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1 INRIA Sophia-Antipolis
{Michael.Armand,Benjamin.Gregoire,Laurent.Thery}@sophia.inria.fr
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Abstract Enjoying the power of SAT and SMT solvers in the Coq proof as-
sistant without compromising soundness requires more than a yes/no answer
from them. SAT and SMT solvers should also return a proof witness that can
be checked by an external tool. We propose a fully certified checker for such
witnesses written in Coq. It can currently check witnesses from the SAT solvers
ZChaff and MiniSat and from the SMT solver VeriT. Experiments highlight the
efficiency of this checker. On top of it, new reflexive Coq tactics have been built
that can decide a subset of Coq’s logic by calling external provers and carefully
checking their answers.

1 Introduction

Several developments highlight that interactive theorem provers are now ready to
be used to formalize highly non-trivial mathematical theories [27,24] and to specify
and study industrial scale software [31]. Unfortunately, the high confidence of these
formalizations often requires a tedious interaction with the prover: contrary to paper
proofs, all the “trivial cases” have to be detailed. Thus, the ability to scale up is
significantly determined by the capability of automating trivial proofs.

A priori, one could expect that progress in automated theorem proving would di-
rectly benefit proof assistants. In particular, the spectacular advances in solving the
Boolean SATisfiability Problem [23] have placed SAT solvers at the heart of many
practical applications using automated theorem provers [33]. Encouraged by this suc-
cess, the DPLL procedure [16,15] on which most of the off-the-shelf SAT solvers (e.g.
ZChaff [38], MiniSat [19]) are based was largely enhanced and generalized to more ex-
pressive logics. This is the case for Satisfiability Modulo Theory solving that considers
non-purely propositional extensions of the SAT Problem in which atomic propositions
belong to a variety of theories: linear and non linear arithmetic, equality, bit vectors
and others. This led to competitive tools like Z3 [35], CVC3 [9], Yices [18], VeriT [13],
Simplify [17], Alt-Ergo [14] among others. These tools are used, for instance, in static
checkers, verification systems, model checkers and unit test generators. We refer the
reader to [8,21,7,39] for some of such applications.

As automatic provers are becoming more and more powerful, their trusted bases
have been growing as well. Formally proving a state of the art prover has revealed to be
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very difficult [32]. Another approach is then to adopt result certification. For this, the
provers should not only return a yes/no answer but also produce a proof witness that
can be checked by an external tool. The main contribution of the paper is to propose
a modular and effective checker for SAT and SMT proof witnesses written in Coq
and fully certified. The benefit of having such a certified checker inside Coq is double.
First, the reliability of automatic provers can be increased by checking their results a

posteriori. Second, the automation within Coq without compromising soundness can
also be enhanced by the introduction of new tactics that delegate goals to external
provers whose answers are checked. The source code of the checker and information
on its usage can be found online [1].

The work presented in this paper extends the work presented in [5]. The format
of certificates has been rethought to be more modular and then makes it easier the
addition of new theories. Moreover, we enhanced the automation of Coq by defining
new decision procedures.

The paper is organized as follows. In Section 2, proof witnesses for SAT and SMT
and the computational reflection on which our checker is based are introduced. Sec-
tion 3 presents a deep embedding of SAT and SMT terms. Section 4 details the archi-
tecture of our checker and shows how the initial kernel that deals with resolution has
been extended in order to handle theories. Section 5 explains how the checker has been
integrated inside Coq into a tactic. Finally, in Section 6, we evaluate the efficiency of
our integration and compare it to other similar attempts.

