Constructive Spherical Codes near the Shannon Bound

Abstract : Shannon gave a lower bound in 1959 on the binary rate of spherical codes of given minimum Euclidean distance p. Using nonconstructive codes over a finite alphabet, we give a lower bound that is weaker but very close for small values of p. The construction is based on the Yaglom map combined with some finite sphere packings obtained from nonconstructive codes for the Euclidean metric. Concatenating geometric codes meeting the TVZ bound with a Lee metric BCH code over GF(p); we obtain spherical codes that are polynomial time constructible. Their parameters outperform those obtained by Lachaud and Stern in 1994. At very high rate they are above 98 per cent of the Shannon bound.
Type de document :
Communication dans un congrès
WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.453-462, 2011
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00614479
Contributeur : Marie Trape <>
Soumis le : jeudi 11 août 2011 - 16:16:49
Dernière modification le : jeudi 30 novembre 2017 - 09:10:43
Document(s) archivé(s) le : lundi 12 novembre 2012 - 15:21:57

Fichier

10.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00614479, version 1

Collections

Citation

Patrick Solé, Jean-Claude Belfiore. Constructive Spherical Codes near the Shannon Bound. WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.453-462, 2011. 〈inria-00614479〉

Partager

Métriques

Consultations de la notice

136

Téléchargements de fichiers

221