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1 Preliminary results

Let Fq be a finite field. Let k ≥ 1. For any ideal I in a polynomial ring
Fq[X], where X = {x1, . . . , xk}, we denote by V(I) ⊂ (Fq)

k its variety. For
any Z ⊂ (Fq)

k we denote by I(Z) ⊂ Fq[X] the vanishing ideal of Z.

Let g1, . . . , gs ∈ Fq[X], we denote by I = 〈g1, . . . , gs〉 the ideal generated by
the gi’s. Let {xq

1 −x1, . . . , x
q
k −xk} ⊂ I. Then I is zero-dimensional and radical.

Let V(I) = {P1, P2, . . . , Pn}. We have an isomorphism of Fq vector spaces (an
evaluation map):

φ : R = Fq[x1, . . . , xk]/I −→ (Fq)
n

f 7−→ (f(P1), . . . , f(Pn)).
(1)

Let L ⊆ R be an Fq vector subspace of R with dimension r.

Definition 1. The affine–variety code C(I, L) is the image φ(L) and the
affine–variety code C⊥(I, L) is its dual code.

Our definition is slightly different with respect to that in [1]. Let L be linearly
generated by b1, . . . , br then the matrix

H =







b1(P1) b1(P2) . . . b1(Pn)
...

... · · ·
...

br(P1) br(P2) . . . br(Pn)
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is a generator matrix for C(I, L) and a parity–check matrix for C⊥(I, L). Let
z̄ ∈ (Fq)

n, z̄ = (z̄1, . . . , z̄n). Then

z̄ ∈ C(I, L)⊥ ⇐⇒ Hz̄T = 0 ⇐⇒

n
∑

i=1

z̄ibj(Pi) = 0 j = 1, . . . , r (2)

Proposition 1. Let 1 ≤ w ≤ n.
Let Jw be the ideal in Fq[x1,1, . . . x1,k, . . . , xw,1, . . . xw,k, z1, . . . , zw] generated by

w
∑

i=1

zibj(Pi) j = 1, . . . , r (3)

gh(xi,1, . . . xi,k) i = 1, . . . , w and h = 1, . . . , s (4)

zq−1
i − 1 i = 1, . . . , w (5)
∏

1≤l≤k

((xj,l − xi,l)
q−1 − 1) 1 ≤ j < i ≤ w. (6)

Then any solution of Jw corresponds to a codeword of C⊥(I, L) with weight w.
Moreover,

Aw(C⊥(I, L)) =
|V(Jw)|

w!
.

Proof. Let σ be a permutation, σ ∈ Sn. It induces a permutation σ̂ acting
over {x1,1, . . . , x1,k, . . . , xw,1, . . . xw,k, z1, . . . , zw} as σ̂(xi,l) = xσ̂(i),l and σ̂(zi) =
zσ̂(i). It is easy to show that Jw is invariant w.r.t. any σ̂, since each of (3), (4),
(5) and (6) is so.
Let Q = (x1,1, . . . x1,k, . . . , xw,1, . . . xw,k, z1, . . . , zw) ∈ V(Jw). We can associate
a codeword to Q in the following way. For each i = 1, . . . , w, Pri

= (xi,1, . . . xi,k)
is in V(I), by (4). We can assume r1 < r2 < . . . < rw, via a permutation
σ̂ if necessary. Note that (6) ensures that for each (i, j), with i 6= j, we have
Pri

6= Prj
, since there is a l such that xi,l 6= xj,l. Since zq−1

i = 1 (5), zi ∈ Fq\{0}.
Let c ∈ (Fq)

n be

c = (0, . . . , 0, z1
↑

Pr1

, 0, . . . , 0, zi
↑

Pri

, 0, . . . , 0, zw
↑

Prw

, 0, . . . , 0).

We have that c ∈ C⊥(I, L), since (3) is equal to (2).
Reversing the previous argument, we can associate to any codeword, a solution of
Jw. By invariance of Jw, we actually have w! distinct solutions for any codeword.
So, to get the number of codewords of weight w, we divide |V(Jw)| by w!.

For more recent results on affine-variety codes see [2,6,4].

