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Quadratic functions with prescribed spectra
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wmeidl@sabanciuniv.edu, alev@sabanciuniv.edu

Abstract. We study quadratic Boolean functions f from F2n to F2,
which are well-known to have plateaued Fourier spectrum Fs,f , i.e., their
Fourier coefficients are in the set {0,±2(n+s)/2} for some integer 0 ≤ s ≤
n− 1. For various types of integers n, we determine possible values of s,
construct f with Fs,f for a prescribed s, and present enumeration results
in case n is a power of 2.
Our work generalizes some of the earlier results of Khoo et. al. ([5]) on
near-bent functions and provides a simple proof of a result of Fitzgerald
([2]) on degenerate quadratic forms.
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1 Introduction

We study quadratic functions

f(x) = Trn





⌊(n−1)/2⌋
∑

i=0

aix
2i+1



 (1)

from F2n to F2, with coefficients in F2.

It is well known that any quadratic function is plateaued i.e., it has (plateau-
ed) Fourier spectrum

Fs,f

, in other words, its Fourier coefficients lie in {0,±2(n+s)/2} for some integer
0 ≤ s ≤ n − 1. In this case we call f s-plateaued. 1-plateaued functions have
been widely studied, and are called near-bent or semi-bent (when n is odd), see
for instance [1, 6].

One of the problems, that [5] focuses on, is to characterize integers n, for
which all f from F2n to F2 of the form (1) are near-bent.

The more general question we address here is the following: Given an integer
n, characterize those integers s, for which s-plateaued functions from F2n to
F2 of the form (1) exist. We obtain the characterization when n is a square-
free integer or is a power of 2. For these classes of integers n, we give methods
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for constructing s-plateaued functions for all possible s. We also enumerate the
s-plateaued functions in case n = 2m, m ≥ 1.

Using standard Welch-squaring techniques one can see that the integer s is
the dimension over F2 of the kernel of the linear transformation defined on F2n

by

L(x) =

⌊(n−1)/2⌋
∑

i=0

(

aix
2i

+ a2n−i

i x2n−i
)

,

i.e., gcd(x2n

+x, L(x)) has degree 2s. Equivalently ker(L) has dimension s if and
only if the associates A(x) and xn + 1 of L(x) and x2n

+ x, respectively, satisfy
(see [7, p.118])

deg(gcd(A(x), xn + 1)) = s.

The associate A(x) corresponding to f in (1) is

A(x) =

⌊(n−1)/2⌋
∑

i=0

aix
i + aix

n−i = xi0g(x), (2)

where i0 is the smallest integer such that ai0 6= 0, and g(x) ∈ F2[x] is the
self-reciprocal polynomial

g(x) =

⌊(n−1)/2⌋
∑

i=i0

ai(x
i−i0 + xn−i0−i)

of degree n − 2i0.

Note that gcd(
∑⌊(n−1)/2⌋

i=0 aix
i + aix

n−i, xn + 1) = gcd((
∑⌊(n−1)/2⌋

i=1 aix
i +

aix
n−i) + a0(x

n + 1), xn + 1), i.e., a0 does not effect the value of s. Hence we
can suppose that the degree of A(x) is at most n − 1.

We recall that the linear complexity L(S) of an n-periodic sequence S =
s0, s1, . . . over F2 is determined by

L(S) = n − deg(gcd(xn + 1, S(x)))

where S(x) is the generating polynomial of S, i.e., the polynomial of degree at
most n− 1 given by S(x) = s0 + s1x+ · · ·+ sn−1x

n−1. Therefore the calculation
of the values in the Fourier spectrum of a quadratic function (1) is equivalent
to the determination of the linear complexity of an n-periodic sequence with
generating polynomial of the form (2). More precisely s = n−L if L is the linear
complexity of the corresponding n-periodic sequence.
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2 Main Results

2.1 The case n = 2m

In this subsection we will employ the well known Games-Chan algorithm (see
[3]) to enumerate the functions (1) from F22m to F2 that yield s-plateaued func-
tions. The algorithm also leads to a tool of constructing s-plateaued functions
for a given s.

The following example describes how one can calculate s.