2 Proof Witnesses and Computational Reflection

2.1 SAT Solvers

SAT solvers deal with propositional formulas given in Conjunctive Normal Form
(CNF). They decide whether there is an assignment of the variables that satisfies
the formula or not. To set the notations, we recall the basic definitions that are in-
volved. We consider a countable set X of boolean variables. In the following, we use
the variables x, y to denote elements of X. Two special constants � and ⊥ represent
true and false respectively. V is the set of positive literals defined by X ∪ {�,⊥}. We
use the variable v to denote an element of V . The involutive negation of domain V
is denoted v �→ v̄. Its codomain, denoted V̄ , is called the set of negative literals. A
literal l is either a positive or a negative literal. A clause is a disjunction of literals,
denoted l1 ∨ · · · ∨ ln if it is nonempty and � otherwise. We use the variables C,D
to denote clauses. Clauses are considered up to associativity and commutativity of
∨. Furthermore, a variable v and its negation v̄ cannot appear in the same clause. A
formula in CNF is represented by a finite set of clauses S, seen as their conjunction.

Given a valuation ρ mapping a unique boolean to each variable, literals, clauses
and sets of clauses are interpreted into booleans as usual. Their interpretation are
written [l]ρ, [C]ρ, [S]ρ respectively. A set of clauses S is satisfiable if and only if there
exists a valuation ρ such that [S]ρ = �. Conversely, S is unsatisfiable if and only if for
all valuation ρ, [S]ρ = ⊥.
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We recall that the refutationally complete resolution rule is defined by:

v ∨ C v̄ ∨D
C ∨D

This rule is derivable in classical logic. v is called the resolution variable. A tree of
resolution rules that have a “comb”-like topology is called a resolution chain.

Modern SAT solvers rely on variants of the DPLL algorithm which can be cus-
tomized to generate a proof witness [37]. The witness is:

– either an assignment of the variables to � and ⊥ that satisfies all the clauses, if
the set of clauses is satisfiable;

– or a proof by resolution of the empty clause, if the formula is unsatisfiable.

Note that in both cases, the proof witness is not necessarily unique. Here are two
examples of proof witnesses.

Example 1. Consider the following set of clauses: S = {x ∨ y, x ∨ ȳ ∨ z, x̄ ∨ z}. S is
satisfiable. A proof witness is {x �→ �, y �→ ⊥, z �→ �}.

Example 2. Consider the set of clauses S � = {x∨y, x∨ȳ∨z, x̄∨z, z̄}. S � is unsatisfiable.
A proof witness is:

x ∨ y
x ∨ ȳ ∨ z z̄

x ∨ ȳ
x

x̄ ∨ z z̄
x̄

�

From the point of view of result certification, the case of unsatisfiability is the
more challenging. Checking such a witness consists in inspecting each application of
the resolution rule, making sure that we obtain the empty clause at the end. We explain
in Section 4.2 how to preprocess such witnesses in order to obtain smaller certificates.

Even if the two witness producing SAT solvers ZChaff and MiniSat differ on the
output format, both give assignments in case of satisfiability and resolution trees in
case of unsatisfiability.

2.2 SMT Solvers

SMT solvers decide an extension of the SAT problem in which positive literals are not
only boolean variables but also atomic propositions of some first-order theory. Given
a signature Σ containing simple types, and function and predicate symbols with their
types, a theory T is a set of formulas of type bool written using this signature, variables
and logical connectives. Those formulas are called theory lemmas. In this paper, we only
deal with quantifiers free formulas (all non-boolean variables are implicitly existentially
quantified) We illustrate this with two examples frequently considered by SMT solvers:
congruence closure and linear arithmetic.

Example 3. The theory of congruence closure is defined upon the signature containing:
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– one single type, written U0;
– function symbols of type U0 → · · · → U0;
– predicate symbols of type U0 → · · · → U0 → Bool among which a particular
predicate symbol = of type U0 → U0 → Bool.

and includes all the formulas that are true using the rules of uninterpreted functions
with equality, namely the rules of reflexivity, symmetry, transitivity and congruence.

Example 4. The theory of linear arithmetic is defined upon the signature containing:

– one single type, written I;
– four function symbols:

0 : I, S : I → I, + : I → I → I, − : I → I → I
– three predicate symbols:

= : I → I → Bool, < : I → I → Bool, ≤ : I → I → Bool

and includes all the formulas whose standard interpretation in Z are true.