2 Hermitian Codes

Hermitian codes are interesting affine–variety codes. They can be defined as
follows. Let q be a power of a prime, the Hermitian curve H is the curve defined
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over Fq2 by the affine equation

xq+1 = y + yq (7)

This curve has genus g = q(q−1)
2 and has n = q3 rational affine points, denoted

by P1, . . . , Pn. For any x ∈ Fq2 , the equation (7) has exactly q distinct solutions
in Fq2 . The curve has also one point at infinity P∞, so it has q3 + 1 rational
points over Fq2 .

Lemma 1. Let L be any vertical line {x = t}, with t ∈ Fq2 . Then L intersects
H in q affine points.

Proof. For any t ∈ Fq2 , the equation yq+y = tq+1 has exactly q distinct solutions,
since tq+1 ∈ Fq and the trace is linear.

Lemma 2. In the affine plane (Fq2)2, the total number of non-vertical line is
q4. Of these, (q4 − q3) intersect the Hermitian curve in (q +1) points and q3 are
tangent to H, i.e. they intersect H in one point.

Proof. Let L any non-vertical line, L = {y = ax + b}. We have q2 choice for
both a and b, so the total number is q4. Then

H ∩ L = {(x, ax + b) | aqxq + bq + ax + b = xq+1}.

Let c = aq+1 + bq + b. We have two distinct cases:

– c = 0. Then aqxq + bq + ax + b = xq+1 becomes aqxq − aq+1 + ax = xq+1,
which gives x = aq, that is, L is tangent.

– c 6= 0. Then aqxq + bq +ax+ b = xq+1 becomes xq+1 −aqxq +aq+1 −ax = c,
which gives (x − aq)q+1 = c. Since c = (αq+1)r for 1 ≤ r ≤ q − 1, we have
x = aq + αr+i(q−1) for any 0 ≤ i ≤ q.

The number of pairs (a, b) satisfying c = 0 is q3 and so the others are (q4 − q3).

Let I = 〈yq + y − xq+1, xq2

− x, yq2

− y〉 ⊂ Fq2 [x, y] and let R = Fq2 [x, y]/I.
We take L ⊆ R generated by

Bm,q = {xrys + I | qr + (q + 1)s ≤ m, 0 ≤ s ≤ q − 1, 0 ≤ r ≤ q2 − 1},

where m is an integer 0 ≤ m ≤ q3 + q2 − q − 2. For simplicity, we also write
xrys for xrys + I. We consider the evaluation map (1) φ : R → (Fq2)n. We have
the following affine–variety codes C(I, L) = Span

F
q2
〈φ(Bm,q)〉 and we denote by

C(m, q) = (C(I, L))⊥ its dual. Then the affine–variety code C(m, q) is called the
Hermitian code with parity-check matrix H

H =







f1(P1) . . . f1(Pn)
...

. . .
...

fi(P1) . . . fi(Pn)






where fj ∈ Bm,q (8)

The Hermitian codes can be divided in four phases ([3]), any having specific
explicit formulae linking their dimension and their distance, as in Table 1.
In the remainder of this paper we focus on the first phase. This case can be
characterised by the condition d ≤ q.
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Table 1. The four phases of Hermitian codes

Phase m Distance d Dimension k

1

0 ≤ m ≤ q2 − 2
m = aq + b

0 ≤ b ≤ a ≤ q − 1
b ≤ q − 2

a + 1 a > b

a + 2 a = b
⇐⇒ d ≤ q q3 − a(a+1)

2
− (b + 1)

2

q2 − 1 ≤ m ≤ 2q2 − 2q − 2
m = 2q2 − q − aq − b − 1

1 ≤ a ≤ q − 1
0 ≤ b ≤ q − 1

(q − a)q − b a < b

(q − a)q a ≥ b
q3 − m + q(q−1)

2
− 1

3 2q2 − 2q − 1 ≤ m ≤ q3 − 1 m − q2 + q + 1 q3 − m + q(q−1)
2

− 1

4

q3 ≤ m < q3 + q2 − q − 1
m = q3 + aq + b

0 ≤ a ≤ q − 1,

0 ≤ b ≤ q − 2

q3 + aq + b − 2g a < b

q3 + aq + a + 1 − 2g b ≤ a
k ≥ g − aq − b

2.1 Corner Codes and Edge Codes

The first-phase Hermitian codes can be either edge codes or corner codes.

