria-00613991〉

Partager

Métriques

Consultations de la notice

60