The set of atoms A of a theory T is the set of all the formulas of type bool written
using only the signature of T and variables (but no logical connectives). In the follow-
ing, a denotes an element of A. The set of positive literals V is extended with atoms
and becomes X ∪ {�,⊥} ∪ A. The set of negative literals V̄ is extended as well. The
definitions of clause and resolution rule are unchanged.

The interpretation of sets of clauses [S]Tt,Tv,Tf
requires three functions:

– Tt maps simple types to values;
– Tv maps variables to values;
– Tf maps function and predicates symbols of the theory of congruence to concrete
functions and predicates according to their types.

A set of clauses S is satisfiable if and only if there exist functions Tt, Tv and Tf such
that [S]Tt,Tv,Tf

= �. Conversely, S is unsatisfiable if and only if for all functions Tt,
Tv and Tf , [S]Tt,Tv,Tf

= ⊥.
The standard architecture for SMT solvers is an interaction between a SAT solver

and decision procedures for the theories [37]. It is well-suited to generate proof wit-
nesses. Indeed, the witness is:

– if the set of clauses is satisfiable: either an assignment of the booleans and theory
variables

– if the formula is unsatisfiable: a resolution tree of the empty clause where leaves
are not only clauses from S but also theory lemmas

Here are two examples of proof witnesses in the theory of congruence closure, given in
Example 3.

Example 5. Consider the set of clauses S = {f(x) �= f(y), y = z, f(x) = f(f(z))}
where a is a term of type U . The set S is satisfiable. A proof witness is {x �→ f(a), y �→
a, z �→ a}.
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Example 6. Consider S � = {f(x) �= f(y), y = z, f(x) = f(f(z)), x = y}. The set S � is
unsatisfiable. A proof witness is

x �= y ∨ f(x) = f(y) x = y

f(x) = f(y) f(x) �= f(y)

�

Note that the leaves are either elements of S � or congruence closure lemmas. The
only congruence closure lemma here is x �= y ∨ f(x) = f(y). Also, the conflict occurs
between the clause x = y and the clause f(x) �= f(y). As the other clauses of S � do
not contribute to the conflict, they do not appear in the proof witness.

To our knowledge, mainly three existing SMT solvers can deliver such informative
proof witnesses: Z3, CVC3 and VeriT (some other solvers give proof witnesses, but
they are less informative). Even if they differ on the output format, the three of them
give resolution trees with theory lemmas in case of unsatisfiability. They also give
witnesses for satisfiability. In our experiments we have concentrated on VeriT. In early
stages of the development, its open source status gave us the opportunity to have
control of the proof traces.

2.3 Computational Reflection in Coq

Coq [10] is a proof assistant based on type theory. It implements the calculus of in-
ductive constructions [10]. In Coq, term equality is done up to conversion. This means
that objects may have some computational content. In particular, it is possible to write
programs that evaluate within the logic of Coq. The idea of computational reflection,
as proposed in [4], is to turn the proof search that is traditionally performed by tactics
into an internal computation. To give a more concrete example, let us explain how Coq
manages to prove ring equalities automatically. Consider the equality (x+ y)− x = y
where x and y are two variables in Z. A dedicated data structure in Coq represents
ring expressions. It is composed of the operators mult for multiplication, plus for ad-
dition, minus for subtraction, and var for variables. Variables are indexed by integers.
Associated with the data structure, there are two functions that are computable inside
the logic. First, the interpretation function [ ]ρ,φ that maps the abstract data structure
to a concrete domain. The function ρ explains the mapping of the operators, while φ
handles variables. So we have for example:

[(minus (add (var 0) (var 1)) (var 0))]toZ,{0→x,1→y} evaluates to (x+ y)− x

where toZ is the interpretation for the integer numbers. Second, the normalization
function normalize computes a normal form. So, we have:

normalize (minus (add (var 0) (var 1)) (var 0)) evaluates to (var 1)

Its soundness lemma normalize sound states that terms with equal normalizations
have equal interpretations:

∀ρ φ e1 e2, normalize e1 = normalize e2 → [e1]ρ,φ = [e2]ρ,φ
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With these two functions and the soundness lemma, it is possible to give directly the
proof of our initial equality:

(normalize sound toZ {0→ x, 1→ y}
(minus (add (var 0) (var 1)) (var 0)) (var 1)

(refl equal (normalize (var 1))))

where refl equal corresponds to the reflexivity of equality. It is then the task of the
proof checker of Coq to verify that this proof term is valid.