Definition 2. Let 2 ≤ d ≤ q and let 1 ≤ j ≤ d − 1.
Let Ld

0 = {1, x, . . . , xd−2}, Ld
1 = {y, xy, . . . , xd−3y}, . . . , Ld

d−2 = {yd−2}.

Let ld1 = xd−1, . . . , ldj = xd−jyj−1.

– If Bm,q = Ld
0 ⊔ · · · ⊔ Ld

d−2, then we say that C(m, q) is a corner code and

we denote it by H
0
d .

– If Bm,q = Ld
0 ⊔ · · · ⊔Ld

d−2 ⊔{ld1 , . . . , ldj }, then we say that C(m, q) is an edge

code and we denote it by H
j
d .

From classical results in Table 1 we have

Theorem 1. Let 2 ≤ d ≤ q, 1 ≤ j ≤ d − 1. Then

d(H 0
d ) = d(H j

d ) = d, dimF
q2

(H 0
d ) = n−

d(d − 1)

2
, dimF

q2
(H j

d ) = n−
d(d − 1)

2
−j

In other words, all φ(xrys) are linearly independent (i.e. H has maximal rank)
and for any distance d there are exactly d Hermitian codes (one corner code and
d− 1 edge codes). We can represent the above codes as in the following picture,
where we consider the five smallest non-trivial codes (for any q ≥ 3).
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H
0

2
is a [n, n − 1, 2] code.
Bm,q = L2

0 = {1}, so the parity-check
matrix of H

0
2 is (1, . . . , 1).

H
1

2
is a [n, n − 2, 2] code.
Bm,q = L2

0 ⊔ l21 = {1, x}
H

0

3
is a [n, n − 3, 3] code.
Bm,q = L3

0 ⊔ L3
1 = {1, x, y}

H
1

3
is a [n, n − 4, 3] code.
Bm,q = L3

0 ⊔ L3
1 ⊔ l31 = {1, x, y, x2}

H
2

3
is a [n, n − 5, 3] code.
Bm,q = L3

0 ⊔ L3
1 ⊔ {l31, l

3
2} = {1, x, y, x2, xy}

3 Our results on the number of words

Ideal Jw of Proposition 1 for C(m, q) is

Jw =
〈 {

∑w
i=1 zix

r
i y

s
i

}

xrys∈Bm,q

,
{

xq+1
i − yq

i − yi

}

i=1,...,w
,

{

zq2−1
i − 1

}

i=1,...,w
,
{

xq2

i − xi

}

i=1,...,w
,
{

yq2

i − yi

}

i=1,...,w
,

{

∏

1≤i<j≤w((xi − xj)
q2−1 − 1)((yi − yj)

q2−1 − 1
} 〉

.

(9)

Let w ≥ v ≥ 1. Let Q = (x1, . . . , xw, y1, . . . , yw, z1, . . . , zw) ∈ V(Jw). We
say that Q is in v-block position if we can partition {1, . . . , n} in v blocks
I1, . . . , Iv such that

xi = xj ⇐⇒ ∃ 1 ≤ h ≤ v such that i, j ∈ Ih.

W.l.o.g. we can assume |I1| ≤ · · · ≤ |Iv| and I1 = {1, . . . , u}. It is simple to
prove the following numerical lemma.

Lemma 3. We always have u + v ≤ w + 1. If u ≥ 2 and v ≥ 2, then v ≤ ⌊w
2 ⌋

and u + v ≤ ⌊w
2 ⌋ + 2.

We need the following technical lemma [7].

Lemma 4. Let us consider the edge code H
j
d with 1 ≤ j ≤ d − 1 and 3 ≤ d ≤

w ≤ 2d − 3. Let Q = (x1, . . . , xd, y1, . . . , yd, z1, . . . , zd) be a solution of Jw in
v-block position, with v ≤ w, then exactly one of the following cases holds

(a) u = 1 v > d w ≥ d + 1
(b) v = 1, that is, x̄1 = · · · = x̄w

If d = 2 and w = 2, then (a) holds for H1
2 .