Example 1. For m = 4 consider f(x) = Trn(x2 + x3 + x24+1 + x25+1), then
A(x) = 1+x+x4 +x5 +x11 +x12 +x15 +x16. For our purpose we consider this
polynomial modulo x16 + 1 and put

A(x) = x + x4 + x5 + x11 + x12 + x15

and obtain the corresponding 16-periodic binary sequence

S = (0100110000011001)∞.

0 1 0 0 1 1 0 0
0 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1

L = 8

0 1 0 1
0 1 0 1
0 0 0 0

L = 8

0 1
0 1
0 0

L = 8

0
1
1

L = 9

L = L + 1 = 10.

As the 16-periodic sequence S corresponding to A(x) has linear complexity L =
10, the quadratic function f is s-plateaued with s = 16 − 10 = 6.

The Games-Chan algorithm motivates the definition of a mapping ϕm from F
2m

2

to F
2m−1

2 , m ≥ 1, as follows:

ϕm((s0, s1, . . . , s2m−1)) = (s0 + s2m−1 , s1 + s2m−1+1, . . . , s2m−1−1 + s2m−1).

In the following proposition we collect some simple observations for 2m-periodic
sequences corresponding to polynomials A(x) in (2) with n = 2m. As remarked
above we can assume that a0 = 0, thus deg(A) ≤ n − 1. The strings s(m) =
s0, s1, . . . , s2m−1 of our interest can easily be seen to satisfy s0 = sn/2 = 0,
si = sn−i, i = 1, . . . , n/2 − 1. We will call a string satisfying these properties
antisymmetric. Accordingly, we call the corresponding sequence antisymmetric
2m-periodic sequence.
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Proposition 1. Let s(m) = s0, s1, . . . , s2m−1 be a string, m ≥ 1.

(i) An antisymmetric string s(m) is determined by the bits s1, . . . , s2m−1−1. There

are 22m−1−1 distinct antisymmetric strings of length 2m.
(ii) If s(m) is antisymmetric, then ϕm(s(m)) is also.
(iii) The set of antisymmetric preimages ϕ−1

m (s(m−1)) of an antisymmetric string

s(m−1) has cardinality 22m−2

.
(iv) Let s(m) be an antisymmetric string satisfying ϕm(s(m)) = 0, 0, . . . , 0. Then

either s0, s1, . . . , s2m−1−1 is itself antisymmetric, or the string

s0, s1, . . . , s2m−2 + 1, . . . , s2m−1−1

is antisymmetric.
In the first case ϕm−1(s0, s1, . . . , s2m−1−1) = t0, t1, . . . , t2m−2−1 is antisym-
metric, and in the second case the string t0 − 1, t1, . . . , t2m−2−1 is antisym-
metric.

Theorem 1. For n = 2m, let Nm(s) denote the number of strings

(a1, a2, . . . , a(n/2)−1) ∈ F
(n/2)−1
2

for which the quadratic function f from F2n to F2, given by

f(x) = Trn





(n/2)−1
∑

i=1

aix
2i+1





is s-plateaued. Then

Nm(s) =

{

22m−1−1−k : s = 2k, k = 1, . . . , 2m−1 − 1,
0 : s = 0 or s odd.

Proof. We use induction. One can easily see that the assertion holds for small m.
Now suppose that Nm−1(s) = 22m−2−1−k for s = 2k, k = 1, . . . , 2m−2−1, i.e., for

these values of s, there are 22m−2−1−k sequences, which are 2m−1-periodic with
linear complexity 2m−1−s, corresponding to antisymmetric strings. By Proposi-
tion 1 (iii), for each of these stings we have 22m−2

antisymmetric preimages giv-
ing rise to antisymmetric 2m-periodic sequences with linear complexity 2m − s.
Proposition 1 (ii) implies that these are all such sequences. Consequently, we get