Our application of computational reflection follows the exact same path. First, we
are going to define our own data structures to represent variables, literals, clauses and
theories. Second, we are going to encode the certificate checker as a computational
function inside the logic of Coq and prove its soundness. Finally, the proof of a Coq
statement provable by an external solver will be reduced to a minimum: the application
of the soundness of the certificate checker with one of its arguments being the certificate
returned by the solver.

Checking certificates requires a fair amount of CPU. The efficiency of the evaluator
inside Coq is then crucial for us to be able to handle non-trivial examples. Thanks to
an efficient virtual machine [25], the evaluation mechanism in Coq is as fast as Ocaml
bytecode evaluation. Also, recent extensions [5] have added native 31-bit machine
integers and imperative persistent arrays to the virtual machine. These two features
are crucial in order to get a good complexity behavior of our certificate checker.

3 Embedding SAT and SMT terms

To be easily manipulable by our checker, proof witnesses are preprocessed into cer-
tificates. Before presenting the general format for certificates, we present the efficient
deep embedding of sets of clauses it relies on. Sections 3.1 to 3.4 are dedicated to this
representation, and Sections 3.5 and 3.6 interpret them into Coq terms.

3.1 Representing Variables and Literals

On any particular instance, the set of variables X is finite. Let n be its cardinal.
We represent each variable by a distinct 31-bit integer ranging from 2 to n + 1. The
integer 0 and 1 are used to represent � and ⊥ respectively. The injection of positive
and negative literals into the whole set of literals is defined in the following way:

if v ∈ V is represented by i, then

�
the literal v is represented by 2i
the literal v̄ is represented by 2i+ 1

Thanks to this encoding, we can benefit from the efficiency of the operations of the
native 31-bit integers and most common operations on literals can be implemented
directly by bitwise operations.

Because of our encoding, we can represent problems with less than 230−2 variables
only. This is not a strong limitation since the biggest SAT problems coming from
industrial benchmarks consider around 500,000 variables, which is far smaller than
our upper bound.
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3.2 Representation of Clauses

We have two different representations of clauses : a representation R1, used for storage,
and a representation R2, used for computation. A clause in R1 is a list of integers.
A clause in R2 is an array t of length n + 2 where n is the number of variables. The
elements of the array are in the set {⊕,�,�}. The idea is the following one: for any
v ∈ V , if i represents v, t[i] is set to:






⊕ if v appears in the clause
� if v̄ appears in the clause
� if neither v nor v̄ appear in the clause

This is well-defined since v and v̄ cannot appear at the same time in the clause as
explained in Section 2.1. Since clauses are considered up to commutativity and asso-
ciativity of ∨, the representation in R2 is canonical. Let us consider an example.

Example 7. Suppose V = {x, y, z} and x is represented by 2, y by 3, and z by 4. The
clause � ∨ x ∨ z̄ is encoded in R1 as [0; 4; 9] and in R2 as ⊕ � ⊕ � � .

Going from one representation to another is linear in n.

3.3 Representation of Sets of Clauses

To check a proof by resolution, we start from an initial set of clauses. Deduced clauses
are then progressively added to this set until the empty clause is reached. For industrial
problems, the number of clauses can be quite large. It is then crucial for the basic
operations of accessing and adding a clause to be very efficient. For this reason, we
use an imperative persistent array to hold clauses. The type of a set of clauses is then
an array of R2 clauses.

3.4 Representation of Atoms

To be efficient, we need to represent atoms in such a way that it does not interfere with
the checking of the propositional part of a witness: when a resolution is computed,
the meaning of the atoms is useless. To do so, variables presented in Section 3.1 are
still considered as variables during SAT checking, but represent atoms during theory
checking.