Proof. We denote for all 1 ≤ h ≤ v

Xh = x̄i if i ∈ Ih, Zh =
∑

i∈Ih

z̄i, Yh,δ =
∑

i∈Ih

ȳδ
i z̄i with 1 ≤ δ ≤ u − 1
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(a) u = 1. We have to prove, by contradiction, that v > d.
Let v ≤ d. Since Q ∈ V(Jw), then Lw

0 (Q) = lw1 (Q) = 0, that is

0 =

w
∑

i=1

x̄r
i z̄i =

∑

i∈Ih

Xr
hz̄i =

v
∑

h=1

Xr
hZh 0 ≤ r ≤ d − 1. (10)

We can consider only the first v equations of (10), because v ≤ d, so

v
∑

h=1

Xr
hZh = 0 0 ≤ r ≤ v − 1 ⇐⇒











1 . . . 1
X1 . . . Xv

... . . .
...

Xv−1
1 . . . Xv−1

v

















Z1

...
Zv






= 0 (11)

The above matrix is a Vandermonde matrix, so it has maximal rank v.
Therefore, the solution of (11) is (Z1, . . . , Zv) = (0, . . . , 0). Since u = 1, then
Z1 = z1 = 0, which contradicts zi ∈ Fq2 \ {0}. So if v > d then w ≥ d + 1.

(b) u ≥ 2. We suppose by contradiction that v ≥ 2.
We consider Proposition 1. A subset of equations of condition (3) is the
following system, where 0 ≤ r ≤ v



















∑w
i=1 x̄r

i z̄i = 0
∑w

i=1 x̄r
i ȳiz̄i = 0

...
∑w

i=1 x̄r
i ȳ

u−1
i z̄i = 0

⇐⇒



















∑v
h=1 Xr

hZh = 0
∑v

h=1 Xr
hYh,1 = 0

...
∑v

h=1 Xr
hYh,u−1 = 0

(12)

In fact system (12) is a subset of (3) if and only if deg(x̄v
i ȳu−1

i ) ≤ d − 1
for any i = 1, . . . , w. That is, v + (u − 1) ≤ d − 1 ⇐⇒ v + u ≤ d.
To verify it, since v ≥ 2, it is sufficient to apply Lemma 3 and we obtain
u + v ≤ ⌊w

2 ⌋ + 2 ≤ ⌊ 2d−3
2 ⌋ + 2 = d.

By system (12) we obtain u Vandermonde matrices (all having rank v).
Therefore the solutions of these matrices are zero-solutions. So, in the par-
ticular case h = 1, we have Z1 = Y1,1 = . . . = Y1,u−1 = 0, that is



















∑u
i=0 z̄i = 0

∑u
i=0 ȳiz̄i = 0
...

∑u
i=0 ȳu−1

i z̄i = 0

⇐⇒











1 . . . 1
ȳ1 . . . ȳu

... . . .
...

ȳu−1
1 . . . ȳu−1

u

















z̄1

...
z̄u






= 0

Since the ȳi’s are all distinct (because the x̄i’s are all equal), we obtain a
Vandermonde matrix, and so z̄1 = · · · = z̄u = 0, but it is impossible because
z̄i ∈ Fq2 \ {0}. Therefore v = 1.

The case H1
2 is trivial.
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Corollary 1. Let us consider the edge code H
j
d with 1 ≤ j ≤ d − 1.

If Q = (x1, . . . , xd, y1, . . . , yd, z1, . . . , zd) ∈ V(Jd), then x̄1 = · · · = x̄d. In other
words, the points that correspond to a minimum-weight word lie in the intersec-
tion of the Hermitian curve H and one vertical line.
Whereas if d ≥ 4 and Q = (x1, . . . , xd+1, y1, . . . , yd+1, z1, . . . , zd+1) ∈ V(Jd+1),
then one of the following cases holds

(a) x̄i 6= x̄j con i 6= j per 1 ≤ i, j ≤ d + 1
(b) x̄1 = · · · = x̄d+1.

Proof. We are in the hypotheses of Lemma 4. So if w = d then u 6= 1. So v = 1.
Whereas, if w = d + 1 then there are two possibilities. In case (a) of Lemma 4,
all the x̄i’s are different, since v = d + 1, or, case (b), x̄1 = · · · = x̄d+1.

Now we can prove the following theorem.

Theorem 2. The number of minimum weight words of an edge code H
j
d is

Ad = q2(q2 − 1)

(

q
d

)

.