Nm(s) = 22m−2

22m−2−1−k = 22m−1−1−k when s = 2k, k = 1, . . . , 2m−2 − 1. It
remains to show that the formula holds for s = 2k with k = 2m−2, . . . , 2m−1−1.
We therefore have to enumerate the antisymmetric 2m-periodic sequences with
a given linear complexity 2m − s ≤ 2m−1. First observe that these are the se-
quences corresponding to antisymmetric strings s(m) = s0, . . . , s2m−1 such that
(a) ϕm(s(m)) = 0, 0, . . . , 0, or
(b) the sequence corresponding to s0, . . . , s2m−1−1 has linear complexity 2m − s.
By Proposition 1 (iv), (a) implies that s0, . . . , s2m−1−1 or s0, s1, . . . , s2m−2 +
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1, . . . , s2m−1−1 is antisymmetric. Moreover it is easily seen that for any such
string there is exactly one corresponding antisymmetric string s(m) for which
(a) holds. Having an odd number of 1’s, the 2m−2 − 1 strings of the second
type yield 2m−1-periodic sequences with linear complexity L = 2m−1 (thus
s = 2m − L = 2m−1). Among the 2m−2 − 1 strings of the first type, by our

hypothesis, precisely 22m−2−1−κ yield 2m−1-periodic sequences with linear com-
plexity L = 2m−1 − 2κ, κ = 1, . . . , 2m−2 − 1. Substituting κ by k − 2m−2 we
obtain 22m−1−1−k for the number of antisymmetric 2m-periodic sequences with
linear complexity L = 2m − 2k (thus s = 2k) for k = 2m−2 + 1, . . . , 2m−1 − 1,

hence Nm(s) = 22m−2

22m−2−1−k = 22m−1−1−k for these values of k, and s = 2k.
Note that from the above arguments we also see that Nm(s) = 0 when s = 0
and when s is odd. However one can also see directly that Nm(0) = 0 since
antisymmetric strings contain an even number of 1’s, and the statement for odd
s simply follows from the Fourier transform being an integer. ✷

Note that the arguments in the proof also enable the construction of s-plateaued
quadratic functions from F22m to F2 for a prescribed value of s.

2.2 The case n = p1p2 · · · pr

The results in this subsection are obtained with a different approach, namely by
analysing the factorization of xn + 1 into self-reciprocal polynomials. With the
observation that gcd(xn+1, A(x)) is again self-reciprocal if A(x) is self-reciprocal,
one obtains the following general theorem, which is valid for arbitrary integers
n.

Theorem 2. Let n be arbitrary.

(i) If n is odd, then there exists an s-plateaued function of the form (1) if and
only if s is odd and xn + 1 has a self-reciprocal factor h(x) of degree s (in
which case xn + 1 is always divisible by x + 1).

(ii) If n is even then there exists an s-plateaued function of the form (1) if and
only if s is even and xn + 1 has a self-reciprocal factor h(x) of degree s
divisible by (x + 1)2.

Note that if n = 2vn1, n1 odd, then xn +1 = (xn1 +1)2
v

. Thus it is sufficient
to analyse the factorization of xn +1 for odd n. Here we only consider the case of
n being square-free. Our main tool for studying the factorization of xn + 1 into
self-reciprocals is, as expected, the use of cyclotomic cosets modulo n relative to
powers of 2.

We denote the n-th cyclotomic polynomial by Qn, and denote the 2-adic
valuation of an integer k by ν(k) , i.e., 2ν(k) is the largest power of 2 which divides
k. The following lemma describes for which squarefree integers n = p1p2 · · · pr

the irreducible factors of Qn are self-reciprocal. Note that Qn has d irreducible
factors where d = lcm(d1, . . . , dr) = ordn2.
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Lemma 1. Let n = p1p2 · · · pr, di = ordpi2 and d = ordn2. Suppose the irre-
ducible factors of Qn are f1, . . . , fϕ(n)/d. Then

(i) The polynomials f1, . . . , fϕ(n)/d are self-reciprocal if and only if ν(d1) =
ν(d2) = · · · = ν(dr) > 0. In particular, if n is a prime p, then f1, . . . , f(p−1)/d

are self-reciprocal if and only if d is even.
(ii) If ν(di) 6= ν(dj) for some 1 ≤ i, j ≤ ϕ(n)/d, then none of the polynomials ft,

1 ≤ t ≤ ϕ(n)/d, is self-reciprocal, and for each t, 1 ≤ t ≤ ϕ(n)/d, there exists
a unique t′ 6= t, 1 ≤ t′ ≤ ϕ(n)/d such that the product ftft′ is self-reciprocal.