Starting from 2, an integer is attributed to each atom appearing in the proof
witness. These integers now stand for the propositional variables. As before, they are
injected into positive literals.

For checking the theory lemmas, we obviously need to know the atom associated
to an integer. To do so, the set of clauses comes with an array mapping the atom
represented by i to the cell number i. As we must keep this array as small as possible,
common sub-atoms are globally shared using a technique inspired by hash-consing
[20]. Example 8 details the representation of S for Example 6.

Example 8. In Example 6, the array of atoms that is computed is:
f(x) H(0) = f(y) y = z H(0) = f(f(z)) where H(i) represents the atom in cell num-
ber i. In that context, the clause f(x) �= f(y) is represented by the integer 3.
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In addition to facilitating propositional checking, hashing atoms also speeds up
comparison of atoms, since we only need to compare hashes. This is crucial for instance
in congruence closure (see Section 4.3).

3.5 Interpretation Functions for Variables, Literals and Clauses

In order to state and prove the soundness of the checker, we interpret sets of clauses in
terms of boolean expressions. With our representation, a valuation ρ is a function that
maps 31-bit integers into booleans. The definition of interpreted functions • �→ [•]ρ
for literals, clauses and sets is straightforward. We interpret a variable v by:

[v]ρ = � if v = 0 [v]ρ = ⊥ if v = 1 [v]ρ = ρ(v) if v ≥ 2

a literal l by:
[l]ρ = if even l then [l/2]ρ else ¬[l/2]ρ.

a clause c by the disjunction of the interpretation of its literals, and a set of clauses C
by the conjunction of the interpretation of its clauses.

3.6 Typechecking and Atom Interpretation

As opposed to what is usually done in computational reflection like in ring where the
interpretation requires just a single type, here we need an interpretation for atoms
that accommodates different types (integers, booleans, user-defined types, . . . ) at the
same time. Then, we must add typechecking to our framework, and use it to define
a specific interpretation for theory variables (such as x and y in Example 8), unin-
terpreted functions (such as f in Example 8), and then atoms. We define a syntactic
representation of types and the array mapping atoms to integers now comes with three
other arrays:

- an array Tt mapping the syntactic representation of a user-defined type to its Coq
type;

- an array Tv mapping a theory variable to its interpretation;
- an array Tf mapping an uninterpreted function to its interpretation.

Using Tt, we can interpret syntactic types as:





[Bool]Tt
= bool

[I]Tt
= Z

[Ui]Tt
= Tt.(i)

Using T := (Tt, Tv, Tf ), we can now define the interpretation of an atom. The result
has the same dependent type as the cells of Tv and Tf . We denote its elements (s|u),
where s is a syntactic type and u is of type [s]Tt

. Here is its definition:





[v]T = Tv.(v) if v is a variable
[f(t1, . . . , tn)]T = (s, u u1 . . . un) if for i = 1, . . . , n, [ti]T = (si|ui) and

Tf .(f) = (s1 → · · · → sn → s|u)
[f(t1, . . . , tn)]T = (Bool,�) if this function application is ill-typed
[a = b]T = (Bool, eqb ua ub) if [a]T = (s|ua) and [b]T = (s|ub)
[a = b]T = (Bool,�) if this equality is ill-typed
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And ρ as used in Section 3.5 can now be defined as:

�
ρ(v) = u if a is the atom associated to v, and [a]T = (Bool|u)
ρ(v) = � otherwise

4 A Modular Coq Checker for SAT and SMT Proof Witnesses

In this section, we present the checkers that have been developed to verify SAT and
SMT proof witnesses. Checking satisfiability does not require much work: it simply
consists of verifying that the interpretation of the set of clauses using the valuation
given by the solver is �.

In that case, the checker is defined by bringing together small checkers dedicated
to each aspect of the verification of a resolution tree: checking resolution chains (Sec-
tion 4.2), checking theory lemmas for theories (Section 4.3 and 4.4) or checking CNF
computation (Section 4.5). This gives a lot of freedom in the definition of small check-
ers, since we only require that they preserve the interpretation of clauses. For instance,
any already existing Coq decision procedure can be used as a black-box checker (see
Section 4.4).