Proof. By Proposition 1 we know that Jd represents all words of minimum

weight. The first set of ideal basis (9) has exactly d(d−1)
2 + j equations, where

1 ≤ j ≤ d − 1. So, if j = 1, this set implies the following system:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

z̄1 + · · · + z̄d = 0
x̄1z̄1 + · · · + x̄dz̄d = 0
ȳ1z̄1 + · · · + ȳdz̄d = 0
x̄2

1z̄1 + · · · + x̄2
dz̄d = 0

...

ȳd−2
1 z̄1 + · · · + ȳd−2

d z̄d = 0

x̄d−1
1 z̄1 + · · · + x̄d−1

d z̄d = 0

(13)

Whereas, if j > 1 then we have to add the first j − 1 of following equations:

8

>

<

>

:

x̄d−2
1 ȳ1z̄1 + · · · + x̄d−2

d ȳdz̄d = 0
...

x̄1ȳ
d−2
1 z̄1 + · · · + x̄dȳd−2

d z̄d = 0

But x̄1 = . . . = x̄d, since we are in the hypotheses of Corollary 1. So the system
becomes

8

>

>

>

<

>

>

>

:

z̄1 + · · · + z̄d = 0
ȳ1z̄1 + · · · + ȳdz̄d = 0

...

ȳd−2
1 z̄1 + · · · + ȳd−2

d z̄d = 0

(14)

We have q2 choice for the x̄i’s and, by Lemma 1, we have

„

q

d

«

d! different ȳi’s,

since for any choice of the x̄i’s there are exactly q possible value for the ȳi’s, but
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we need just d of them and any permutation of these will be again a solution.
Now we have to calculate the solutions for the z̄i’s.
We write the system (14) as a matrix, which is a Vandermonde matrix with
rank d − 1. This means that the solution space has linear dimension 1 because
1 = d − (d − 1) = number of variables − rank of matrix. So the solutions are
(a1α, a2α, . . . , ad−1α) with α ∈ F

∗
q2 , where aj are fixed since they depend on ȳi.

So the number of the z’s is |F∗
q2 | = q2 − 1, then Ad = 1

d!

(

q2(q2 − 1)

(

q
d

)

d !

)

.

We consider a corner code. We have the following geometric characterisation.

Proposition 2. Let us consider the corner code H
0
d , then the points

(x̄1, ȳ1), . . . , (x̄d, ȳd) corresponding to minimum-weight words lie on the same line.

Proof. The minimum-weight words of a corner code have to verify the first con-

dition set of Jw, which has d(d−1)
2 equations. That is

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

z̄1 + · · · + z̄d = 0
x̄1z̄1 + · · · + x̄dz̄d = 0
ȳ1z̄1 + · · · + ȳdz̄d = 0
x̄2

1z̄1 + · · · + x̄2
dz̄d = 0

...

ȳd−2
1 z̄1 + · · · + ȳd−2

d z̄d = 0

(15)

This system is the same as (13), but with a missing equation. This means that
(15) have all solutions of system (13) plus other solutions.
If we consider a subset of (15):

8

>

>

>

>

>

<

>

>

>

>

>

:

z̄1 + · · · + z̄d = 0
x̄1z̄1 + · · · + x̄dz̄d = 0
x̄2

1z̄1 + · · · + x̄2
dz̄d = 0

...

x̄d−2
1 z̄1 + · · · + x̄d−2

d z̄d = 0

(16)

we note that the z̄i’s are all non-zero if all x̄i’s are distinct (or all are equal).
Therefore, we have only two possibilities for the x̄i’s: either are all different
or they coincide. The same consideration is true for the ȳi’s, in fact when we
consider (15) and we exchange x with y, we obtain again (15).
So we have an alternative:

– The x̄i’s are all equal or the ȳi’s are all equal, so our proposition is true.
– The x̄i’s and the ȳi’s are all distinct. We prove that they line in the inter-

section of a non-horizontal line.
Let y = βx + λ be a non-vertical line passing for two points in a minimum
weight configuration. We can do an affine transformation of this type:

{

x = x′

y = y′ + ax′ a ∈ Fq2
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such that some of the y′’s are equal and not all y’s are coincident. Substitut-
ing the above transformation in (15) and applying some operations between
the equations, we obtain a system that is equivalent to (15). But this new
system have all y′’s equal (or all distinct), so the y′’s have to be all equal.
Hence we can conclude that the points lie on the same line.