Idea of Proof. First observe that the irreducible factors of Qn are self-reciprocal if
every cyclotomic coset modulo n relative to powers of 2 containing the element
a also contains the element −a. Therefore an irreducible factor of Qn is self-
reciprocal if the cyclotomic coset of 1 also contains −1, i.e., 2k ≡ −1 mod n for
some integer k. This is equivalent to 2k ≡ −1 mod p1, i ≤ i ≤ r, which holds
if and only if di divides 2k but not k for each i. This leads to the condition
ν(d1) = ν(d2) = · · · = ν(dr) > 0. ✷

By Lemma 1 and [7, Exercise 3.15] the polynomial xn + 1 factors into self-
reciprocal irreducible polynomials if and only ν(d1) = ν(d2) = · · · = ν(dr) > 0.

Example 2. I. n = 5 · 13 = 65, then d1 = 4, d2 = 12, hence ν(d1) = ν(d2).
Consequently x65 + 1 factors into self-reciprocal irreducible polynomials.

II. n = 3 · 5 · 7 = 105, then d1 = 2, d2 = 4, d3 = 3 and ν(d1) 6= ν(d2). Hence not
all the irreducible factors of x105 + 1 are self-reciprocal.

A simple consequence of the above lemma is also the main result of [5]: All
functions of the form (1) from F2n to F2 are 1-plateaued (near-bent) only when
n = p is a prime, satisfying p ≡ 3 mod 4 with ordp2 = (p − 1)/2, or 2 is a prim-
itive root modulo p. Note that the self-reciprocal factors of xn + 1 are exactly
x + 1 and 1 + x · · · + xn−1 only for such n.

In order to determine the possible values of s that a function of the form (1)
has Fourier spectrum Fs,f , we consider all cyclotomic polynomials Qm, m|n and
apply Lemma 1 accordingly:

Example 2.II. continued: n = 3 · 5 · 7 = 105, d1 = 2, d2 = 4, d3 = 3.
ϕ(n) = 48, d = gcd(2, 4, 3) = 12, and ν(d1) 6= ν(d2). Hence x105 + 1 has 2
self-reciprocal factors of degree 24.
ϕ(35) = 24, gcd(d2, d3) = gcd(4, 3) = 12, and ν(4) 6= ν(3), which yields 2 cyclo-
tomic classes of cardinality 12, and hence one self-reciprocal factor of degree 24.
ϕ(21) = 12, gcd(2, 3) = 6. There are 2 cyclotomic classes of cardinality 6 corre-
sponding to one self-reciprocal factor of degree 12.
ϕ(15) = 8, gcd(2, 4) = 4, ν(2) 6= ν(4). There are 2 cyclotomic classes of cardi-
nality 4, giving one self-reciprocal factor of degree 8.
Similarly it is easy to see that x105 + 1 has one self-reciprocal factor of degree
6, and two irreducible self-reciprocal factors; one of degree 4, and one of degree 2.
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Therefore s can be any integer less than 105 of the form s = 24k1 + 12k2 +
8k3 + 6k4 + 4k5 + 2k6 + 1, 0 ≤ k1 ≤ 3 and 0 ≤ ki ≤ 1 for 2 ≤ i ≤ 6.

We list the possible values of s in two special cases:

Corollary 1. Let n be an odd prime with ordn2 = d.

(i) If d is even, then there exists an s-plateaued function of the form (1) from
F2n to F2 if and only if s = kd + 1 for some 0 ≤ k ≤ (n − 1)/d − 1.

(ii) If d is odd, then there exists an s-plateaued function of the form (1) from
F2n to F2 if and only if s = 2kd + 1 for some 0 ≤ k ≤ (n − 1)/(2d) − 1.