This modularity comes from the transformation of proof witnesses into certificates,
whose format is designed for flexibility.

4.1 The Small Checkers and the interface Checker

A small checker is a Coq program that, given a set of clauses S, computes a new set
of clauses S �, usually by following the proof witness. We say that a small checker is
sound if it preserves satisfiability:

for any interpretation T, [S]T ⇒ [S ∪ S �]T

Notice that, if S is empty, the soundness means that the small checker only produces
tautologies (for instance in the case of theory lemmas).

Given some small checkers, the interface checker computes new clauses using the
small checkers until it computes the empty clause. If the small checkers are sound, so
is the interface checker: since small checkers preserve satisfiability, if the empty clause
is obtained, this means that the initial set of clauses was indeed unsatisfiable.

As the interface checker stores the set of clauses in an array, an over-estimate of
the length of this array is the number of initial clauses plus the number of clauses
that are deduced by small checkers. We can do much better. Once a clause is not used
anymore by small checkers, it can be forgotten. So, using techniques similar to register
allocation in compilation [3], we compute the maximal number m of clauses that are
alive at the same time. We preprocess the proof witness so to allocate a cell to each
clause such that two clauses that are never alive at the same time can share the same
cell. In practice, this greatly reduces the length of the array.

Example 9 shows how the proof witness of Example 2 is preprocessed into a cer-
tificate using cell allocation and our data structures.
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Example 9. The proof witness of Example 2 is preprocessed into:

0← x ∨ y (1) 3← x̄ ∨ z (4)
1← x ∨ ȳ ∨ z (2) 0← R(1, 2, 0) (5)
2← z̄ (3) 1← R(2, 3, 0) (6)

where R(i1, . . . , ip) is the result of the resolution chain of the clauses contained in i1,
. . . , ip (see Section 4.2).

With such a certificate, the interface checker follows the following simple schema.

1. Create an array s of length m, the maximal number of clauses that are alive at
the same time.

2. Follow the certificate to put the clauses into s step by step, using small checkers
to compute intermediate clauses.

3. Check that the last clause that was added is the empty clause.

The soundness of this checker is proved in Coq:

Theorem 1 (Soundness of the interface checker). Given sound small checkers,

if the interface checker returns � on entries m and S, then for any interpretation T ,

[S]T = ⊥.

4.2 A small Checker to Compute Resolution Chains

Our first example of small checker is a computer of resolution chains. It is the only
small checker that is needed to check propositional unsatisfiability, and it is also used
for the resolution part of SMT proof witnesses.

Because most SAT solvers use variants of DPLL, the resolution trees that are
generated as proof witnesses have very special shapes. It is often the case that one of
two premises of the resolution rules is a leaf. So instead of using the binary version of
resolution R(C1, C2), each line of the output format for SAT witnesses is a resolution
chain R(C1, C2, . . . , Cm) where

R(C1, C2, . . . , Cm) = R(. . . (R(R(C1, C2), C3), . . . ), Cm).

We can efficiently compute resolution chains using the intermediate representation
R2 of clauses. The algorithm is the direct encoding in Coq of the algorithm of zverify,
the checker for ZChaff proof witnesses [38]. The soundness of this small checker has
been proved in Coq:

Theorem 2 (Soundness of the algorithm for resolution chains). Consider m
clauses C1, C2, and Cm, represented as lists, and let C be the clause, also represented

as a list, returned by the algorithm for resolution chains. Then:

for any interpretation T, [C1]T ∧ [C2]T ∧ · · · ∧ [Cm]T ⇒ [C]T
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4.3 A small Checker to Compute Congruence Closure