We finally prove the following theorem:

Theorem 3. The number of words having weight d of a corner code H
0
d is

Ad = q2(q2 − 1)

(

q
d − 1

)

q3 − d + 1

d
.

Proof. Again, the points corresponding to minimum-weight words of a corner
code have to verify (15). By above proposition, we know that these points lie in
the intersections of any line and the Hermitian curve H.
Let Q = (x1, . . . , xd, y1, . . . , yd, z1, . . . , zd) ∈ V(Jd) such that x1 = . . . = xd,
that is, the points (x̄i, ȳi) lie on a vertical line. We know that the number of

such Q’s is q2(q2 − 1)

(

q
d

)

d !. Now we have to calculate the number of solutions

Q ∈ V(Jd) such that (x̄i, ȳi) lie on a non-vertical line.

By Lemma 2 we know that the number of the ȳi’s and x̄i’s is (q4−q3)

(

q + 1
d

)

d !,

since for any choice of the ȳi’s there are exactly q+1 possible values for the x̄i’s,
but we need just d of this (and the system is invariant). As regards the number
of the z̄i’s, we have to calculate the number of solutions of system (15).
We apply an affine transformation to the system (15) to obtain a horizontal line,
that is, to have all the ȳi’s different and all the x̄i’s are equal, so we obtain a
system equivalent to system (14). Therefore we have a Vandermonde matrix,
hence the number of the z̄i’s is q2 − 1. So

Ad = 1
d!

„

q2(q2 − 1)

„

q

d

«

d ! + (q4 − q3)(q2 − 1)

„

q + 1
d

«

d !

«

= q2(q2 − 1)

„

q

d − 1

«

q3
−d+1
d

.

3.1 Words having weight d + 1

In this section we state more theorems for edge and corner codes taken from [5].
We study the case when the xi’s coincide or when the yi’s coincide.

Theorem 4. The number of words of weight d + 1 with y1 = . . . = yd+1 of a
corner code H

0
d is:

Ad+1 = (q2 − q)(q4 − (d + 1)q2 + d)

(

q + 1
d + 1

)

.

Whereas of an edge code H
j
d with 1 ≤ j ≤ d − 1 is:

Ad+1 = (q2 − 1)(q2 − q)

(

q + 1
d + 1

)

.
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Theorem 5. The number of words of weight d + 1 with x1 = . . . = xd+1 of a
corner code H

0
d and of an edge code H

j
d is:

Ad+1 = q2(q4 − (d + 1)q2 + d)

(

q
d + 1

)

.

The proofs are similar to those of the statements as in Section 3 and so are
omitted. In other cases, we have to consider intersection of the curve with higher
degree curves and the formulae get more complicated. We list without proof a
few of these special cases:

Theorem 6. Let us consider the corner code H
0
3 . Let us consider 4-weight code-

words with xi 6= xj for any i, j = 1, . . . , 4. Then

y1 = y2 = y3 6= y4 A4 = 0

y1 = y2 6= y3 = y4 A4 = 1
8
q2(q2 − 1)2(q − 2)(q3 + 2q2 − 2q + 1)

y1 = y2 6= y3,y4

and y3 6= y4

A4 > 1
4
q2(q2 − 1)2(2q6 − 7q5 − 6q4 + 19q3 − 9q2 − 4q + 4)

A4 < 1
4
q2(q2 − 1)2(2q6 − 3q5 − 11q4 + 9q3 + 25q2 − 14q + 4)

Theorem 7. Let us consider the edge codes H
1
3 and H

2
3 . Let us consider 4-weight

codewords with xi 6= xj for any i, j = 1, . . . , 4. Then there are no such words if
y1 = y2 = y3 6= y4 or y1 = y2 6= y3 = y4.
In particular, if y1 = y2 6= y3, y4 and y3 6= y4, H

2
3 has no such words and H

1
3 has

at most 1
4q2(q2 − 1)2(2q5 − 3q4 − 10q3 + 10q2 + 15q − 4) such words.

Remark 1. We are identifying general conditions for algebraic-geometry codes
satisfying Proposition 2, jointly with C. Fontanari.

Acknowledgements

The first two authors would like to thank their supervisor: the third author. The
authors would like to thank: C. Fontanari, T. Mora and C. Traverso.

References

1. Fitzgerald, J. and Lax, R. F. Decoding affine variety codes using Gröbner bases.
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