Corollary 2. Let n = pq for two odd primes p and q and let ordp2 = dp,
ordq2 = dq. The integers s for which there exists an s-plateaued function of the
form (1) from F

n
2 to F2 are given as follows: s < n and

1. if ν(dp) = ν(dq) > 0, then s = k1lcm(dp, dq) + k2dp + k3dq, 0 ≤ k1 ≤
(p − 1)(q − 1)/lcm(dp, dq), 0 ≤ k2 ≤ (p − 1)/dp, 0 ≤ k3 ≤ (q − 1)/dq;

2. if ν(dp) > 0, ν(dq) > 0 and ν(dp) 6= ν(dq) > 0, then s = 2k1lcm(dp, dq) +
k2dp + k3dq, 0 ≤ k1 ≤ (p − 1)(q − 1)/(2lcm(dp, dq)), 0 ≤ k2 ≤ (p − 1)/dp,
0 ≤ k3 ≤ (q − 1)/dq;

3. if ν(dp) > 0, ν(dq) = 0, then s = 2k1lcm(dp, dq) + k2dp + 2k3dq, 0 ≤ k1 ≤
(p − 1)(q − 1)/(2lcm(dp, dq)), 0 ≤ k2 ≤ (p − 1)/dp, 0 ≤ k3 ≤ (q − 1)/(2dq);

4. ν(dp) = ν(dq) = 0, then s = 2k1lcm(dp, dq) + 2k2dp + 2k3dq, 0 ≤ k1 ≤
(p−1)(q−1)/(2lcm(dp, dq)), 0 ≤ k2 ≤ (p−1)/(2dp), 0 ≤ k3 ≤ (q−1)/(2dq).

Now the methods of constructing s-plateaued functions of the form (1) with
prescribed s are obvious:

1. Among the self-reciprocal factors of xn +1 select some, whose degrees add
up to s and form their product h(x). We remark that s must be odd if n is odd,
thus x + 1 must divide h(x). If n is even then also s must be even, hence h(x)
will always be divisible by (x + 1)g for some even integer g ≥ 2.

2. Multiply h(x) with a self-reciprocal polynomial of even degree, which is rela-
tively prime to (xn + 1)/h(x). The resulting product g(x) must be of degree at
most n − 1.

3. Multiply g(x) with xi0 , where i0 is the unique integer such that A(x) = xi0g(x)
is of the form (2). Note that a0 = 0 for any A(x), obtained this way.

4. The polynomial f(x) of the form (1) corresponding to a A(x) is then s-
plateaued. Note that a0 can be chosen as 0 or 1.

The following example leads to an easy proof of a result of [2].

Example 3. Construction of s-plateaued functions with maximal possible value
for s:
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As n+ s must be even, the maximal possible value for s is s = n−2. We have to
choose a self-reciprocal divisor h(x) of xn + 1 of degree n− 2. The only possible
choices for h(x) are
(i) h(x) = (xn + 1)/(x + 1)2.
(ii) h(x) = (xn + 1)/(x2 + x + 1).
Now (i) implies that n is even and since then (x + 1)2 must divide h(x), we
need 4|n, and (ii) implies that 3|n. The step 2 in the above procedure can not
be carried out, thus g(x) = h(x), and i0 = 1. We then get

A(x) = xh(x) = x + x3 + x5 + · · · + xn−1 in case (i), and

A(x) = xh(x) = x + x2 + x4 + x5 + x7 + x8 + · · · + xn−2 + xn−1 in case (ii).

The following corollary easily follows from the argument used in the above
example.

Corollary 3. The quadratic function f of the form (1) is (n − 2)-plateaued if
and only if

(i) 4|n and f(x) = Trn

(

εx2 + x2+1 + x23+1 + x25+1 + · · · + x2n/2−1+1
)

, ε ∈

{0, 1}, or

(ii) 3|n and f(x) = Trn

(

εx2 +
∑⌊n−1/2⌋

i=1,i 6≡0 mod 3 x2i+1
)

, ε ∈ {0, 1}.

Compare our Corollary 3 with Theorem 2.4 in [2].

3 Conclusion

We enumerate quadratic s-plateaued functions from F22m to F2, given by (1).
For squarefree integers n = p1p2 · · · pr we characterize the integers s, for which
s-plateaued functions from F2n to F2 of the form (1) exist. Methods for con-
structing such functions are also described. Our results generalize earlier work
on the case s = 1, see [4, 5].
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