Nelson-Oppen’s technique [36] is a solution to combine the congruence closure (de-
scribed in Example 3 with theories. Congruence closure theory lemmas can be proved
in Coq either by using the congruence tactic or by checking the detailed proof witness
provided by the SMT solver VeriT. We chose to write our checker such that its works
up to symmetry (i.e. x = y and y = x are considered to be equal). Thus, our checker
for congruence closure uses certificates made of three rules:

- transitivity: x1 �= x2 ∨ · · · ∨ xn−1 �= xn ∨ x1 = xn;
- function congruence: x1 �= y1 ∨ · · · ∨ xn �= yn ∨ f(x1, . . . , xn) = f(y1, . . . , yn);
- predicate congruence: x1 �= y1 ∨ · · · ∨ xn �= yn ∨ ¬P (x1, . . . , xn) ∨ P (y1, . . . , yn).

Its soundness is proved in Coq as well.

4.4 A small Checker for Linear Arithmetic

VeriT does not give certificates for linear arithmetic. However, this is not really a prob-
lem since Coq implements a very efficient reflexive and certificate-producing decision
procedure for linear arithmetic [11]: lia.

We have not yet written a small checker for linear arithmetic. However, we have
performed some experiments and checked a wide range of lemmas coming from the
SMT-LIB benchmarks using the lia decision procedure. The latter has proved to be
very efficient: about 1, 000 non-trivial lemmas have been proved in less than 10s. We
are then very confident in adding linear arithmetic in our SMT checker, which should
be done soon.

4.5 A small Checker for CNF Computation

Contrary to SAT solvers, most SMT solvers deal with arbitrary formulas as input,
and not only CNF formulas. In our framework, CNF computation is considered as a
particular theory, described in Example 10, for which a small checker can be imple-
mented.

Example 10. The theory of CNF computation is defined upon the signature containing:

– one single type, written F ;
– function symbols � : F , ⊥ : F , ∧ : F → F → F , ∨ : F → F → F ,⇒: F → F → F ,

⇔: F → F → F
– one predicate symbol P : F → bool

and includes all the propositional tautologies, like ¬P (f1 ∨ f2) ∨ P (f1) ∨ P (f2). P is
often omitted.

Since CNF computation does not interfere with other theories—it can be done
entirely at the beginning—we chose to encode logical formulas separately from the
other kinds of atoms; but this is simply a matter of clarity.

The SMT solvers VeriT and Z3 return proof witnesses which are explicit about
CNF computation. We pass them as certificates to the CNF checker, whose soundness
is proved in Coq.
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5 Coq Tactics that Call SAT and SMT Solvers

In this section, we explain how the automation of Coq can be enhanced by introducing
new tactics that delegate goals to external provers. Similar ideas were already used in
several contexts, see for example [26,28]. We consider goals of the form ∀−→x , F where F
is a quantifier-free decidable formula. The reification step generates a deep embedded
clause C given to the external solver, and an interpretation for the signature T0 such
that [C]T0

= ¬F .

– If the external solver returns that C is unsatisfiable, the soundness of the witness
checker gives ∀T, [C]T = ⊥ and then ¬F = [C]T0

= ⊥ from which we conclude
(decidability of F ) that F is valid.

– If the external solver returns that C is satisfiable, the proof witness provides a
counterexample that can be used to understand why the initial Coq goal is not
provable.

We designed a tactic for the solvers ZChaff and VeriT. The corresponding proof-terms
are linear in the length of the proof witness (this is an application of the computational
reflection in Coq, see Section 2.3).

For the moment, only formulas that directly fit in the fragment decided by SAT
and SMT provers can be solved. We leave for future work to define encodings of more
elaborate Coq terms into this fragment, in order to be able to prove more goals. This
could be done by relying on a previous plugin of Coq called Dp [6].

6 Results and Comparison with Other Work

6.1 Related Work

Another approach for safely integrating SAT and SMT solvers into proof assistants
is to formally prove their soundness. This is the approach followed in [32]. It has the
advantage to validate the algorithms at work in the prover but is sensitive to any
changes, e.g. optimizations in the proof search. Unfortunately at the time this paper
is written, we could not have access to their code.

Several SAT and SMT solvers have been safely integrated in LCF style interactive
theorem provers including CVC Lite in HOL Light [34], haRVey in Isabelle/HOL [22], Z3
in HOL and Isabelle/HOL [12]. In the following, we will focus on the comparison with
the integration in Isabelle/HOL and HOL of ZChaff [40] (this corresponds to the state
of the art).

6.2 Experiments

All the experiments have been conducted on an Intel Quad Core processor with
2.66GHz and 4Gb RAM, running Linux. For Coq, we use the code available online [1],
with the native version of Coq and Ocaml 3.11. For Isabelle/HOL, we use proof recon-
structions for ZChaff written by Alwen Tiu and Tjark Weber, with Isabelle 2009-1 and
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Solved ZChaff Isabelle/HOL checker Coq checker

# % Time # % Time # % Time

75 49.7 64.3 57 37.7 101. 70 46.4 22.3

Table 1: SAT benchmarks

Solved VeriT Coq checker

# % Time # % Time

3897 97.0 5.075 3871 96.3 1.050

Table 2: Congruence closure benchmarks

Poly/ML 5.2. We use ZChaff 2007.3.12 and the revision 1789 of the VeriT repository.
We put a timeout of 300s both for producing and checking the proof witness.

We tested the combination of the interface checker with the small checker of resolu-
tion chains for ZChaff on a database of 151 industrial benchmarks from SAT Race’06
and ’08. Table 1 presents the number of benchmarks solved by ZChaff, and among
them, the number of proof witnesses successfully checked by Coq and Isabelle/HOL.
The times are the average of the times for the 55 benchmarks on which ZChaff, Coq
and Isabelle/HOL all succeeded, in seconds.

Errors in Isabelle/HOL were due to timeouts, whereas in Coq they are due to mem-
ory overflows. It thus clearly appears that Coq is faster but consumes more memory
than Isabelle/HOL. Moreover, Coq can solve more cases.

We also tested the combination of the interface checker with the small checkers of
resolution chains, CNF computation and congruence closure, for VeriT on a database
of 4019 industrial benchmarks from SMT-LIB [2] dealing with congruence closure
(QF UF). Table 2 presents the number of benchmarks solved by VeriT, and among
them, the number of proof witnesses successfully checked by Coq. The times are the
medium of the times for the 3871 benchmarks on which VeriT and Coq both succeeded,
in seconds.

Once more, errors in Coq were due to out of memory errors. Using VeriT, we are
able to solve a large majority of the problems in very small amount of time.

Checking a certificate in Coq is faster than producing it. This is really encouraging
for adding new decision procedures in Coq: we benefit from the rapidity of the tuned
external prover and we do not add much time during proof checking.

7 Conclusion and Future Work

We have presented a checker for SAT and SMT proof witnesses written in Coq that is
fully certified. The checker is efficient: it is able to check huge proof witnesses coming
from challenging benchmarks in reasonable time, and it compares well with state of
the art implementations in Isabelle/HOL. It serves as a basis for a fully automated
decision procedures that is completely safe and produces small proof terms. We took a
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special care in being generic: for example the same checker is used for MiniSat, ZChaff
and VeriT. This relies on the generic format we use after translating proof witnesses
into certificates. The technique of proof by reflection and native data structures have
been crucial in this work. They let us design proofs that are both small and fast.
We expect our implementation to be efficient enough to be integrated in a large-scale
formalization program, see for example [30].

Our main ambition now is to increase the expressiveness of goals that can be proved
following two directions. On the one hand, we want to deal with more theories including
non-linear arithmetic, lists and bit vectors. We also want to deal with non quantifier-
free formulas. On the other hand, by encoding dependent types and inductives in
first-order logic, we could then apply SMT solvers on more complex goals. This idea is
already present in [40] where Higher-Order Logic was encoded in propositional logic.
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5. Armand, M., Grégoire, B., Spiwack, A., Théry, L.: Extending Coq with imperative fea-

tures and its application to sat verification. In: Kaufmann and Paulson [29], pp. 83–98
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